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Abstract. In the multi-foraging task studied in this paper, a group of
robots has to efficiently retrieve two different types of prey to a nest.
Robots have to decide when they leave the nest to forage and which
prey to retrieve.
The goal of this study is to identify an efficient multi-foraging behaviour,
where efficiency is defined as a function of the energy that is spent by
the robots during exploration and gained when a prey is retrieved to
the nest. We design and validate a mathematical model that is used to
predict the optimal behaviour. We introduce a decision algorithm and
use simulations to study its performance in a wide range of experimental
situations with respect to the predictions of the mathematical model.
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1 Introduction

Foraging is a classical metaphor used in swarm robotics [1]. In foraging, a group of
robots has to pick up objects that are scattered in the environment. The foraging
task can be decomposed in an exploration sub-task followed by a transport
sub-task. Foraging can be applied to a wide range of useful tasks. Examples of
applications are toxic waste clean-up, search and rescue, demining and collection
of terrain samples. Central place foraging is a particular type of foraging task in
which robots must gather objects in a central place. Borrowing the terminology
from biology, the central place is also called the nest and the objects prey.

Multi-foraging is a variation of the foraging task in which different types of
objects to collect are considered [2]. These different types of objects can be con-
currently and independently collected by the individuals and can have different
properties. Multi-foraging adds a level of complexity with respect to the tradi-
tional foraging task as it may be necessary for the individuals to choose which
prey to take, and when.

The study of the efficiency of foragers has first been the concern of biologists.
In his seminal article [3], Charnov exposes the fundamental hypothesis that
gives birth to the field of optimal foraging. The hypothesis is that evolution
has shaped individual behaviours of foraging animals so as to maximize the
net energy intake. Three decades later, roboticists try to identify how robots
should cooperate in order to forage efficiently. Efficiency has been defined in
several ways: in biology, researchers use the term energy and measure weights of
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animals before and after tasks to quantify energy spent and gained. In robotics,
the vocabulary is less well established. Terms such as reward, income, benefit
have been used [4,5,6,7]. For the sake of simplicity, we will use the term energy,
as in biology. Foraging efficiently is thus a quest to maximize the energy of a
group of foraging robots. Robotics researchers often consider that energy is spent
when robots move during exploration and is gained when a prey is successfully
retrieved to the nest [7].

We focus on a specific case of multi-foraging in which there are only two
types of prey that have to be retrieved to the nest. The spatial aspect of the
task is negligible as the prey have random locations in the environment. The
exploration mechanism used by the robots to find prey is a random walk. Hence,
robots discover prey in the environment at a given rate. Robots have to decide
whether they rest at the nest and in this way spare energy, or forage in the
environment. If they choose to forage, they have to decide which prey to take so
as to maximize the energy of the group.

Our objective is to identify an individual behaviour that leads the group of
foraging robots to have an efficient collective behaviour.

To achieve this objective, we first design and validate a mathematical model
of multi-foraging. Mathematical modeling of robotic experiments is a method-
ology [8] [9] [10]. Mathematical models are opposed to individual based models
(IBMs) [11]. In IBMs, each robot is represented as well as the environment.
Differently, mathematical models are analytic description of the evolution of
a system, in which the individuals of a system are not represented separately.
Mathematical models are faster than IBMs because their computation time does
not depend on the number of individuals. They can be used as optimization tools:
Ijspeert et al. [12] have used a stick pulling experiment as an example to demon-
strate how the behaviour of the robots could be made efficient. Within the limits
of the mathematical tools available, it is also possible to draw conclusions on the
dynamics and intrinsic properties of the system.

The mathematical model we devise predicts with a good confidence the op-
timal behaviour of the robots, and can therefore estimate the maximum amount
of energy that a group of robots can accumulate during an experiment. We use
the model as a yardstick to evaluate the performance of the group of robots
and test different behavioural rules. Based on simplified equations, we intro-
duce a decision algorithm to control the behaviour of the robots. To evaluate
the performance of the algorithm, we run simulations using a large set of 2160
different experimental configurations, obtained by varying the parameters of the
experiment.

In Section 2 we detail the task, the experimental setup and the controller of
the robots. Section 3 is devoted to the description and validation of the math-
ematical model. Section 4 presents the decision algorithm and the evaluation
of its performance using the predictions of the mathematical model. Section 5
concludes the paper with a discussion of the results and some ideas for future
work.
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2 Methods

The Task of Multi-foraging. The task studied in this paper is the search and
retrieval of objects to the nest by a group of robots. Objects can be retrieved by a
single robot. Searching and retrieving objects is energy consuming, but retrieved
objects yield energy to the group. There are two types of objects that differ in
energy required to be carried to the nest and energy yield. Robots have to decide
when to search for objects and which objects are to be retrieved so as to maximize
the energy accumulated by the group. Robots have no a priori knowledge of the
properties of objects and should adapt online to the environment.

Experimental Setup. All the experiments in this paper are simulated. The
environment is a circular arena of 1.20 meters of radius. Robots are initially
randomly scattered on it. A circular nest is located in the center of the arena.
Robots can locate the nest thanks to a lamp suspended above it. The nest has
a structure of three concentric rings with different grey levels. The innermost
ring defines where robots can rest. The second ring defines where a robot can
safely release a prey, with good confidence that it is inside the nest. Finally, the
outermost ring defines the boundary of the nest.

Prey are introduced in the environment at random locations around the nest,
at a fixed distance from it. New prey appear and disappear with constant rates
per time unit. They are removed when they fall inside the nest. Prey have a
weight and friction that define the time required for being retrieved. An amount
of energy is associated to a prey and is attributed to the group of robots once it
is delivered in the nest. Prey of a same type share all their characteristics. We
use only two different types of prey in the experiments.

The simulated robots have the same characteristics as s-bots from the swarm-
bots project [13]. We rely on ground sensors to perceive the structure of the
nest. Infrared sensors are used for collision avoidance. The camera is employed
to determine the location of the nest and discriminate the type of prey thanks
to their colour. Last, the robots use the camera to perceive if a nearby prey is
already being retrieved by another robot.

Controller of the Robots. The controller used is the same for all the robots.
The architecture of the program is a finite state machine (FSM). The scheme in
Figure 2 represents the possible states, with arcs denoting the possible transitions
between states. Robots are initialized in the Explore state.

– Explore. The robot performs a random walk in the environment. An ob-
stacle avoidance subroutine is triggered when needed. The robot switch to
the Rest state with a probability constant over time. If a prey is close enough
and no green colour is perceived the robot enters the Grasp state.

– Grasp. The robot has detected a prey and may decide to perform a physical
connection. This decision depends on the probabilities π1 and π2. If grasping
is successful the robot enters the Retrieve state, otherwise it enters the Ignore
state.
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Fig. 1. Finite state machine representing the robot’s controller. Transitions between

states are triggered according to the probabilities described in Table 1. The control

parameters (probabilities β, πi, i = 1, 2) can be modified by a decision mechanism as

described in Section 4.

– Retrieve. The robot becomes green. This colour is used to keep away other
robots. The robot heads toward the nest. When the robot reaches the nest,
it releases the prey and enters the Explore state. During retrieval, the robot
has a constant probability to give up and enter the Ignore state.

– Ignore. The robot performs a random walk with collision avoidance, ne-
glecting any encountered prey. After a delay of five seconds (enough to move
away from a prey) the robot enters the Explore state.

– Rest. The robot heads back to the nest to rest there. With a constant
rate per time unit, the robot can decide to leave the nest by entering in the
Explore state.

3 Mathematical Model

Description. Partial differential equations are devised to model the flows of
robots among five main states. We neglect the modeling of the Grasp and Ignore
states because they occur rarely and their duration is relatively short. In order
to describe how energy is gained, we model the retrieval process in two distinct
parts, one for each type of prey. In addition, we noticed that the time required
to go back to the nest before resting is not negligible and has to be modelled.
To this extent, we introduce the Back state. We end up with five main states
among which flow of robots are exchanged. The meaning of all the variables and
parameters is explained in Table 1.

A set of differential equations is used to model the flows of robots exchanged
among the states. In the following, we provide a detailed explanation of the
first equation. As explained in Section 2, several transitions lead robots to enter
or leave the Explore state. Each right-term of the differential equations is an
amount of robots per second doing a specific transition.

dE
dt = −βE + γI +

∑2
i=1 (−πiENiλ + µiRi + ρRi)

dB
dt = +βE − κB
dI
dt = +κB − γI

dRi

dt = πiENiλ − µiRi − ρRi ∀i ∈ [1, 2]
dNi

dt = ϕi − πiENiλ − ξiNi + ρRi ∀i ∈ [1, 2]
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Table 1. Summary of variables and parameters of the experiment.

Variable Description

E the number of robots in Explore state

B the number of robots in Back state, going to the nest to rest

I the number of robots in Rest state (or inactive robots)

Ri the number of robots in Retrieve state (prey of type i)

Ni the number of prey of type i in the environment

Parameter Description

T the total number of robots in the experiment

λ rate of objects per second found in the environment by a single robot

κ probability for a single robot to find the nest

Eni energy associated to a prey of type i

Enp energy lost during one second spent outside the nest for one robot

ϕi incoming rate per second of prey of type i

ξi probability constant over time for a prey of type i to disappear

µi inverse of the average time required to retrieve a prey of type i

ρ probability to give up an ongoing retrieval

β probability for a robot to return to nest

γ probability for a robot to leave the nest and look for prey

πi probability to take a prey of type i upon encounter

– First, robots can decide to rest at nest with a probability β. On average βE
robots leave the Explore state and enter the Back state.

– Conversely, robots in Rest state have a probability γ to come back in Explore
state. Thus there are on average γI robots entering the Explore state.

– Robots may find a prey and decide to retrieve it. The probability to find
a single object being λ, the average number of exploring robots that find a
prey of type i is ENiλ. As robots decide to retrieve the prey with probability
πi, the average number of robots that leave the Explore state to retrieve a
prey of type i is πiENiλ.

– We consider that a robot has a probability of µi to achieve the retrieval of
a prey of type i. Hence, there are on average µiRi robots that achieve a
retrieval and come back in Explore state.

– Last, during the retrieval of a prey of type i, robots have a probability ρ to
give up and come back in Explore state. On average their are ρRi robots
that give up retrieval of prey of type i.

Validation. To evaluate the quality of the model and determine to which extent
we can rely on it to have a good prediction, it is mandatory to carry out a
validation process. This phase involves the comparison of the results obtained
in simulation against those of the model for a collection of typical experimental
situations. We define a range of reasonable values for each parameter of the
experiment (see Table 2), except for the control parameters of the robots π1,
π2 and β. A configuration of the experimental setup is defined by selecting one
value for each parameter from its range. There are 2160 possible configurations
that define a set P . We denote Ci ∈ P, i ∈ [1, 2160] one particular configuration.



Efficient Multi-foraging in Swarm Robotics 701

�������Math.
Simu.

A < B A > B

A < B 43.22% 7.64 %

A > B 6.97 % 42.13 %

(a) (b)

Fig. 2. (a) Comparison table of predicted orders by the mathematical model with

respect to simulation results. The notation A <, > B signifies that the energy accu-

mulated using behaviour A is lower, respectively higher than using B. (b) Energy

predicted for behaviours B in function of energy predicted for behaviours A. The gray

circles show when both the mathematical model and the simulation agree on which be-

haviour performs better. The black circles show cases of disagreement. They lie along

the dashed line (r2 = 0.98, slope a = 1.00), indicating that disagreements arise mainly

when the predicted energy of two behaviours are very much alike.

In the following, we present a test that is meant to assess the ability of the
model to compare the outcome of two different behaviours. The test consists of
selecting randomly two behaviours A and B from the control space (π1, π2, β) ∈
[0, 1]3. We compare the accumulated energy predicted for A and B. The same
comparison is carried out using one single run of simulation for each behaviour.

We use each configuration Ci ∈ P to parameterize an experiment of one hour.
For each configuration Ci we generate 5 pairs of random behaviours (Aij , Bij), j ∈
[1, 5]. The table shown in Figure 2(a) summarizes the frequencies of all possi-
ble comparison results for the 10800 tests performed. The table indicates that in
85.35% of the tests, the mathematical model and the simulations agreed on the
ranking of the behaviours. The table is almost symmetric and shows no better
performance of the model if A superseeds B or the opposite.

Moreover, we have studied the conditions in which disagreement between the
mathematical model and the simulations occurs. We plotted the predicted energy
for behaviour B in function of the energy predicted for behaviour A. Figure
2(b) shows as black circles the pairs of behaviours that lead to disagreement.
The regression performed on the black circles returns a correlation coefficient
r2 = 0.98 and a regression slope a = 1.00. The wrong predictions of the model
occur mainly if the two behaviours are supposed to yield very similar energy.
Given that we use only one run of simulation without averaging, an error caused
by the noise in simulation is more likely to appear for these pairs of behaviours.
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Table 2. Each parameter of the experiment is given a range of reasonable values. By

associating to each parameter one value, we define an experimental configuration. In

total, there are 2160 possible configurations.

Parameter Range of values tested Unit

T 1, 2, 3, 5, 10, 15 robot

N1(0), N2(0) 5 prey of type 1 or 2

λ 1/159.4 probability

κ 1/19.51 probability

En1 −100,−10,−1, 1, 10, 100 energy

En2 1 energy

Enp −0.001,−0.01,−0.1 energy

ϕ1 1/15, 1/30, 1/60, 1/120, 1/180 prey / second

ϕ2 1/60 prey / second

ξ1, ξ2 0.002 probability

µ1 1/90, 1/40, 1/30, 1/60 second−1

µ2 1/60 second−1

ρ 0.0111 probability

β control parameter probability

γ 1/400 probability

π1, π2 control parameter probability

4 Efficient Multi-foraging

Decision Algorithm. The decision algorithm is a piece of code plugged in
the controller of the robots that modifies their individual behaviour through the
three control parameters π1, π2 and β. The algorithm relies on an equation that
permits robots to individually estimate the instantaneous amount of energy EI
that can be obtained by the group. In the following we briefly expose the steps
that lead to this equation.

Rate of prey grasped by robots: preyRate = Eλ
∑2

i=1 Niπi,
Proportion of prey of type i grasped: propi = EλNiπi

Eλ
∑2

j=1 Njπj
,

Mean time of retrieval of a prey: retT ime =
∑2

i=1 1/µipropi,
Mean time to grasp & retrieve a prey: preyToNest = 1/preyRate + retT ime.

EI = E · Enp +
∑2

i=1 Eni · propi · 1/preyToNest,

= E · Enp + Eλ
∑2

i=1
EniNiπi

1+Eλ
∑2

j=1 1/µjNjπj
.

(1)

Equation 1 can be used by each robot to estimate the rate of energy currently
gained by the group. All the parameters of this equation, except for λ, are either
control parameters, or can be estimated by the robots during the exploration of
the environment.
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Indeed, each robot can estimate the density of robots or prey of any type
in the environment, which are respectively λE, λN1 and λN2. This estimate
is a direct measure of the number of objects encountered per second. We use
a classical discount factor method to limit the impact of past observations in
the estimate of objects density. However, to compute EI robots need to know
λ. This parameter may be estimated by measuring the time to go back to the
nest, even though the collisions with other robots may diminish the quality of
such an estimate. In the following, the robots are given the parameter λ that
characterizes the size of the environment.

Based on Equation 1, the decision algorithm estimates parameters of the ex-
periment using the observations of the robot. It then estimates the impact on
the rate of energy EI of four triplet of parameters (π1, π2 and E): { (1, 1, E+1),
(0, 1, E + 1), (1, 0, E + 1), (ε, ε, ε) }, where ε = 0.05. The ε is a lower bound that
guarantees adaptivity by forcing robots to grasp sometimes the prey or explore
the environment and update their estimate of the situation. Notice also that E is
a global variable that can not be directly changed by a single robot but only influ-
enced if that robot changes its β parameter. Thus, control parameters (π1, π2, β)
of the robot are updated to converge towards the triplet that maximizes EI.

Fig. 3. The decision algorithm performs on

average 99% as well as the predicted opti-

mal behaviour (see Section 4 ).

Performance. We assess the perfor-
mance of the decision algorithm by
carrying out a systematic comparison
of the energy accumulated in simu-
lation with the energy obtained by
the predicted optimal behaviour. For
each configuration Ci ∈ P , we use the
mathematical model to find out the
predicted optimal behaviour OBi. We
use a single run of simulation to deter-
mine the energy gain Epred(Ci, OBi)
associated to OBi. We also run a sin-
gle simulated experiment with the de-
cision algorithm used by each individ-
ual.1 The control parameters are ini-
tially set to (1, 1, 1) so that robots
start by exploring the environment.
The energy accumulated with a con-
figuration Ci and the decision algo-
rithm plugged in the robot’s controller is denoted Edec(Ci).

In Figure 3, the energy Edec(Ci) is compared to the predicted optimal energy
Epred(Ci, OBi). A linear regression is applied to data such that Epred(Ci, OBi) >
0. The correlation coefficient (r2 = 0.98) indicates that the linear relationship
hypothesis holds (p-value < 0.001). The slope of the regression line is a = 0.99
and the bias is b = −23.73, which means that the decision algorithm performs on
1 According to [14], this is the optimal sampling strategy.
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average 99% as well as the predicted optimal behaviour. If Epred(Ci, OBi) = 0,
it means that robots should always stay in the nest. However, the algorithm
imposes a minimum exploration to get information about the environment which
produces some cases with negative energy as seen in the plot.

5 Conclusions

Achievements and Contributions. We have designed a mathematical model
of the experiment. Its validation has shown that the model can be used to rank
successfully two different behaviours in 85% of the cases tested. In addition, we
found that the errors in the remaining 15% arose only in ambiguous cases in
which the energy yield by the two compared behaviours are very similar. This
new tool, previously unavailable in the multi-foraging literature, makes possible
the evaluation of robots performance on a relative scale.

An equation to calculate the average instantaneous reward gained by the
group of robots has been devised. It has been used to implement a decision
algorithm for the robots. The tests have shown that robots using the decision
algorithm manage to accumulate on average 99% of the energy that can possibly
be gained.

Perspectives and Future Work. In our work, we neglected on purpose col-
lisions among robots. Lerman et al. [15] emphasized the impact of interferences
on the efficiency of a group of robots. It is likely that robots may perceive a drop
of performance and cope with the phenomenon automatically. In the future, we
intend to study how well a group can adapt to a situation in which collisions may
happen at a high rate and so impact strongly on the performance of the robots.
The number of types of prey has been deliberately limited to two in this study.
However, the mathematical model and Equation 1 can be extended to handle
any number of type of prey and the decision algorithm can be adapted to comply
with the extended equations. New tests will have to be carried out to measure
the performance of this new implementation. Adaptivity to a dynamic environ-
ment is a recurrent property in swarm robotics. The decision algorithm has been
implemented in a way that enables this aspect. Future work will report a detailed
analysis of the collective behaviour of the robots facing sudden changes in the
environment. It may also be possible to have robots foraging efficiently without
knowledge of the λ parameter, although that would probably degrade the per-
formance of the robots. We will work in this direction, so to make the behaviour
of the robots totally free of any a priori knowledge of the environment. The
recruitment of foraging robots could improve the performance of the robots, as
reported in [7]. We did not implement this feature in the behaviour of the robots
for the present study but it seems to be a promising direction to enhance the
group foraging capabilities. Last, to validate our approach and assess the realism
of our simulations we plan to carry out a number of experiments with real robots.
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