
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005 159

Search Bias in Ant Colony Optimization: On the
Role of Competition-Balanced Systems

Christian Blum and Marco Dorigo, Senior Member, IEEE

Abstract—One of the problems encountered when applying ant
colony optimization (ACO) to combinatorial optimization prob-
lems is that the search process is sometimes biased by algorithm
features such as the pheromone model and the solution construc-
tion process. Sometimes this bias is harmful and results in a de-
crease in algorithm performance over time, which is called second-
order deception. In this work, we study the reasons for the occur-
rence of second-order deception. In this context, we introduce the
concept of competition-balanced system (CBS), which is a property
of the combination of an ACO algorithm with a problem instance.
We show by means of an example that combinations of ACO algo-
rithms with problem instances that are not CBSs may suffer from
a bias that leads to second-order deception. Finally, we show that
the choice of an appropriate pheromone model is crucial for the
success of the ACO algorithm, and it can help avoid second-order
deception.

Index Terms—Algorithm performance, ant colony optimization
(ACO), metaheuristics, search bias.

I. INTRODUCTION

METAHEURISTICS, including well-known techniques
such as evolutionary algorithms and tabu search, are

approximate techniques for the solution of combinatorial op-
timization problems [5], [21]. In the early 1990s, ant colony
optimization (ACO) [13], [16], [17] emerged as a novel
nature-inspired metaheuristic. The inspiring source of ACO is
the foraging behavior of real ants. When searching for food,
ants initially explore the area surrounding their nest in a random
manner. As soon as an ant finds a food source, it evaluates the
quantity and the quality of the food and carries some of it back
to the nest. During the return trip, the ant deposits a chemical
pheromone trail on the ground. The quantity of pheromone

Manuscript received April 6, 2004; revised October 13, 2004. The work of
C. Blum was supported in part by a Fellowship by the Metaheuristics Network
under Grant HPRN-CT-1999-00106, a Research Training Network funded
by the Improving Human Potential Program of the European Commission,
in part by the Spanish CICYT Project under Grant TIC-2002-04498-C05-03
(TRACER), and in part by the Research Training Network “Segravis” under
Grant HPRN-CT-2002-00275. The work of M. Dorigo was supported in part
by the Belgian FNRS and in part by the ANTS Project, an Action de Recherche
Concertée funded by the Scientific Research Directorate of the French Commu-
nity of Belgium. The work of C. Blum was done while with IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium. The information provided is the sole
responsibility of the authors and does not reflect the Community’s opinion. The
Community is not responsible for any use that might be made of data appearing
in this publication.

C. Blum is with the Department of Llenguatges i Sistemes Informátics,
Universitat Politècnica de Catalunya, Barcelona E-08034, Spain (e-mail:
cblum@lsi.upc.es).

M. Dorigo is with IRIDIA, Université Libre de Bruxelles, Brussels B-01050,
Belgium (e-mail: mdorigo@ulb.ac.be).

Digital Object Identifier 10.1109/TEVC.2004.841688

deposited, which may depend on the quantity and quality of the
food, will guide other ants to the food source. As it has been
shown in [12], indirect communication between the ants via
pheromone trails enables them to find shortest paths between
their nest and food sources. This characteristic of real ant
colonies is exploited in artificial ant colonies in order to solve
discrete optimization problems.

While most of the literature on ACO algorithms deals with
practical applications [14], [15], [18], recent research efforts
have shown the need for a better understanding of the behavior
of ACO algorithms. For example, Blum and Sampels [6], [7]
studied the application of ACO algorithms to shop scheduling
problems. They discovered that the performance of ACO algo-
rithms may decrease over time, depending on the pheromone
model and the tackled problem instance. This behavior is clearly
undesirable, because in general it worsens the probability of
finding better and better solutions over time. Blum et al. con-
ducted a related study concerning the k-cardinality tree problem
in [8]. In a similar line of work, Merkle and Middendorf [28],
[29] studied the behavior of a simple ACO algorithm by ana-
lyzing the dynamics of its model when applied to permutation
problems. In general, the solution construction process of ACO
algorithms for constrained problems consists of a sequence of
random decisions, in which later decisions depend on earlier
decisions. For ACO algorithms applied to permutation prob-
lems the later decisions of the construction process are inher-
ently biased by the earlier ones. In general, the work of Merkle
and Middendorf showed that the behavior of ACO algorithms
is strongly influenced by the pheromone model (and the way
of using it) and by the competition between the ants. As in the
work by Blum et al. mentioned above, it was also shown that
the expected iteration quality of the model of an ACO algo-
rithm may decrease during a run. Recently, Montgomery et al.
[30] made an attempt to extend the work by Blum and Sampels
[6], [7] to assignment problems, and to attribute search bias to
different algorithmic components. However, the reasons for the
decrease in algorithm performance—which is the subject of this
paper—remained largely unknown.

The first attempt of capturing the behavior of ACO algorithms
in a formal framework was done in [3] and [4], a work which
is closely related to deception in evolutionary computation. The
term deception was introduced by Goldberg in [22]. Goldberg
defined deception in terms of the static average fitness of com-
peting schemas and his aim was to describe problems that are
misleading for genetic algorithms (GAs). Since then, much of
the work on trying to understand the difficulties that a problem

1089-778X/$20.00 © 2005 IEEE

160 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

might pose for GAs has focused on deception. Well-known ex-
amples of GA-deceptive problems are -bit trap functions [11].
These functions are characterized by fixpoints with large basins
of attraction that correspond to suboptimal solutions, and by
fixpoints with relatively small basins of attraction that corre-
spond to optimal solutions. Therefore, for these problems, a
GA will—in most cases—not find an optimal solution. In [3]
and [4], Blum and Dorigo adopted the term deception for the
field of ACO, similarly to what had previously been done in
evolutionary computation. It was shown that ACO algorithms,
in general, suffer from first-order deception in the same way
as GAs do. Blum and Dorigo also introduced the concept of
second-order deception, which is caused by a bias that leads to
decreasing algorithm performance over time.

Search bias is a subject that is well-studied in the field of evo-
lutionary computation. Research on search bias focused mainly
on representational bias, i.e., a bias introduced by the chosen
solution representation, and on operator bias, i.e., a bias that
is introduced by algorithmic operators such as crossover and
mutation. An example for operator bias is the positional bias
introduced by one-point crossover when applied to bit-strings
[19]. Positional bias refers to the fact that bits that are relatively
far apart on an individual will be more likely to be separated
by crossover than bits that are close to each other. Conversely,
bits that are close to each other are more likely to be treated
as units. However, positional bias does not necessarily have a
negative impact on the search process. A second example for
operator bias is the work by Vekaria and Clack [38], who deal
with the bias that is introduced by adaptive recombination oper-
ators. They show that this bias is not always beneficial for GA’s
performance. Operator bias has also been studied in the genetic
programming community. For example, the work by Poli et al.
[34], [35], [26] deals with the biases that are introduced by dif-
ferent crossover operators and mutation sizes. In particular, it
was shown that standard subtree crossover induces a very strong
bias toward oversampling shorter strings when applied to vari-
able length linear structures.

An example of representational bias arises when the solutions
to a problem are the spanning trees of a graph. One possible so-
lution representation in this case is the encoding of the spanning
trees by means of Prüfer numbers.1 Rothlauf and Goldberg [37]
dealt with this subject and showed that the Prüfer number en-
coding introduces a bias toward solutions that have the shape of
a star. They were able to show that for problem instances where
the optimal solutions are of star shape, their evolutionary algo-
rithm works well and vice versa. (Another work on the same
subject is the work by Palmer and Kershenbaum [33].)

A second example of negative representational bias can be
found in the work by Igel and Stagge [24]. They show that when
dealing with redundant encodings, operators that are unbiased
in genotype space may exhibit a remarkable bias in phenotype

1Assuming that the nodes of a completely connected, undirected graph G =
(V;E) are labeled from 1 to jV j, a Prüfer number is a string of length jV j � 2
of node labels that encodes one of the possible spanning trees of G. There is
a one-to-one mapping between the possible Prüfer numbers and the spanning
trees of a graph.

space, which in some cases has a negative impact on the search
process.

In general, it was shown that it is important to find solution
representations and genetic operators that work well with each
other (see, for example, [10] and [39]).

Outline: In this paper, we study the reasons for the occasional
decrease of ACO algorithm performance over time, which is la-
beled second-order deception. Section II introduces the basics of
ACO. In Section III, we shortly introduce the framework of first-
and second-order deception in ACO. Furthermore, we intro-
duce the concept of competition-balanced system (CBS), which
is a property of the combination of an ACO algorithm with a
problem instance. We show that the property of being a CBS
is a positive property for an ACO algorithm/instance combina-
tion. As an example, we use the asymmetric traveling salesman
problem (ATSP). In Section IV, we study an ACO algorithm for
the job shop scheduling (JSS) problem. We show that, in gen-
eral, combinations of the considered ACO algorithm with JSS
instances are not CBSs, and that this may introduce a harmful
bias that misleads the search process. Avoiding second-order de-
ception by means of choosing an appropriate pheromone model
is studied in Section V. Finally, in Section VI, we offer conclu-
sions and an outlook to future work.

II. FRAMEWORK OF A BASIC ACO ALGORITHM

ACO algorithms are stochastic approximate methods for
tackling combinatorial optimization (CO) problems (see [18]).
The central component of an ACO algorithm is the pheromone
model, which is used to probabilistically sample the search
space. As outlined in [3], the pheromone model can be derived
from a model of the CO problem under consideration. A model
of a CO problem can be stated as follows.

Definition 1: A model of a CO problem con-
sists of the following:

• a search (or solution) space defined over a finite set
of discrete decision variables and a set of constraints
among the variables;

• an objective function to be minimized.
The search space is defined as follows. Given is a set of

discrete variables with values ,
. A variable instantiation, that is, the assignment of

a value to a variable , is denoted by . A feasible
solution is a complete assignment (i.e., an assignment
in which each decision variable has a domain value assigned)
that satisfies the constraints. If the set of constraints is empty,
then each decision variable can take any value from its domain
independently of the values of the other decision variables. In
this case, we call an unconstrained problem model, other-
wise, a constrained problem model. A feasible solution
is called a globally optimal solution (or global optimum), if

. The set of globally optimal solutions is
denoted by . To solve a CO problem one has to find a
solution .

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 161

Algorithm 1: The framework of a basic ACO algorithm
input: An instance of a CO problem model

.

while termination conditions not met do

for do

{optional}
if or then

end for

end while
output: The best-so-far solution

A model of the CO problem under consideration implies a
finite set of solution components and a pheromone model as
follows. First, we call the combination of a decision variable
and one of its domain values a solution component denoted
by . Then, the pheromone model consists of a pheromone trail
parameter for each solution component . The set of all
solution components is denoted by . The value of a pheromone
trail parameter —called pheromone value—is denoted by .
The set of all pheromone trail parameters is denoted by . As a
CO problem can be modeled in different ways, different models
of a CO problem can be used to define different pheromone
models.

Algorithm 1 captures the framework of a basic ACO
algorithm. It works as follows. At each iteration, ants
probabilistically construct solutions to the combinatorial op-
timization problem under consideration, exploiting a given
pheromone model. Then, optionally, a local search procedure
is applied to the constructed solutions. Finally, before the next
iteration starts, some of the solutions are used for performing a
pheromone update. This framework is explained in more detail
in the following.

. At the start of the algorithm
the pheromone values are all initialized to a constant value

.
. The basic ingredient of any ACO

algorithm is a constructive heuristic for probabilistically
constructing solutions. A constructive heuristic assembles so-
lutions as sequences of elements from the finite set of solution
components . A solution construction starts with an empty
partial solution . Then, at each construction step the
current partial solution is extended by adding a feasible
solution component from the set , which is
defined by the solution construction mechanism. The process of
constructing solutions can be regarded as a walk (or a path) on
the so-called construction graph , which is a fully
connected graph whose vertices are the solution components

and the set are the connections. The allowed walks on
are implicitly defined by the solution construction mechanism
that defines the set with respect to a partial solution

. The choice of a solution component is, at

each construction step, done probabilistically with respect to
the pheromone model. The probability for the choice of is

proportional to , where is a function that
assigns to each valid solution component—possibly depending
on the current construction step—a heuristic value which is
also called the heuristic information. and are positive
parameters whose values determine the relative importance
of pheromone value and heuristic information. The heuristic
information is optional, but often needed for achieving a high
algorithm performance. In most ACO algorithms, the probabil-
ities for choosing the next solution component—also called the
transition probabilities—are defined as follows:

(1)
Note that potentially there are many different ways of choosing
the transition probabilities. The above form has mainly histor-
ical reasons, because it was used in the first ACO algorithms
that were proposed (see, for example, [17]).

. Optionally, a local search procedure for im-
proving the solutions constructed by the ants may be applied.

. The aim of the
pheromone value update rule is to increase the pheromone
values on solution components that have been found in high
quality solutions. Most ACO algorithms use a variation of the
following update rule:

(2)

for , and . Instantiations of this
update rule are obtained by different specifications of ,
which—in all cases that we consider in this paper—is a subset
of , where is the set of solutions that were
constructed in the current iteration, and is the best-so-far
solution. The parameter is called evaporation rate.
It has the function of uniformly decreasing all the pheromone
values. From a practical point of view, pheromone evaporation
is needed to avoid a too rapid convergence of the algorithm to-
ward a suboptimal region. It implements a useful form of forget-
ting, favoring the exploration of new areas in the search space.

is a function such that
, , where is the set of all the sequences

of solution components that may be constructed by the ACO al-
gorithm and that correspond to feasible solutions. is com-
monly called the quality function. Note that the factor is
usually not used. We introduce it for the mathematical purpose
of studying the expected update of the pheromone values. How-
ever, as the factor is constant, it does not change the qualitative
behavior of an ACO algorithm.

A well-known example of an instantiation of update rule (2)
is the AS-update rule, that is, the update rule of ant system (AS)
[17]. The AS-update rule is obtained from update rule (2) by
setting

(3)

162 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

This update rule is well-known due to the fact that AS was the
first ACO algorithm to be proposed in the literature. An example
of a pheromone update rule that is more used in practice is the
IB-update rule (where IB stands for Iteration-Best). The IB-up-
date rule is given by

(4)

The IB-update rule introduces a much stronger bias toward the
good solutions found than the AS-update rule. However, this
increases the danger of premature convergence.

III. DECEPTION IN ANT COLONY OPTIMIZATION

The desired behavior of an ACO algorithm can be stated as
follows: The average quality of the generated solutions should
improve over time. This is desirable, as it usually increases
the probability of improving the best solution found over time.
First and second-order deception in ACO were defined in [4]
as properties of models of ACO algorithms, which are deter-
ministic dynamical systems obtained by applying the expected
pheromone update instead of the real pheromone update (see,
for example, [29]). The advantage of defining the behavior
of ACO algorithms in terms of properties of their models is
that a model—as it is deterministic—always behaves in the
same, in contrast to the behavior of the ACO algorithm itself
which in each run slightly differs due to the stochasticity. An
ACO algorithm model can be characterized by the evolution
of the expected quality of the solutions that are generated per
iteration. This expected iteration quality is henceforth denoted
by , or by , where is the iteration
counter.

As an example of an ACO algorithm model, let us consider
the AS algorithm, which is characterized by the AS-update rule
as outlined in the previous section. Assuming solution con-
structions per iteration, the expected iteration quality is given by

(5)

where is the set of all multisets of cardinality consisting
of elements from , and is the probability that the

ants produce the multiset of solutions. The ex-
pected pheromone update of the AS algorithm is then obtained
by setting to

(6)

for , (note that depends on), and
where is the iteration counter.

In order to reduce the computational complexity of this
model, we simplify it by assuming an infinite number of so-
lution constructions (i.e., ants) per iteration (henceforth, we

will refer to this as to the simplified model). In this case, the
expected iteration quality is given by

(7)

where is the probability to produce solution given the
current pheromone values. The expected AS pheromone update
is given by

(8)

Definition 2: Given a model of a CO problem, we call
a model of an ACO algorithm applied to any instance P of
a local optimizer if for any initial setting of the pheromone
values the expected update of the pheromone values is such that

, . In other words, the
expected quality of the generated solutions per iteration must
be monotonically nondecreasing.

The definition of a first-order deceptive system (FODS) is
based upon the definition of a local optimizer.

Definition 3: Given a model of a CO problem, we call
a local optimizer applied to instance of a FODS if an
initial setting of the pheromone values exists such that the local
optimizer does not converge to a globally optimal solution.

This means that even if a model of an ACO algorithm is a
local optimizer, it is a FODS when, for example, it is applied
to problem instances that are characterized by the fact that they
induce more than one stable fixpoint.2 An example is the ap-
plication of the simplified model of AS to -bit trap functions
(see[3]).

However, first-order deception does not constitute a major
problem in ACO. In fact, it is a desirable property of any op-
timization algorithm that the average quality of the generated
solutions increases over time. Therefore, we are generally satis-
fied if a model of an algorithm is a local optimizer. As a matter
of fact, metaheuristics are in general not global optimizers. In
contrast, if it cannot be shown that the considered model of an
algorithm is a local optimizer, the empirical behavior of the al-
gorithm might be very difficult to predict. Therefore, a second-
order deceptive system (SODS) is defined as a system that does
not have the property of being a local optimizer.

Definition 4: Given a model of a CO problem, we call
a model of an ACO algorithm applied to instance of a
SODS, if the evolution of the expected iteration quality contains
time windows (where ,) with

, . This means that the
combination of a model of an ACO algorithm and an instance

of may be a SODS, if the ACO algorithm model is not
a local optimizer. We henceforth refer to the above mentioned
time windows as second-order deception effects. Also, with
respect to the empirical behavior of an ACO algorithm, we will
use the notion of second-order deception effects.

In the remainder of this paper, we will examine the ques-
tion of when second-order deception effects can be expected to

2The term of a stable fixpoint stems from the field of discrete dynamical sys-
tems. It denotes the state of a system that is characterized by the fact that when
the system has entered this state it will never leave it (see, for example, [23]).

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 163

arise. For this purpose, we examine more closely the relation of
the solution components with the solution construction process.
Each step of constructing a solution is a probabilistic decision on
how to extend the current partial solution. At each of these con-
struction steps, solution components compete with each other.
From this point of view, the dynamics of an ACO algorithm can
be described as the competition between the different solution
components. This competition should of course, be as fair as
possible. The following definition formally characterizes a fair
competition between the solution components.

Definition 5: Given a model of a CO problem, we call the
combination of an ACO algorithm and a problem instance of

a CBS, if the following holds: Given a feasible partial solu-
tion and the set of solution components that can be
added to extend , each solution component is a
component of the same number of feasible solutions (in terms
of sequences built by the algorithm) as any other solution com-
ponent , .3 In this context, we call the com-
petition between the solution components a fair competition if
the combination of an ACO algorithm and a problem instance
is a CBS.

In order to show that a fair competition between the solu-
tion components most likely results in a search process that does
not suffer from a harmful bias, we applied the simplified model
of the AS algorithm as outlined above to the asymmetric trav-
eling salesman problem (ATSP) [25]. The pheromone model
and the solution construction process that we used are the stan-
dard ones for applications of ACO to traveling salesman prob-
lems (TSPs) (see [17]). The solution components correspond
to links in the ATSP graph, and each link is associated with
a pheromone value. The AS algorithm applied to any ATSP
problem instance is a CBS. This is because each link (i.e., each
solution components) is in the same number of solutions (i.e.,
Hamiltonian cycles in the ATSP graph), namely, solu-
tions. Therefore, at each construction step the competing solu-
tion components are in the same number of feasible solutions.

We applied the simplified model of AS to 10 randomly gen-
erated ATSP instances of size . Note that for ap-
plying this model, the search space must be enumerated. There-
fore, we had to restrict ourselves to problem instances of small
size. The initial value of each of the pheromone trail parame-
ters was randomly chosen from . We stopped the
algorithm for each of the problem instances once the change in
expected iteration quality from one iteration to the other was
smaller than 10 . In all 10 experiments, we did not find a
single case of decreasing expected iteration quality from one it-
eration to the other. Fig. 1 shows the evolution of the expected
iteration quality of the simplified model of AS when applied to
a randomly generated ATSP instance of size for different
settings of . Our results suggest that the simplified model of
AS for the ATSP is a local optimizer, i.e., it is not a SODS. We
also conjecture that this is largely determined by the property of
being a CBS. In Section IV, we show on the example of the JSS
problem how the lack of this property can lead to algorithms
that suffer from second-order deception effects.

3Note that there exist ACO algorithms in which partial solutions are extended
by “groups” of solution components. In these cases, the definition of a CBS has
to be adapted accordingly.

Fig. 1. Evolution of the expected iteration qualityW of the simplified model
of AS applied to a randomly generated ATSP instance on seven nodes (cities).
The four plots show the evolution of the expected iteration quality over time for
different settings of parameter �. Each initial pheromone value was randomly
chosen from f1; . . . ; 100g. The plots show that the expected iteration quality
continuously increases. Moreover, for increasing � the impact of the pheromone
value update increases, because the algorithm is less conservative.

IV. EXAMPLE OF SECOND-ORDER DECEPTION

Three examples of second-order deception can be found in
the literature [7], [8], [29]. In [29], Merkle and Middendorf
discovered a case of second-order deception when studying a
model of a simple ACO algorithm for permutation problems.
In [8], Blum et al. showed second-order deception in the con-
text of an ACO algorithm applied to the node-weighted -cardi-
nality tree (KCT) problem. However, in this case second-order
deception can only be detected when the AS-update rule is ap-
plied without the use of local search for improving the solutions
constructed by the ants. A more serious case of second-order
deception is reported by Blum and Sampels in [6] and [7] for
the -hard JSS [2] problem.

In the JSS problem, we are given a set of operations
, which is partitioned into a set of subsets

. The operations in have to be pro-
cessed on the same machine. For the sake of simplicity, we iden-
tify each set of operations with the machine they have
to be processed on, and call a machine. is also partitioned
into a set of subsets , where the set of op-
erations is called a job. Furthermore, a processing time

is given for each operation . Also given are
permutations of the operations of each job . Such
a job-permutation defines the order in which the operations of
the corresponding job have to be processed.4 In the following,
when given a permutation , denotes the operation on the
th position of permutation . A permutation of the operations

of a job imposes a total order on the operations of
and a partial order on . For and the two operations

and , we write . The set of prede-
cessors of an operation is given by

(9)

4The job-permutations are often called technological sequences.

164 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

We consider the case in which each machine can process at most
one operation at a time. Operations must be processed without
preemption (that is, once the processing of an operation has
started it must be completed without interruption). Operations
belonging to the same job must be processed sequentially.

A solution is given by permuta-
tions of the operations in , . These
permutations define processing orders on all the machines .
Note that not all combinations of permutations are feasible, be-
cause some combinations of permutations might define cycles
in the processing orders.

There are several possibilities to measure the cost of a solu-
tion. Here, we deal with makespan minimization for which the
objective function is defined as follows. Every operation
has a well-defined earliest starting time with respect to
a solution . We assume that the operations being the first ones
to be processed on their machine, as well as in their job, have
an earliest starting time of 0. The earliest completion time of
an operation with respect to a solution is denoted by

and defined as . Then, given a solution
, the objective function value (also called the makespan) is de-

fined as

(10)

The objective is to find a solution with minimum makespan.
Given a JSS problem instance, let us consider the set of all

permutations of all operations. Some of these permutations rep-
resent solutions to the given JSS instance. This is due to the
fact that a permutation of all the operations contains the ma-
chine-permutations.5 Based on this observation, Colorni et al.
[9] proposed the following model of the JSS problem: First,
the set of operations is augmented by two dummy operations

and with processing time zero. Operation serves as
source operation and as destination operation. The aug-
mented set of operations is . Then,
for each operation , where , a decision vari-
able is introduced. The domain for decision variable is

, and for every other decision variable the
domain is . The meaning of a do-
main value for a decision variable is that operation

is placed immediately after operation in the permutation
of all the operations under construction. This problem model is,
henceforth, denoted by . In order to derive the pheromone
model, we again introduce for each combination of a decision
variable and a domain value a solution component

. The pheromone model then consists of a pheromone trail
parameter for each solution component .

Many constructive mechanisms build solutions in terms of
feasible permutations to JSS instances by constructing a permu-
tation from left to right. In the following, we refer to this type of
algorithm as a list scheduler algorithm.6 A list scheduler algo-

5However, note that there is generally a many-to-one mapping from the set of
feasible permutations of n operations to the set of different solutions to a JSS
problem instance.

6One of the most prominent list scheduler algorithms is the GT algorithm
[20]. Note that in the literature there is no well-established term for this type of
algorithm. They are also often referred to as list scheduling algorithms, priority
rule heuristics, or priority rule systems.

rithm builds a sequence of all operations from left to right. This
is done by appending at each of construction steps to the re-
spective partial solution an operation from set , which is the
set of allowed operations. Set is defined as follows. At each
step the set of operations is partitioned into set

, the set of operations that are already in the partial sequence,
and set , the set of operations that still have to be dealt with.
However, in order to exclusively generate feasible solutions,
is defined as a subset of in the following way7:

(11)

The solution construction mechanism of the ACO algorithm by
Colorni et al. [9] uses the mechanism of list scheduler algo-
rithms and works as follows. Let denote the index of the de-
cision variable that receives a value in the current construction
step. Further, at each constructions step index set contains
as well as the indexes of the decision variables that have already
assigned a value. The solution construction starts with an empty
partial solution , with , and with . Then,
at each of construction steps , a solution compo-
nent is added to the current partial solution, where

(12)

This means that at each construction step we choose a domain
value for the decision variable with index . When adding the
solution component to , we also set to and add to

. In the th construction step, the value of the last unas-
signed decision variable is set to .

Each construction step is done according to the following
probability distribution, which is the same as (1), except that
we do not consider heuristic information:

(13)

The pheromone value update rule to be examined is again
the AS-update rule given in (2) and (3). The instantiation of
Algorithm 1 as defined above by the definition of the pheromone
model, the solution construction mechanism and the pheromone
update rule is, henceforth, denoted by .

A. Study of a Small Problem Instance

The small problem instance that we consider in the following
is specified as follows:

(14)

We, henceforth, denote this problem instance by
. An example of the construction of a

solution to this problem instance is shown in Fig. 2(a). In
Fig. 2(b), which shows all possible solution constructions in

7Remember that pred(o) is the set of predecessors of operation o as defined
in (9).

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 165

Fig. 2. (a) Construction of solution = h ; ; ; ; i to problem instance jss simple inst as specified in (14). Solution corresponds to solution
s = fX = 1; X = 2; X = 3; X = 4; X = 5g to the CO problem model P . At each step, the operation that is shown in bold face is the current
operation. The operations covered by the gray shaded areas are the allowed values for the decision variable that corresponds to the current operation. (b) Complete
search tree as given by the solution construction mechanism of AS JSS suc applied to problem instance jss simple inst. The path in the search tree that
corresponds to the solution construction that is shown in (a) is indicated in bold.

form of a search tree, it can be seen that may
produce six different sequences

(15)

that map one-to-one to solutions to the CO problem model

(16)

Furthermore, the six solutions to the CO model correspond
to three different solutions in terms of sets of machine-
permutations

(17)

where the sign is to be read as “corresponds to.”
The objective function values are as follows: ,

for , and , for . Therefore,
and are suboptimal solutions, whereas the other four solu-
tions [which map in fact to the same set of machine-permuta-
tions, as shown in (17)] are optimal. Examining the search tree
that is shown in Fig. 2(b) reveals that applied to
problem instance is not a CBS (see Defini-
tion 5). An example is the construction step with
as the current partial solution. The two solution components
that can be added to this current partial solution are and .

166 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 3. Evolution of the expected iteration quality W of the simplified
model of AS JSS suc applied to problem instance jss simple inst as
specified in (14) for different settings of parameter �. All the pheromone
values were initially set to 0.5. The plots show that the expected iteration
quality continuously decreases. Moreover, for increasing � the impact of the
pheromone value update increases and the average iteration quality decreases
faster.

However, solution component is part of the three solutions
, and , whereas solution component is only part of

the two solutions and . This means that the value of the
pheromone trail parameter on average receives updates from
one optimal solution (with quality) and two suboptimal
solutions (with quality each), whereas the value of
on average receives updates from two optimal solutions (with
quality each). This means that for many initial settings of
the pheromone values (e.g., pheromone values all initialized to
the same value) on average receives a higher amount
of pheromone because the number of solutions that contribute to
the updates is higher than that for . For symmetry reasons, the
same holds for pheromone trail parameters (corresponding
to) and (corresponding to). Therefore, over time, the
probability of constructing the suboptimal solutions and
increases, whereas the probability of constructing the optimal
solutions , for , decreases. This means that the
expected iteration quality decreases over time.

We implemented with the aim of confirming
our theoretical considerations and in order to compare the
evolution of the empirically obtained average iteration quality
of with the evolution of the expected iteration
quality of the simplified model of over time.
Fig. 3 shows that—for any of the chosen evaporation rates—
continuously decreases. The empirical behavior—as shown in
Fig. 4—approximates the expected behavior for small and,
therefore, shows the second-order deception effects that are
caused (as explained above) by the fact that the system is not a
competition-balanced one.

B. Study of Benchmark Instances

Our aim in this section is twofold. First, we show that the
results that we obtained in the previous section also hold when
1) large benchmark instances are considered and 2) when practi-
cally relevant ACO algorithms (i.e., using the IB-update rule and

(a)

(b)

Fig. 4. Plots show the evolution of the average iteration quality obtained by
AS JSS suc applied to problem instance jss simple inst as specified in
(14) for n = 10 and two different settings of parameter � (i.e., (a) with � =
0:01, and (b) with � = 0:05). All the pheromone values were initially set to
0.5. The results are averaged over 100 runs (the error bars that show the standard
deviation are shown every 50th iteration). Note that in (b) the standard deviation
of the algorithm behavior increases over time, because the algorithm—due to a
higher learning rate—converges sometimes to a good solution and sometimes
to a bad solution.

local search8 for improving the ant solutions) are used. Second,
we show that the harmful bias is due to the fact that, in general,
the combination of the above explained ACO algorithm with
JSS instances is not a CBS. In the following, we refer to the
ACO algorithm that uses the IB-update rule as .
We chose the following two problem instances as test cases.

1) : This problem instance consists of 100 operations
(i.e., ten jobs and ten machines). It was introduced in [31]
and is one of the most famous JSS benchmark instances
as it remained unsolved for more than 25 years.

2) : This second benchmark instance consists likewise
of 100 operations (i.e., ten jobs and ten machines). It was
introduced by Applegate and Cook in [1].

The results of three versions of our ACO algorithm—namely,
, , and local

8We used the steepest descent local search based on the neighborhood struc-
ture introduced by Nowicki and Smutnicki in [32].

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 167

(a) Instance ft10, performance. (b) Instance ft10, sequencing factors.

(c) Instance orb08, performance. (d) Instance orb08, sequencing factors.

Fig. 5. (a) and (c) Shows the evolution of the average iteration quality obtained by three algorithm versions—namely, AS JSS suc, IB JSS suc, and
IB JSS suc using local search—when applied to problem instances ft10 and orb08 for 2000 iterations with n = 10 and with the evaporation rate � optimally
chosen (in an experimental way). All the pheromone values were initially set to 0.5. The results are averaged over 100 runs (the error bars that show the standard
deviation are shown every 50th iteration). (b) and (d) Shows the evolution of the average sequencing factors of the iteration-best solutions corresponding to the
experiments in (a) and (c).

search (LS)—are shown in Fig. 5(a) and (c). Concerning
, we can observe for both instances a strong

decrease in average iteration quality for the first approxi-
mately 150 iterations. Then, the curve of the average iteration
quality does a sharp upturn. The average iteration quality of

starts to increase slightly in the case of and
more strongly in the case of . However, even though the
average iteration quality increases, the system does not even
reach the average quality of the random solutions that were
produced in the first iterations, for either problem instance.
The results also show that the use of the IB-update reduces the
effect of the harmful bias. The second-order deception effects
are delayed, and the increase in average iteration quality, after
the bottom point in terms of average iteration quality is reached,
is stronger. In the case of instance , the average iteration
quality that is reached at the end of the algorithm run is still
lower than the average iteration quality obtained in the first
iteration. Finally, when is used in conjunction
with local search for improving the solutions constructed by the
ants, the algorithm does not seem to be able to learn much, i.e.,
the average iteration quality does not change notably during

the whole algorithm run. In this case, the two forces, i.e., the
harmful bias on one side and the forces of the algorithm such
as the pheromone update and the local search algorithm on the
other side, seem to neutralize each other. Summarizing, our
results show that second-order deception is not only an issue
for small and opportunely defined JSS problem instances.

Our second goal is to explore the nature of the harmful
bias that we identified. An examination of the small example
instance introduced in (14) reveals the fol-
lowing. Solution corresponds to the permutation
of operations, and solution corresponds to permutation

. Both solutions are disproportionally favored by the
way in which solutions are constructed and pheromone values
are updated. The corresponding permutations are characterized
by the fact that the operations of each job form a continuous
block (or sequence), i.e., operation 4 is the immediate successor
of operation 3, and operation 2 is the immediate successor of
operation 1. Therefore, for this small problem instance, it holds
that those solutions that correspond to permutations in which
the operations of each job form a sequence are favored. In
order to study if this holds in general, we introduce a measure

168 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

(a) Instance patho 1, performance. (b) Instance patho 1, sequencing factors.

Fig. 6. (a) Shows the evolution of the average iteration quality obtained by AS JSS suc when applied to problem instances patho 1 for 2000 iterations with
n = 10 and with the evaporation rate � optimally chosen (in an experimental way). All the pheromone values were initially set to 0.5. The results are averaged
over 100 runs (the error bars that show the standard deviation are shown every 50th iteration). (b) Shows the evolution of the average sequencing factors of the
iteration-best solutions corresponding to the experiment that is shown in (a).

which we, henceforth, refer to as the sequencing factor. Given a
permutation that corresponds to a solution , the sequencing
factor of is given by

(18)

where if the operations on positions and
of permutation are from a same job, and

, otherwise. The minimum value of is 0, in
case no two neighboring operations in are from the same
job. The maximum value of is 1, in case the jobs are
in sequences in . Corresponding to the experiments that are
shown in Fig. 5(a) and (c), we plotted the sequencing factors
of the iteration-best solutions over time in Fig. 5(b) and (d).
It is interesting to observe that the sequencing factors of al-
gorithm versions and for both in-
stances strongly increase right from the start of the algorithm
run. In case of , they reach for both instances the
maximum value of 1.0 and stay at this level until the algorithm
is stopped. In case of , the increase is delayed and
the sequencing factors stop shortly before reaching 1.0. The use
of local search strongly reduces the above described effects. The
time (in terms of the iteration number) at which the sequencing
factor reaches a stable level coincides with the point at which
the evolution of the average iteration quality takes a sharp turn
from decreasing average iteration quality to increasing average
iteration quality. This indicates that the sequencing factor is cor-
related with the bias that is introduced by the fact that the sys-
tems are not competition-balanced. The sequencing factor can
therefore be regarded as an indicator of this bias, which leads
the algorithm at the beginning of the search process to a certain
area of the search space that is characterized by the fact that the
solutions in this area have a high sequencing factor. Once the al-
gorithm has reached this area, this bias reduces and the selection

pressure9—now being the strongest force—leads the algorithm
to find the good solutions within this area.

Our observations concerning the sequencing factors indicate
an important fact. The bias introduced by the combination of an
ACO algorithm with a problem instance that is not competition-
balanced is not necessarily harmful. If, for example, the good
solutions of a problem instance were characterized by a high
sequencing factor, algorithms and
should work quite well, and we should not observe noticeable
second-order deception effects. In order to empirically support
this claim, we generated such a problem instance, henceforth,
denoted by . This problem instance consists of 100 op-
erations (i.e., ten jobs and ten machines). The first operation of
each job has to be processed on machine , the second op-
eration of each job has to be processed on machine , and
so on. Furthermore, the processing times of the operations are
as follows: , , for

. The solutions with maximal sequencing factor are
optimal solutions to this problem instance. The results of ap-
plying to instance are shown in Fig. 6.
As expected performs—except for the first about
100 iterations, where effects of random initial search can be ob-
served—very well on this problem instance.

The characteristics of instance are, however, quite
unusual. We studied characteristics of: 1) instance ;
2) well-known benchmark instances; and 3) randomly gen-
erated instances. For each problem instance, we randomly
generated 10 solutions (as permutations of all operations), and
created two plots from the results. The first plot is a scatter plot
in which each data point corresponds to one of the constructed
solutions. The sequencing factor of a solution is on the axis
and the solution quality (in terms of “percent above optimal”) is
on the axis. The second plot presents the same information in
a different way. For the second plot, we divided the range of the
sequencing factors into intervals of equal size and categorized

9We call the influence of solutions on the pheromone update depending on
their quality selection pressure.

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 169

(a) Instance patho 1. (b) Instance patho 1.

(c) Instance ft10. (d) Instance ft10.

(e) Instance 10�10 1. (f) Instance 10�10 1.

Fig. 7. Sequencing factor versus solution quality for JSS problem instances. Plots (a), (c), and (e) are scatter plots showing the sequencing factor and the solution
quality of each randomly generated solution, whereas plots (b), (d), and (f) show the average quality (with standard deviation) of randomly generated solutions
from ranges of sequencing factors.

the constructed solutions with respect to the interval they fall
into. Then, for each sequencing factor interval, we plotted
the average solution quality that was obtained together with
error bars that show the standard deviation. Fig. 7 shows these
two plots for three different instances: , , and a
randomly generated instance that consists of 100
operations (i.e., ten jobs and ten machines). The characteristics
of are typical of existing benchmark instances, while those
of are typical of randomly generated instances. We
observe that for both instance types (i.e., “existing benchmark”

and “randomly generated”) with increasing sequencing factor
the average solution quality (of randomly generated solutions)
degrades.10 As can be seen in Fig. 7(b), the opposite is true for
instance .

To summarize, if a combination of an ACO algorithm and a
problem instance is not a CBS, the search process may be sub-
ject to a bias. This bias may be harmful, resulting in second-

10Note that in Fig. 7, the sequencing factors of solutions do not exceed 0.4,
because it is highly improbable to randomly generate solutions with sequencing
factors higher than 0.4.

170 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

order deception effects, as in our ACO algorithms for the JSS
problem. However, this bias is not necessarily harmful, as it may
bias the search toward areas in the search space that contain
good solutions. This was shown on the example of the patho-
logical instance .

V. AVOIDING SECOND-ORDER DECEPTION: CHOICE OF AN

APPROPRIATE PHEROMONE MODEL

In general, there may be several possible ways of avoiding
second-order deception. In this paper, we focus on avoiding
second-order deception by choosing an appropriate problem
model of the CO problem under consideration in order to
obtain an appropriate pheromone model. In this context, the
notion of an appropriate pheromone model informally denotes
a pheromone model that avoids second-order deception when
coupled to the given construction mechanism and pheromone
update. The comparison of different pheromone models has not
received much attention in ACO research so far. One of the rare
examples is the work by Roli et al. [36] on MAX-SAT. In fact,
the common practice when applying ACO to a CO problem
to which it has not been applied before is to choose the most
natural problem model11 and to derive the pheromone model
from it. Then, either the chosen ACO algorithm works well (i.e.,
it provides competitive results), or, in case the algorithm shows
a rather low performance, the reasons for the lack of success
remain unclear and unexplored. This might be due to the use of
additional algorithmic components, such as, for example, the
local search that is used to improve solutions, which make it
difficult to detect second-order deception. Therefore, the CO
problem model—respectively, the pheromone model—is rarely
identified as the cause of a bad algorithm performance.

The ideal solution would be to develop a model of the JSS
problem such that the ACO algorithm outlined before leads
to a CBS, independently of the JSS instance it is applied to.
However, we were not able to find such a model of the JSS
problem. Therefore, we decided to investigate two alternative
JSS problem models that already exist.

A. Problem Model

Problem model was introduced by Merkle and
Middendorf in [27] for a scheduling problem related to the JSS
problem. In this model, we are given a decision variable for
each position of a permutation of length . The
domain of a decision variable is . Setting

corresponds to placing operation on position
of the permutation being built. The pheromone model is derived
as follows from this problem model. For each combination of
a decision variable and a domain value , we have a
solution component , and for each solution component, we
have a pheromone trail parameter .

Using the mechanism of list scheduler algorithms, the solu-
tion construction process is as follows. Let denote the index
of the decision variable that has to be assigned a value in the cur-
rent construction step . The solution construction
starts with an empty partial solution and with .

11This often corresponds to the problem model as it can be found in the liter-
ature.

Then, a solution component is added to the current
partial solution , where

(19)

When adding the solution component to , we also set
. This means that we fill permutations from left to right.

Merkle and Middendorf proposed two different ways of
defining the transition probabilities. In the so-called standard
way, the transition probabilities are defined as follows:

(20)

However, the problem with this way of defining the transition
probabilities is the following. Imagine a situation in which ,
which represents the desirability to place operation on po-
sition , is quite high and all pheromone values , with

, are quite low. If for stochastic reasons operation
is not placed at position , then the probability to place it at

any of the immediately following positions is quite low. This
means that there is a high probability that this operation will
be placed much later in the permutation, which often results in
low quality solutions. To favor the placement of operation , if
not at position , at least not too far away from position , the
so-called summation evaluation rule for defining the transition
probabilities was proposed by Merkle and Middendorf in [27]

(21)

With this definition of the transition probabilities, the proba-
bility to assign an operation to the current permutation posi-
tion is proportional to the sum of the pheromone values for as-
signing this operation to any of the already assigned permutation
positions.

The difference between models and is the fol-
lowing. With the pheromone model derived from , suc-
cessor relationships are learned between operations; that is, per-
mutations are built from left to right by making the choice of
the operation for the current position depending on the opera-
tion that was chosen for the previous position. On the contrary,
when using the pheromone model derived from , learning
concerns where to position operations in the permutation that is
built.

B. Problem Model

Both model and model may be considered as un-
natural models of the JSS problem. To explain what we mean,
we introduce the notion of related operations. Henceforth, we
call two operations and related, if they have to be processed
on a same machine. We denote the set of operations that are re-
lated to an operation with . A solution to a JSS instance
basically consists of a processing order for each pair of related
operations. However, with model successor relationships
between operations that are possibly not related are learned.
This is not necessary and therefore quite unnatural. The position

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 171

(a) Instance ft10, IB-update, performance. (b) Instance ft10, IB-update, sequencing factors.

(c) Instance orb08, IB-update, performance. (d) Instance orb08, IB-update, sequencing factors.

Fig. 8. (a) and (c) Shows the comparison between algorithm versions IB JSS suc, IB JSS pos, IB JSS sum, and IB JSS rel when applied to
problem instances ft10 and orb08 for 2000 iterations with n = 10 and with the evaporation rate � optimally chosen (in an experimental way) for each algorithm
version. All the pheromone values were initially set to 0.5. The results are averaged over 100 runs (the error bars that show the standard deviation are shown
every 50th iteration). (b) and (d) Shows the evolution of the sequencing factors of the iteration-best solutions corresponding to the experiments that are shown in
(a) and (c).

learning with model is likewise unnatural, because the rel-
evant information for a solution is the processing order between
each pair of related operations. Based on these considerations,
Blum and Sampels in [6] proposed problem model , which
is outlined in the following.

Model consists of a binary decision variable for each
pair of operations that are related. If ,
this variable is denoted by , by , otherwise. Setting a de-
cision variable to 1 means that has to be processed before

, whereas setting to 0 means that has to be processed
before . Note that this model contains redundancy. Consider,
for example, a machine with three operations , and . Vari-
able assignments and imply . In
this model, we have for each binary decision variable two
solution components: corresponding to , and
corresponding to . Associated with each solution com-
ponent (where), we have a pheromone trail pa-
rameter with value .

For constructing solutions, we again use the mechanism of list
scheduler algorithms. However, the sequence of groups of solu-
tion components that is built—as we will explain below—does
not directly correspond to the permutation of operations that

is built in parallel by the list scheduler algorithm. The solu-
tion construction starts with an empty partial solution .
Then, at each construction step it is first checked if an operation

exists such that ; that is, if an operation
among the ones that can be scheduled exists for which no

related operation remains unscheduled. If this is the case, oper-
ation is regarded as scheduled (i.e., it is removed from)
and the algorithm proceeds to the next iteration.12 This means
that remains the same, whereas the permutation of operations
built in parallel by the list scheduler algorithm is changed by ap-
pending operation . If no such operation exists, a group of
solution components is added to the current partial
solution , where

(22)

with

(23)

12Note that this can be done because such an operation does not compete with
any of the remaining unscheduled operations, that is, the values of all decision
variables concerning this operation are already specified.

172 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

(a) Instance ft10, IB-update + local search, performance. (b) Instance ft10, IB-update + local search, sequencing factors.

(c) Instance orb08, IB-update + local search, performance. (d) Instance orb08, IB-update + local search, sequencing factors.

Fig. 9. (a) and (c) Shows the comparison between algorithm versions IB JSS suc, IB JSS pos, IB JSS sum, and IB JSS rel (all using local search)
when applied to problem instances ft10 and orb08 for 2000 iterations with n = 10 and with the evaporation rate � optimally chosen (in an experimental way)
for each algorithm version. All the pheromone values were initially set to 0.5. The results are averaged over 100 runs (the error bars that show the standard deviation
are shown every 50th iteration). (b) and (d) Shows the evolution of the sequencing factors of the iteration-best solutions corresponding to the experiments that are
shown in (a) and (c).

The solution components of a group determine the setting of
the decision variables involving operation and operations that
are related to and that are unscheduled. In [6], the transition
probabilities were defined as follows:

(24)

. In this way, the probability for each is
proportional to the minimum of the values of the pheromone
trail parameters on the solution components that constitute this
group. This is a reasonable choice, because if this minimum
is low it means that there is at least one operation left, which
is unscheduled and related to operation , that should be
scheduled before .

C. Results

We tested four ACO algorithm versions using the IB-update
rule. These versions are based on the three pheromone models

derived from problem models , , and . They are
denoted by (corresponding to problem model

), (corresponding to problem model
with standard pheromone evaluation), (corre-
sponding to problem model and summation evaluation
rule), and (corresponding to problem model

). All algorithm versions were applied—with and without
the use of local search—to problem instances and .

The results are shown in Figs. 8 (without local search) and
9 (with local search). First of all, we observe—in particular,
when local search is used—a clear advantage of the algorithm
versions and over the other two.
When local search is not used, algorithm version
outperforms algorithm version . When local
search is used, these two algorithm versions have a quite low
performance. We also observe that the summation evaluation
rule clearly improves on the standard way of defining the
transition probabilities. Finally, concerning the comparison of

with , we note, generally, a slight
advantage of .

Concerning algorithm versions ,
, and , we only observe

BLUM AND DORIGO: SEARCH BIAS IN ACO: ON THE ROLE OF COMPETITION-BALANCED SYSTEMS 173

Fig. 10. Comparison of IB JSS suc, IB JSS sum, and IB JSS rel
applied to problem instance patho 1 for 2000 iterations with n = 10 and
with the evaporation rate � optimally chosen (in an experimental way) for each
algorithm version. All the pheromone values were initially set to 0.5. The results
are averaged over 100 runs (the error bars that show the standard deviation are
shown every 50th iteration).

slight second-order deception effects. seems to
be the least affected by any harmful bias. In this context, it is
interesting to study the evolution of the average sequencing
factors. As mentioned before, the average sequencing factors
of the results obtained by without the use of
local search steadily increase until some stable level is reached
close to 1. When local search is added, a stable level is already
reached at about 0.2. In contrast, the average sequencing factors
of the results obtained by only slightly increase
before they start to decrease again. Interestingly, the average
sequencing factors belonging to decrease
strongly from the start until a stable level is reached at 0. This
indicates that the use of the summation evaluation rule for
generating the transition probabilities [see (21)] introduces a
strong bias toward solutions with very low sequencing factors.
Accordingly, we would expect this algorithm version to have
difficulties when applied to a problem instance such as
(see Section IV-B). This is confirmed by the results that are
shown in Fig. 10. Finally, the average sequencing factors
belonging to stay at approximately the same level
(i.e., around 0.13) during the whole run, which indicates that
there is no bias that is correlated to the sequencing factor.13

In summary, we can say that even though, in general,
combinations of and JSS problem instances are
not CBSs (see for example the combination with instance

), the algorithm does not seem to suffer from
a harmful form of bias that causes overly strong second-order
deception effects. Algorithm on the other hand,
is subject to a strong bias toward solutions with low sequencing
factors. However, as those solutions in nonpathological problem
instances are generally good solutions, the bias is generally
not harmful. Concerning algorithm , we observed
that it is a bad match with the local search that we used to
improve solutions, i.e., did not seem to be able
to improve over time when local search was used.

13Note that the sequencing factors obtained by IB JSS rel might be
slightly biased by the fact that operations for which no unscheduled and related
operations exist are automatically scheduled.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the occurrence of harmful bias
in the search process of ACO algorithms. The visible effects
of harmful bias, i.e., the decrease in algorithm performance
over time, are labeled second-order deception effects. We have
introduced the concept of CBSs defined over combinations
of ACO algorithms with problem instances. Competition-bal-
anced systems provide a way of distinguishing between fair
and unfair competitions between solution components, i.e., the
components of which solutions are composed. With the ant
system algorithm for the ATSP, we have shown an example
of a fair competition. In this example, we did not observe
second-order deception effects, which led us to conjecture the
nonexistence of any bias. On the other hand, we have shown on
the example of JSS that combinations of ACO algorithms with
problem instances that are not competition-balanced may suffer
from a harmful bias that causes a degeneration of algorithm
performance over time, i.e., second-order deception effects. As
a way of avoiding second-order deception effects, we have pro-
posed the careful choice of an appropriate pheromone model.

Future work will consider other ways of avoiding second-
order deception effects, such as the use of different types of
pheromone update rules. We also aim at extending our work to
other combinatorial optimization problems. In the case of the
JSS problem, we discovered that certain pheromone models bias
the search process toward solutions with certain sequence prop-
erties. Unfortunately, this finding cannot be generalized to other
optimization problems. Therefore, our future work aims at more
general statements that apply to groups of combinatorial opti-
mization problems, for example, subset problems or permuta-
tion problems. Finally, we aim to prove theoretically that if the
combination of an ACO algorithm with a problem instance is a
CBS, it does not suffer from second-order deception.

REFERENCES

[1] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA J. Comput., vol. 3, pp. 149–156, 1991.

[2] J. Blaźewicz, W. Domschke, and E. Pesch, “The job shop scheduling
problem: Conventional and new solution techniques,” Eur. J. Oper. Res.,
vol. 93, pp. 1–33, 1996.

[3] C. Blum, “Theoretical and practical aspects of ant colony optimiza-
tion,” Ph.D. dissertation, Akademische Verlagsgesellschaft Aka GmbH,
Berlin, Germany, 2004. Vol. 282, Dissertationen zur Künstlichen Intel-
ligenz.

[4] C. Blum and M. Dorigo, “Deception in ant colony optimization,” in Lec-
ture Notes in Computer Science, M. Dorigo, M. Birattari, C. Blum, L.
M. Gambardella, F. Mondada, and T. Stützle, Eds. Berlin, Germany,
2004, vol. 3172, Proc. 4th Int. Workshop Ant Colony Opt. Swarm Intell.
(ANTS), pp. 119–130.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surveys, vol. 35,
no. 3, pp. 268–308, 2003.

[6] C. Blum and M. Sampels, “Ant colony optimization for FOP shop
scheduling: A case study on different pheromone representations,” in
Proc. Congr. Evol. Comput. (CEC), vol. 2, Los Alamitos, CA, 2002,
pp. 1558–1563.

[7] , “When model bias is stronger than selection pressure,” in Lecture
Notes in Computer Science, J. J. Merelo Guervós et al., Eds. Berlin,
Germany, 2002, vol. 2439, Proc. 7th Int. Conf. Parallel Prob. Solving
From Nature (PPSN-VII), pp. 893–902.

[8] C. Blum, M. Sampels, and M. Zlochin et al., “On a particularity in
model-based search,” in Proc. Genetic Evol. Comput. Conf. (GECCO),
W. B. Langdon et al., Eds., San Francisco, CA, 2002, pp. 35–42.

174 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

[9] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system
for job-shop scheduling,” Belgian J. Oper. Res. Statis. Comput. Sci.
(JORBEL), vol. 34, no. 1, pp. 39–53, 1994.

[10] C. Cotta and J. M. Troya, “Genetic forma recombination in permutation
flowshop problems,” Evol. Comput., vol. 6, no. 1, pp. 25–44, 1998.

[11] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in
Foundations of Genetic Algorithms 2, L. D. Whitley, Ed. San Mateo,
CA: Morgan Kaufmann, 1993, pp. 93–108.

[12] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels, “The self-orga-
nizing exploratory pattern of the argentine ant,” J. Insect Behavior, vol.
3, pp. 159–168, 1990.

[13] M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph.D.
dissertation (in Italian), Dipartimento di Elettronica, Politecnico di Mi-
lano, Milan, Italy, 1992.

[14] M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and
T. Stützle, Eds., Lecture Notes in Computer Science. Berlin, Germany,
2004, vol. 3172, Proc. 4th Int. Workshop Ant Colony Opt. Swarm Intell.
(ANTS).

[15] M. Dorigo, L. M. Gambardella, M. Middendorf, and T. Stützle, “Special
section on ant colony optimization,” IEEE Trans. Evol. Comput., vol. 6,
no. 4, pp. 317–365, Aug. 2002.

[16] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a Search
Strategy,” Dipartimento di Elettronica, Politecnico di Milano, Milan,
Italy, Tech. Rep. 91-016, 1991.

[17] , “Ant system: Optimization by a colony of cooperating agents,”
IEEE Trans. Syst., Man, Cybern.—Part B, vol. 26, no. 1, pp. 29–41, Feb.
1996.

[18] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[19] L. J. Eshelmann, R. A. Caruana, and J. D. Schaffer, “Biases in the
crossover landscape,” in Proc. 3rd Int. Conf. Genetic Algorithms
(ICGA), 1989, pp. 10–19.

[20] B. Giffler and G. L. Thompson, “Algorithms for solving production
scheduling problems,” Oper. Res., vol. 8, pp. 487–503, 1960.

[21] F. Glover and G. Kochenberger, Eds., Handbook of Metaheuris-
tics. Norwell, MA: Kluwer, 2002.

[22] D. E. Goldberg, “Simple genetic algorithms and the minimal deceptive
problem,” in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. London, U.K.: Pitman, 1987, pp. 74–88.

[23] R. A. Holmgren, A First Course in Discrete Dynamical Sys-
tems. Berlin, Germany: Springer-Verlag, 1996.

[24] C. Igel and P. Stagge, “Effects of phenotypic redundancy in structure
optimization,” IEEE Trans. Evol. Comput., vol. 6, pp. 74–85, 2002.

[25] E. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The Trav-
eling Salesman Problem. New York: Wiley, 1985.

[26] N. F. McPhee, R. Poli, and J. E. Rowe, “A schema theory analysis of mu-
tation size biases in genetic programming with linear representations,”
in Proc. Congr. Evol. Comput. (CEC), 2001, pp. 1078–1085.

[27] D. Merkle and M. Middendorf, “An ant algorithm with a new pheromone
evaluation rule for total tardiness problems,” in Lecture Notes in Com-
puter Science. Berlin, Germany, 2000, vol. 1803, Proc. EvoWorkshops
2000, pp. 287–296.

[28] , “Modeling ACO: Composed permutation problems,” in Lecture
Notes in Computer Science, M. Dorigo, G. Di Caro, and M. Sampels,
Eds. Berlin, Germany, 2002, vol. 2463, Proc. 3rd Int. Workshop Ant
Algorithms, Ant Colonies to Artif. Ants (ANTS), pp. 149–162.

[29] , “Modeling the dynamics of ant colony optimization algorithms,”
Evol. Comput., vol. 10, no. 3, pp. 235–262, 2002.

[30] J. Montgomery, M. Randall, and T. Hendtlass, “Search bias in construc-
tive metaheuristics and implications for ant colony optimization,” in Lec-
ture Notes in Computer Science, M. Dorigo, M. Birattari, C. Blum, L.
M. Gambardella, F. Mondada, and T. Stützle, Eds. Berlin, Germany,
2004, vol. 3172, Proc. 4th Int. Workshop, Ant Colony Opt. Swarm In-
tell. (ANTS), pp. 391–398.

[31] J. F. Muth and G. L. Thompson, Industrial Scheduling. Englewood
Cliffs, NJ: Prentice-Hall, 1963.

[32] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the
job-shop problem,” Manage. Sci., vol. 42, no. 2, pp. 797–813, 1996.

[33] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic al-
gorithms,” in Handbook of Evolutionary Computation, T. Bäck, D. B.
Fogel, and Z. Michalewicz, Eds. Bristol, U.K.: Inst. of Physics, Ox-
ford Univ. Press, 1997, pp. G1.3:1–8.

[34] R. Poli and N. F. McPhee et al., “Exact schema theorems for GP with
one-point and standard crossover operating on linear structures and their
application to the study of the evolution of size,” in Lecture Notes in
Computer Science, J. F. Miller et al., Eds. Berlin, Germany, 2001, vol.
2038, Proc. 4th Eur. Conf. Genetic Program. (EuroGP), pp. 126–142.

[35] R. Poli, C. R. Stephens, A. H. Wright, and J. E. Rowe, “On the search bi-
ases of homologuous crossover in linear genetic programming and vari-
able-length genetic algorithms,” in Proc. Genetic Evol. Comput. Conf.
(GECCO), W. B. Langdon, Ed., San Francisco, CA, 2002, pp. 868–876.

[36] A. Roli, C. Blum, and M. Dorigo, “ACO for maximal constraint satis-
faction problems,” in Proc. 4th Metaheuristics Int. Conf. (MIC), vol. 1,
Porto, Portugal, 2001, pp. 187–191.

[37] F. Rothlauf and D. E. Goldberg, “Prüfer numbers and genetic algorithms:
A lesson on how the low locality of an encoding can harm the perfor-
mance of GAs,” in Lecture Notes in Computer Science. Berlin, Ger-
many, 2000, vol. 1917, Proc. 6th Int. Conf. Parallel Prob. Solving From
Nature (PPSN-VI), pp. 395–404.

[38] K. Vekaria and C. Clack, “Biases introduced by adaptive recombination
operators,” in Proc. Genetic Evol. Comput. Conf. (GECCO), vol. 1, W.
Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, Eds., San Fransisco, CA, 1999, pp. 670–677.

[39] D. L. Whitley and S. B. Rana, “Representation, search, and genetic algo-
rithms,” in Proc. 14th Nat. Conf. Artif. Intell. (AAAI), Menlo Park, CA,
1997, pp. 497–502.

Christian Blum received the M.S. degree in
mathematics from the Universität Kaiserslautern,
Kaiserslautern, Germany, in 1998 and the Ph.D.
degree in applied sciences from the Université Libre
de Bruxelles (ULB), Brussels, Belgium, in 2004.

From 1999 to 2000, he was with the Advanced
Computation Laboratory (ACL), Imperial Cancer
Research Fund (ICRF), London, U.K., and from
2000 to 2004, he was with IRIDIA, ULB. He
currently holds a Postdoctoral Fellowship at the Uni-
versitat Politècnica de Catalunya (UPC), Barcelona,

Spain. His research interests include metaheuristics in combinatorial optimiza-
tion with a focus on theoretical and practical aspects of ant colony optimization.
Current subject of his research is the hybridization of ant colony optimization
with more classical artificial intelligence and operations research methods. In
2004, he coorganized the First International Workshop on Hybrid Metaheuris-
tics (HM 2004), and was a Coeditor of the Proceedings of ANTS 2004, Fourth
International Workshop on Ant Algorithms and Swarm Intelligence.

Marco Dorigo (S’92–M’93–SM’96) received the
Laurea (Master of Technology) degree in industrial
technologies engineering and the Ph.D. degree in
information and systems electronic engineering
from Politecnico di Milano, Milan, Italy, in 1986
and 1992, respectively, and the title of Agrégé de
l’Enseignement Supérieur from the Université Libre
de Bruxelles (ULB), Brussels, Belgium, in 1995.

From 1992 to 1993, he was a Research Fellow
at the International Computer Science Institute,
Berkeley, CA. In 1993, he was a NATO-CNR

Fellow, and from 1994 to 1996 a Marie Curie Fellow. Since 1996, he has
been a Tenured Researcher of FNRS, Belgian National Fund for Scientific
Research, and a Research Director at the Artificial Intelligence Laboratory,
IRIDIA, ULB. He is the inventor of the ant colony optimization metaheuristic.
His current research interests include metaheuristics for discrete optimization,
swarm intelligence, and swarm robotics.

Dr. Dorigo was awarded the Italian Prize for Artificial Intelligence in 1996
and the Marie Curie Excellence Award in 2003. He is a member of the Edito-
rial Boards of numerous international journals, including Adaptive Behavior, AI
Communications, Artificial Life, Evolutionary Computation, Journal of Heuris-
tics, Cognitive Systems Research, and the Journal of Genetic Programming and
Evolvable Machines. He is an Associate Editor of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION and the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS.

	toc
	Search Bias in Ant Colony Optimization: On the Role of Competiti
	Christian Blum and Marco Dorigo, Senior Member, IEEE
	I. I NTRODUCTION
	II. F RAMEWORK OF A B ASIC ACO A LGORITHM
	Definition 1: A model ${\cal P}=({\cal S},\Omega,f)$ of a CO pro

	III. D ECEPTION IN A NT C OLONY O PTIMIZATION
	Definition 2: Given a model ${\cal P}$ of a CO problem, we call
	Definition 3: Given a model ${\cal P}$ of a CO problem, we call
	Definition 4: Given a model ${\cal P}$ of a CO problem, we call
	Definition 5: Given a model ${\cal P}$ of a CO problem, we call

	Fig. 1. Evolution of the expected iteration quality W_{F} of t
	IV. E XAMPLE OF S ECOND -O RDER D ECEPTION
	A. Study of a Small Problem Instance

	Fig. 2. (a) Construction of solution ${\Fraktur s}_{1}=\left\lan
	Fig. 3. Evolution of the expected iteration quality W_{F} of t
	B. Study of Benchmark Instances

	Fig.€4. Plots show the evolution of the average iteration qualit
	Fig.€5. (a) and (c) Shows the evolution of the average iteration
	Fig.€6. (a) Shows the evolution of the average iteration quality
	Fig.€7. Sequencing factor versus solution quality for JSS proble
	V. A VOIDING S ECOND -O RDER D ECEPTION: C HOICE OF AN A PPROPRI
	A. Problem Model ${\cal P}_{\rm JSS}^{\rm pos}$
	B. Problem Model ${\cal P}_{\rm JSS}^{\rm rel}$

	Fig.€8. (a) and (c) Shows the comparison between algorithm versi
	Fig.€9. (a) and (c) Shows the comparison between algorithm versi
	C. Results

	Fig. 10. Comparison of ${\sf IB_JSS_suc}$, ${\sf IB_JSS_sum}
	VI. C ONCLUSION AND F UTURE W ORK
	D. Applegate and W. Cook, A computational study of the job-shop
	J. Bla ewicz, W. Domschke, and E. Pesch, The job shop scheduling
	C. Blum, Theoretical and practical aspects of ant colony optimiz
	C. Blum and M. Dorigo, Deception in ant colony optimization, in
	C. Blum and A. Roli, Metaheuristics in combinatorial optimizatio
	C. Blum and M. Sampels, Ant colony optimization for FOP shop sch
	C. Blum, M. Sampels, and M. Zlochin et al., On a particularity i
	A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, Ant system f
	C. Cotta and J. M. Troya, Genetic forma recombination in permuta
	K. Deb and D. E. Goldberg, Analyzing deception in trap functions
	J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels, The self
	M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D.

	M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada,
	M. Dorigo, L. M. Gambardella, M. Middendorf, and T. Stützle, Spe
	M. Dorigo, V. Maniezzo, and A. Colorni, Positive Feedback as a S
	M. Dorigo and T. Stützle, Ant Colony Optimization . Cambridge, M
	L. J. Eshelmann, R. A. Caruana, and J. D. Schaffer, Biases in th
	B. Giffler and G. L. Thompson, Algorithms for solving production

	F. Glover and G. Kochenberger, Eds., Handbook of Metaheuristics
	D. E. Goldberg, Simple genetic algorithms and the minimal decept
	R. A. Holmgren, A First Course in Discrete Dynamical Systems . B
	C. Igel and P. Stagge, Effects of phenotypic redundancy in struc
	E. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The
	N. F. McPhee, R. Poli, and J. E. Rowe, A schema theory analysis
	D. Merkle and M. Middendorf, An ant algorithm with a new pheromo
	J. Montgomery, M. Randall, and T. Hendtlass, Search bias in cons
	J. F. Muth and G. L. Thompson, Industrial Scheduling . Englewood
	E. Nowicki and C. Smutnicki, A fast taboo search algorithm for t
	C. C. Palmer and A. Kershenbaum, Representing trees in genetic a
	R. Poli and N. F. McPhee et al., Exact schema theorems for GP wi
	R. Poli, C. R. Stephens, A. H. Wright, and J. E. Rowe, On the se
	A. Roli, C. Blum, and M. Dorigo, ACO for maximal constraint sati
	F. Rothlauf and D. E. Goldberg, Prüfer numbers and genetic algor
	K. Vekaria and C. Clack, Biases introduced by adaptive recombina
	D. L. Whitley and S. B. Rana, Representation, search, and geneti

