Computers & Operations Research 142 (2022) 105747

Contents lists available at ScienceDirect

Computers &
Operations Research

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

t.)

Check for

An analysis of why cuckoo search does not bring any novel ideas to o
optimization

Christian L. Camacho-Villalén *, Marco Dorigo, Thomas Stiitzle
IRIDIA, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium

ARTICLE INFO ABSTRACT

Keywords:

Evolution strategies
Differential evolution
Continuous optimization
Metaheuristic algorithm

It has been more than 10 years since the first version of cuckoo search was proposed by Yang and Deb
and published in the proceedings of the World Congress on Nature & Biologically Inspired Computing, in
2009. The two main articles on cuckoo search have now been cited almost 8700 times (according to Google
scholar), there are books and chapters published about this algorithm, and a special issue has been organized
to celebrate its first decade of existence. Given the popularity of the algorithm and its widespread use, it is
quite surprising that no one has ever formally investigated its obvious resemblance to evolutionary algorithms.
In this article, we conduct a rigorous analysis of cuckoo search in which we identify the concepts used in the
algorithm and show that these are the exact same concepts proposed in the (u + A)-evolution strategy, a
well-known evolutionary algorithm introduced originally in 1981, and in the classic differential evolution
algorithm introduced in 1997. We analyze the “cuckoos’ parasitic behavior” metaphor that inspired the
algorithm according to three criteria—usefulness, novelty and sound motivation—that allow to clarify whether
the use of the metaphor is justified or not. The result is that cuckoo search does not comply with any of these
criteria. Surprisingly, we found that the algorithm the authors proposed for cuckoo search does not match the
publicly available implementation they provided; moreover, neither of them really follows the metaphor of

the cuckoos that inspired the algorithm.

1. Introduction

In computational intelligence, metaphor-based algorithms comprise
a large group of methods that have been developed by taking inspi-
ration from natural and artificial behaviors. Originally, the behaviors
used to inspire these algorithms consisted of a relatively small number
of optimization processes observed in nature, such as the phenomenon
of natural evolution used in evolutionary algorithms (EAs) (Fogel et al.,
1966; Rechenberg, 1973; Holland, 1975; Schwefel, 1981; Goldberg,
1989), the thermodynamics of some metals used in simulated annealing
(SA) (Kirkpatrick et al., 1983; Cerny, 1985), and the foraging of some
ants used in ant colony optimization (ACO) (Dorigo et al., 1991, 1996;
Dorigo and Stiitzle, 2004). The goal of algorithm designers back then
was to take inspiration from natural optimization processes to devise
new ways to solve hard optimization problems; the way to do so
consisted in a careful translation of these processes into new algorithm
designs. Also, since it used to be always the case that the choice to
use these behaviors had a sound motivation, it was easy to identify
what new concepts were brought to the field by these behaviors and to
understand how they could be useful to solve optimization problems.

* Corresponding author.
E-mail address: ccamacho@ulb.ac.be (C.L. Camacho-Villalén).

https://doi.org/10.1016/j.cor.2022.105747

In recent years, hundreds of self-proclaimed “novel” metaphor-
based optimization algorithms inspired by all kinds of behaviors have
been published in the literature (Campelo, 2021) with the unfortu-
nate particularity that, in almost all cases, it is unclear whether they
introduce any novelty apart from new metaphors (Sorensen, 2015;
Campelo, 2021; Lones, 2020). The relatively small number of rigorous
analyses performed on some of the most widespread algorithms of
this kind (Weyland, 2010, 2015; Simon et al., 2011; Piotrowski et al.,
2014; Sorensen et al., 2019; Camacho-Villalén et al., 2019, 2020) have
shown that the ideas proposed in these algorithms are the same as
those already proposed in the past with the only difference being
the metaphor and the associated terminology used to describe the
algorithm. The appearance of hundreds of metaphor-based algorithms
presented using a non-standard terminology (all of them claiming to be
novel approaches without clearly showing what is novel about them)
has hindered our understanding of stochastic optimization algorithms
and created confusion in the literature of the field. In addition to this,
the majority of these algorithms are also characterized by both the
lack of scientific motivation for the use of a new metaphor—which is
often justified by the fact that the novel metaphor is considered to be

Received 23 October 2021; Received in revised form 29 January 2022; Accepted 2 February 2022

Available online 12 February 2022
0305-0548/© 2022 The Authors.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:ccamacho@ulb.ac.be
https://doi.org/10.1016/j.cor.2022.105747
https://doi.org/10.1016/j.cor.2022.105747
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105747&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.L. Camacho-Villalén et al.

“beautiful” or “interesting” by the authors—and the lack of scientific
rigor in testing and comparing the proposed algorithms with other
methods (Sorensen, 2015; Sérensen and Glover, 2013; Garcia-Martinez
et al., 2017).

In this article, we analyze the popular and highly-cited cuckoo search
algorithm (Yang and Deb, 2009, 2010) considering three criteria that
allow us to evaluate if the use of the metaphor of “cuckoos laying eggs
in the nests of other birds” is justified or not. These criteria are the
following:

+ Usefulness. Does the metaphor bring useful concepts to solve
optimization problems?

» Novelty. Were the concepts brought by the metaphor new in
the field of stochastic optimization at the time when they were
proposed?

» Sound motivation. Is there a sound motivation to use the
metaphor?

In our view, only when the metaphor complies with these three
criteria—as, for example, in the mentioned EAs, SA and ACO
algorithms—we can consider that its usage is justified, and therefore,
that the metaphor-based algorithm should be added to the set of useful
techniques in stochastic optimization.

According to our analysis, cuckoo search does not comply with
any of the criteria listed above. Particularly worrying is the fact that
all the concepts used in cuckoo search were originally proposed by
the evolutionary computation community—most of them 30 years
before the first publication of cuckoo search. We provide compelling
evidence that cuckoo search is the same as the (x4 + A)-evolutionary
strategy (Schwefel, 1981; Bdck and Schwefel, 1993) using the type
of recombination proposed for differential evolution (Storn and Price,
1997).

While carrying out our analysis, we also surprisingly found that
the algorithmic procedure proposed for cuckoo search in Yang and
Deb (2009, 2010) and the implementation provided by its authors
in Matlab in Yang (2021) are quite different. We analyze one-by-one
these differences and show that none of them follows consistently the
description of the metaphor that inspired the algorithm.

The rest of the article is organized as follows. In Section 2, we
describe the three components that define cuckoo search: the metaphor
(Section 2.1), the algorithm (Section 2.2), and the implementation
(Section 2.3). In Section 3, we present one-by-one the differences
that exist between the metaphor and the algorithm, and between the
algorithm and its implementation. In Section 4, we discuss whether the
metaphor complies with the criteria of usefulness, novelty, and sound
motivation. We conclude the article in Section 5 by summarizing our
findings.

2. The three (inconsistent) components of cuckoo search
2.1. The metaphor of the cuckoo search algorithm

In the first two articles proposing cuckoo search (Yang and Deb,
2009, 2010), which are the ones typically cited to reference the algo-
rithm,' the authors describe the cuckoo search algorithm using as a
metaphor the “parasitic breeding behavior of cuckoos”, a behavior that,
according to them and to the reference that they cite in their article,
some species of cuckoos practice. In the words of the authors:

Cuckoos are fascinating birds, not only because of the beautiful sounds
they can make, but also because of their aggressive reproduction strategy.
Some species such as the ani and guira cuckoos lay their eggs in
communal nests, though they may remove others’ eggs to increase the

1 Yang and Deb (2009): 6291 citations; and Yang and Deb (2010): 2494
citations. Source: Google Scholar. Retrieved: January 20, 2022.

Computers and Operations Research 142 (2022) 105747

hatching probability of their own eggs (Payne et al. 2005). Quite a
number of species engage the obligate brood parasitism by laying their
eggs in the nests of other host birds (often other species). There are
three basic types of brood parasitism: intraspecific brood parasitism,
cooperative breeding and nest takeover. Some host birds can engage
direct conflict with the intruding cuckoos. If a host bird discovers the
eggs are not its own, it will either throw these alien eggs away or simply
abandons its nest and builds a new nest elsewhere. Some cuckoo species
such as the new world brood-parasitic Tapera have evolved in such a way
that female parasitic cuckoos are often very specialized in the mimicry
in color and pattern of the eggs of a few chosen host species (Payne et al.
2005). This reduces the probability of their eggs being abandoned and
thus increases their reproductivity.

[Yang and Deb (2009, p. 210) and Yang and Deb (2010, pp. 331,332)]

The timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs.
In general, the cuckoo eggs hatch slightly earlier than their host eggs.
Once the first cuckoo chick is hatched, the first instinct action it will
take is to evict the host eggs by blindly propelling the eggs out of the
nest, which increases the cuckoo chick’s share of food provided by its
host bird (Payne et al. 2005). Studies also show that a cuckoo chick
can also mimic the call of host chicks to gain access to more feeding
opportunity.

[Yang and Deb (2009, p. 210) and Yang and Deb (2010, p. 332)]
2.2. The proposed cuckoo search algorithm

To translate the metaphor described in Section 2.1 into an algo-
rithm, the authors simplified the process into three idealized rules. In
the words of the authors:

For simplicity in describing our new Cuckoo Search (Yang and Deb
2009), we now use the following three idealized rules:

— Each cuckoo lays one egg at a time, and dumps it in a randomly chosen
nest;

— The best nests with high quality of eggs (solutions) will carry over to
the next generations;

— The number of available host nests is fixed, and a host can discover
an alien egg with a probability p, € [0, 1]. In this case, the host bird can
either throw the egg away or abandon the nest so as to build a completely
new nest in a new location.

For simplicity, this last assumption can be approximated by a fraction p,
of the n nests being replaced by new nests (with new random solutions
at new locations).

[Yang and Deb (2010, p. 332)]

In addition to these rules, the description of cuckoo search is limited
to one equation that is used to generate new solutions as follows:

When generating new solutions X‘+V for, say, a cuckoo i, a Lévy flight
is performed.

MY =3+ a @ Lévy(d) m
[Yang and Deb (2009, p. 211) and Yang and Deb (2010, p. 333)].

The authors of cuckoo search refer to Eq. (1) as “Lévy flights” because
it makes use of the Lévy distribution to sample random numbers.
Note that, because of the use of the metaphor of cuckoos, the authors
introduced new terminology, in particular, they used three differ-
ent words (eggs, nests and cuckoos) to refer to a candidate solution
to the problem—see the three idealized rules above. However, this
terminology is not clear and the authors are not consistent with its use.

C.L. Camacho-Villalén et al.

If we consider the first rule: “Each cuckoo lays one egg at a time, and
dumps it in a randomly chosen nest” that is modeled using Eq. (1), it is
understood that)?[.’ is the position of the cuckoo, the term a ® Lévy(A)
that is added represents the distance the cuckoo flew, and)?[.(’H) is
the nest to which the cuckoo arrived and deposited the egg. However,
in Yang and Deb (2009, p. 211), the terminology seems to be used

differently:

For simplicity, we can use the following simple representations that
each egg in a nest represents a solution, and a cuckoo egg represent a
new solution, the aim is to use the new and potentially better solutions
(cuckoos) to replace a not-so-good solution in the nests.

According to this “representation”, what the authors refer to as an egg
and a cuckoo is inverted with regard to their first rule and to Eq. (1);
that is, in the excerpt above, the egg represents the initial solution x/
and the cuckoo represents the new and potentially better solution ?ci(’“).
The most serious problem with the metaphor, however, comes from
the second rule, which says that “The best nests with high quality of eggs
(solutions) will carry over to the next generations”. While the metaphor of
the cuckoos’ parasitic behavior describes a process in which cuckoos lay
their eggs in the nest of other birds and some of these eggs survive and
some others do not (as specified in the third rule), there is no mention
of a selection mechanism to get rid of the low quality eggs that were
laid in the different nests. However, by including the second rule as
part of the rules that define the cuckoo search algorithm and saying
that these rules are taken from their cuckoos metaphor, the authors
implied that selection is part of the cuckoos metaphor when it is not.

2.3. The implemented cuckoo search algorithm

According to the publicly available implementation in Matlab
(Yang, 2021), cuckoo search is an iterative, population-based algorithm
for the approximate solution of continuous optimization problems.
In continuous optimization problems, the goal is to minimize a d-
dimensional continuous objective function f : § € R? — R by finding
a vector o € S such that VX € S, f(0) < f(X). The search space S is a
subset of R in which a solution is represented by a real-valued vector
%, and each component x* of X is constrained by a lower and upper
bound such that /6¥ < x¥ < ub*, for k = 1, ..., d. The vector 3 represents
the solution for which the objective function f(-) returns the minimum
value. For a maximization problem, the obvious adaptation consists in
using —f(-) instead of f(-).

The implemented cuckoo search algorithm (Yang, 2021), which is
reported in Alg. 2, consists of the following four steps.

Step 1 (initialization). Create a set of 4 initial solutions X/ randomly
distributed in the search space using the following equation:

X = Uk ubh), fori=1,... . pandk=1,....d,)

where ¢ is the iteration number, U is a random uniform distribution,
Ib* and ub® are the lower and upper limit of dimension k, and d is the
number of dimensions in the problem.

Step 2 (perturbation). Perturb all x4 solution ?ct" by adding a random
vector 7/ as follows:

=il > > .
X, =X/ +ar,, fori=1,...,n, 3)

where ?c,"' is the perturbed solution, 7/ is a random vector whose com-

ponents are sampled from a Lévy distribution £, with scale parameter

v, and « is a parameter that controls the magnitude of the perturbation.
Step 3 (selection). Compare each pair (:'c'[i,&’j/) on the basis of the

objective function f(-) and select the one that has higher quality. This

is formally done as follows:

2= {55[’/ if f(?c,"/) is better than f(xX/) @

! X/, otherwise.

Computers and Operations Research 142 (2022) 105747

Step 4 (recombination). With probability 1 - p,, apply recombina-
tion to the k™ component of vector 7‘:’ using two randomly selected
solutions 55”,’ € L, and 55;,"[€ M,, where sets L, and M, contain each a
copy of the population after executing step 3 (selection), i.e., a copy

of ?cr", fori=1,...,n. Step 4 (recombination) is computed as follows:

Vk, Vi. (5)

g if U7[0,11> p,
X = ik

ik Ik ik
ik _) xS U010 (g, = x 0,
X, otherwise,

Solutions }t’,[and ?ct',"[are selected from sets L, or M, without replace-
ment, that is, each solution is used once as 7(,’, and once as x'. Note
that it can be the case that 551” = ?c,"’i = X/, in which case vector X/
is not modified. After finishing the process of recombination, solutions
are evaluated once again.

The implementation of cuckoo search consists in applying step 1
(random initialization) once and then repeating step 2 (perturbation),
step 3 (selection) and step 4 (recombination) iteratively until a

termination criterion is met.

3. Differences between the metaphor, the algorithm and the im-
plementation of cuckoo search

There are three important components that should help understand-
ing how cuckoo search works: the metaphor, the algorithm description
and its implementation. Unfortunately, we discovered that the concepts
brought forward by the metaphor are hardly used in the algorithm and
that the algorithmic procedure proposed for cuckoo search in Yang and
Deb (2009, 2010) and the implementation provided by its authors in
Matlab in Yang (2021) are quite different.

Differences between metaphor and algorithm. As we discussed in Sec-
tion 2.1, the authors of cuckoo search say that they were inspired by the
cuckoos’ parasitic reproduction behavior, that is, by the cuckoos’ strategy
of laying eggs in the nest of other birds; and by the fact that cuckoos’
eggs laid in the nests of other birds are sometimes identified by those
other birds, that can either remove them from the nest or abandon them
in the nest. They translated this behavior (see Section 2.2) into a set of
rules as follows:

i at each iteration, each cuckoo lays one egg in a randomly chosen
nest;
ii the number of nests is fixed and each nest can host only one egg;
iii the best quality eggs at the end of iteration 7 will pass to iteration
t+1;
iv with probability p,, an egg is removed from the nest and replaced
by a new one in a new location.

However, in the cuckoos’ parasitic reproduction behavior there is
no mechanism that allows the cuckoos to select the best “quality” eggs
that survive and therefore it cannot be used to “inspire” rule iii. Indeed,
by including this rule as part of the algorithm description, the authors
made the cuckoos’ parasitic reproduction behavior look as an optimiza-
tion process, when this is not the case. Also note that the central idea
in rule iii is no other than the evolutionary concept of “the survival of
the fittest”, which was originally introduced to the field of stochastic
optimization by the evolutionary computation community and, as we
describe in detail in Section 4.1, it is one of several concepts used in
cuckoo search that belong to the (u + 1)-evolution strategy (Schwefel,
1981).

Differences between algorithm description and algorithm implementation.
In Yang and Deb (2009, 2010), the authors of cuckoo search provided
the pseudocode of the algorithm (reported in Alg. 1) and, in Yang
(2021), Yang and Deb (2010), an example of its correct implemen-
tation. In the following, we present the many differences we found
between these two components. We do so by comparing Alg. 1 to

C.L. Camacho-Villalén et al.

steps 1--4 that correspond to the implementation of the algorithm in
Matlab—see Yang (2021) for details.?

Algorithm 1 Cuckoo search algorithm as published in Yang and Deb
(2009, 2010)

1: begin

2 Objective function f(X), x = (x|, ..., x,4)"

3 Initial population of »n hosts nests X;(i = 1,2, ...,n)

4 while (+ < MaxGenerations) or (stop creiterion) do

5: Get a cuckoo (say /) randomly by Lévy flights
6: Evaluate its quality/fitness F;
7
8
9

Choose a nest among » (say j) randomly
if (F, > Fj) then
: Replace j by the new solution
10: end if

11: Abandon a fraction (p,) of the worse nests [and build new
ones at new locations via Lévy flights]

12: Keep the best solutions (or nests with quality solutions)

13: Rank the solutions and find the current best

14: end while

15: Postprocess results and visualization

16: end

The first difference to note between steps 1-4 and what is depicted
in Alg. 1, is that, in Alg. 1, there is not a for loop to iterate over all the
u solutions in the population. Therefore, differently from step 2 (per-
turbation), in Alg. 1, Eq. (3) is applied only to one solution i randomly
selected from the population at every iteration (line 5 of Alg. 1).

The second difference has to do with step 3 (selection). In this
step, after a solution X/ has been perturbed using Eq. (3), either the
perturbed solution ’?xi/ or the initial solution X/ is accepted as X/
depending on its quality—see Eq. (4). However, in Alg. 1 this is done
differently. In Alg. 1, the condition in the if statement (line 8 of Alg. 1)
says that if f (?c,"') is better than f (%Ij), where ?ct’ is a randomly chosen
solution, then ?c,’ is replaced by the perturbed solution 7(,"/. Clearly,
since j is chosen randomly, it may or may not correspond to i.

The last and most important difference we found concerns step 4
(recombination) and the original corresponding algorithm instruction
indicated in line 11 of Alg. 1. First, according to the rules derived
from the metaphor by the authors (see Section 2.2), solutions are
supposed to be removed randomly, but in line 11 of Alg. 1 this is done
deterministically. Second, although the authors do not give precise
directions on how to implement line 11 of Alg. 1, from what it is
written in this line, it is understood that the solutions are first ranked
(otherwise it is not possible to know which ones are the worst) and
then Eq. (3)—that is, the equation of the “Lévy flights”—is applied to
the worst (p, X n) solutions. However, in the Matlab implementation,
line 11 of Alg. 1 is implemented using Eq. (5), that recombines two
randomly selected solutions and uses them to perturb the solution
vector probabilistically and dimension-wise.

It is therefore unclear whether the authors definition of cuckoo
search is the one presented in the paper (i.e., Alg. 1) or in the Matlab
implementation. Indeed, in Yang and Deb (2010, p. 3),° they write:

A demo version is attached in the Appendix (this demo is not published
in the actual paper, but as a supplement to help readers to implement
the cuckoo search correctly).

2 We remind the reader that the code of the algorithm is also publicly
available in the Appendix: Demo Implementation of Yang and Deb (2010) in
the version published in the arXiv repository: arXiv:1005.2908.

3 This quote is taken from the version of Yang and Deb (2010) that is
published in the arXiv repository in arXiv:1005.2908.

Computers and Operations Research 142 (2022) 105747

4. Is the metaphor of cuckoo search justified?

To better understand whether it makes sense to use the “cuckoo’s
parasitic behavior” as a metaphor for a new optimization algorithm,
we consider the criteria of usefulness, novelty and sound motivation
to evaluate the metaphor. These criteria aim to give answers to the
following questions: (i) Are there concepts in the metaphor that can be
useful to solve optimization problems? And in case of positive answer,
are these concepts novel in the field of optimization at the moment
when they were proposed? (ii) Is the metaphor describing an existing
natural optimization process?

4.1. Usefulness and novelty

To evaluate the criteria of usefulness and novelty, we compare
cuckoo search to a particular kind of evolutionary algorithms, called
evolution strategies. Evolution strategies (ES) (Rechenberg, 1971, 1973;
Schwefel, 1981; Schaffer, 1985; Bick et al., 1991; Bick and Schwefel,
1993) are among the oldest and best known evolutionary algorithms for
the solution of continuous optimization problems. In ES, as in the rest
of evolutionary algorithms, the idea is to simulate the process of natural
evolution in order to evolve one or several solutions by iteratively
applying the mechanisms* of parental selection, recombination, mutation
and survival selection (Michalewicz and Schoenauer, 2013). The specific
ES algorithm the authors of cuckoo search reintroduced is the so-called
(u + A)-ES (Schwefel, 1981) with two minor modifications that we
explain in detail in this section. To do so, in Alg. 2, we report the
cuckoo search algorithm as implemented by its authors (see steps 1--4
of Section 2.3) and, in Alg. 3, the (u + 4)-ES algorithm.

Algorithm 2 Cuckoo search

1: begin
2: t<0
3: initialize u cuckoos (solutions) > Eq. (2)
4: evaluate u cuckoos
5: while not termination-condition do
6: te—t+1
7: apply mutation to u cuckoos to create u eggs (new solutions)
> Eq. (3)
8: evaluate eggs
9: select u solutions from the set of (u-cuckoos + p-eggs)
> Eq. (4)
10: apply recombination to the y selected solutions > Eq. (5)
11: evaluate the u selected solutions and use them as cuckoos for

the next iteration
12: end while
13: end

The (x4 + A)-ES is an evolutionary algorithm in which a population
of y solutions (parents) produce A new solutions (offspring) to generate
a population of y + A individuals. The population is then reduced
again to u solutions that constitute the next generation. As we show
in Alg. 3, in order to instantiate a (u + 4)-ES, it is necessary to choose
the specific operators to be used. In the following, we describe the
operators proposed for the (4 + A)-ES and compare them with those
used in the implementation of cuckoo search following the order in
which they are used in the implementation of cuckoo search, that is,
parental selection, mutation, survival selection, and recombination; we then
discuss the impact of using a different order.

4 These mechanisms are often referred to as evolutionary operators (or just
operators) in the jargon of EAs.

http://arxiv.org/abs/1005.2908
http://arxiv.org/abs/1005.2908

C.L. Camacho-Villalén et al.

Algorithm 3 (u + A)-evolution strategy

1: begin

2: t<0

3: initialize y parents (solutions)

4: evaluate u parents

5: while not termination-condition do

6: t—t+1

7: apply recombination to y parents to create A offspring (new

solutions) > Opt.

8: apply mutation to offspring

9: evaluate offspring
10: select u solutions from the set of (u-parents + A-offspring) and

use them as parents for the next iteration
11: end while
12: end

Parental selection. It refers to the way individuals that will be used
to generate a new set of solutions are selected; the selection can
be deterministic (one or more specific individuals) or probabilistic
(individual are selected based on a probability distribution constructed
based on their fitness, ranking, etc.). In the (u + 1)-ES, the parental
selection operator can be implemented in many different ways (Back
and Schwefel, 1993; Bick et al., 1997). One option that has been used is
to let each parent generate one single offspring at each iteration, which
results in A = p. As it can be seen in lines 3, 7 and 9 of Alg. 2 and lines
3, 7 and 10 of Alg. 3, both algorithms use the same parental selection
mechanism.

Survival selection. As opposed to parental selection, survival selection
refers to the mechanism used to choose the solutions that will be elim-
inated from the population. In (x4 + 1)-ES, survival selection operates
over parent-offspring couplings, which means that parents will pass
from one generation to another until they are replaced by an offspring
with better fitness. Cuckoo search uses the same survival mechanism—
see Alg. 2, line 9 and Eq. (4)—of the (u + 4)-ES to select between
cuckoo-egg couplings.

Mutation. The goal of mutation, which is a type of perturbation, is
to induce small random variations to all the variable encoded in the
solutions. Both ES and cuckoo search generate mutations by sampling
a random distribution. While cuckoo search uses the Lévy distribution,
ES strategies have used a number of different types of distribution: the
Gaussian distribution, that was used in the original algorithm (Schwe-
fel, 1981); the Cauchy distribution, that was introduced in Kappler
(1996) in 1994; and the Lévy distribution introduced in Iwamatsu
(2002) and Lee and Yao (2004) in 2002. Therefore, the mutation
operator used by cuckoo search is exactly the same as in ES.

Recombination. The goal of recombination, which is also a type of
perturbation, is to create one new solution by combining the infor-
mation of two or more solutions taken from the current population.
Recombination is often regarded as an optional component in the
(¢ + A)-ES; however, it was used in the early variants of ES and
it can be applied in a variety of ways. Some of the most common
implementations are discrete, intermediate, global-discrete and global—
intermediate recombination (Bick et al.,, 1997). In cuckoo search,
recombination—see Alg. 2, line 10 and Eq. (5)—differs in two aspects
from the way this operator is traditionally implemented in ES. First, the
specific recombination mechanism implemented in cuckoo search was
not defined in the context of ES, but in the one of differential evolution
(DE) (Storn and Price, 1997; Price et al., 2005). Second, it is applied
at the end of the algorithm and not at the beginning as it is normally
done in ES.

Regarding the first difference, in DE, a so-called trial vector # is
created by means of differential mutation and crossover as follows:

Computers and Operations Research 142 (2022) 105747

| ” VK, Vi, (6)
X

t

ik xM g PE—xth, if U011 2 p,
otherwise,

where X/,)?t” and X/ are three different vectors chosen from the
population and # is a parameter. Note that, if we set § = V[0, 1] in
Eq. (6), recombination as proposed in Eq. (5) becomes the same as the
creation of the trial vector in Eq. (6).

The second difference is that in cuckoo search recombination is
applied at the end of the while loop—line 10 of Alg. 2; differently,
in (u + A)-ES, recombination is applied at the beginning of the loop—
line 7 of Alg. 3. Similarly to ES, the recombination operator is optional
in cuckoo search, since it can be removed from the algorithm imple-
mentation by setting parameter p, = 0 in Eq. (5); in this case cuckoo
search is exactly the same as the (u+ A)-ES. However, when parameter
p, > 0, the two algorithms become equivalent starting from iteration
2; in fact, in Alg. 2 parental selection and recombination (line 10) are
followed by mutation (line 7) and then by survival selection (line 9). As
cuckoo search does not follow the normal order in which the four main
components of evolutionary algorithms are used, solutions have to be
evaluated twice at each iteration of the while loop, which results in
wasting computational time.

4.2. Sound motivation

To meet the sound motivation criterion, the authors proposing a
new metaphor-based algorithm should show that: (1) the behavior
they use in the metaphor is either an optimization behavior or a
behavior in which there are components that can be used as effective
design choices in the algorithm, and (2) all the components involved
in the behavior are well represented in the algorithm. The reason why
cuckoo search does not meet point (1) is that neither the metaphor of
cuckoos’ parasitic reproduction is an optimization behavior, nor there are
components in this metaphor that can be used to design an effective
optimization algorithm. In cuckoo search, the one idea that can make
the metaphor of cuckoos to resemble an optimization behavior is the
selection mechanism introduced by the authors as one of the rules used
to develop the algorithm; however, as we discussed in Section 3, this
mechanism is not part of the cuckoos’ reproduction strategy.

In order to verify point (2), it has to be the case that the algorithm
is in fact using the concepts brought forward by the metaphor that
inspired it, otherwise it makes no sense to introduce a new metaphor
that has no relation to the algorithm. In cuckoo search, as we have
shown in Sections 2 and 3, the metaphor, the algorithm and the imple-
mentation are quite different. If we remove the metaphor of cuckoos
and the terminology specific to it, the cuckoo search algorithm—as it
is presented in Alg. 1—consists of (i) perturbing one single solution
randomly taken from the population at each iteration; (ii) using the
perturbed solution to replace another randomly selected solution; and
(iii) perturbing a fraction of the worst solutions in the population. It
is therefore impossible to find a correspondence between the behav-
ior of the cuckoos (Section 2.1), the rules derived from the cuckoos
metaphor (Section 2.2), and the resulting cuckoo search algorithm and
implementation (Section 2.3).

5. Conclusions

Based on the criteria that we established to analyze cuckoo search,
we can conclude that neither the metaphor nor the algorithm can
be considered as part of the set of useful techniques in stochastic
optimization. On the contrary, cuckoo search can now be added to the
list of unnecessary metaphor-based algorithms that have been shown
to contain no novelty, such as harmony search (Weyland, 2010), black
holes optimization (Piotrowski et al., 2014), etc. As we have shown in
this article, using the metaphor of “cuckoos’ parasitic reproduction”,
cuckoo search reintroduced the exact same concepts as those proposed
in an algorithm called (4 + A)-ES, in 1981, and in differential evolution,

C.L. Camacho-Villalén et al.

in 1997. Given the widespread use of cuckoo search, as evidenced by
its more than 8700 citations, it is as surprising as it is worrying that
this fact has not been formally investigated for more than 10 years.
As other cases like cuckoo search are being recognized more and more
by scientific journals, some of them have already established editorial
policies where this issue is acknowledged (Anon, 2015; Dorigo, 2016;
Anon, 2021) and steps are being taken to avoid the publication of
papers presenting this type of algorithms (see, e.g., Weyland, 2010,
2015; Simon et al., 2011; Melvin et al., 2012; Piotrowski et al., 2014;
Fong et al., 2016; Sorensen et al., 2019; Lones, 2020; Camacho-Villalén
et al., 2019, 2020; Aranha et al., 2021).

Since a few years, we have taken the enterprise to show that
many of the novel metaphor-based metaheuristics that are being pro-
posed in the literature are just a reiteration of already well-known
algorithms and that the only novelty is in the terminology being
used to describe the algorithms. We have done so with the intelligent
water drops (Shah-Hosseini, 2007) and with the grey wolf (Mirjalili
et al., 2014), firefly (Yang, 2009) and bat (Yang, 2010) algorithms,
which were shown to be special cases of ant colony optimization and
of particle swarm optimization, respectively. However, it is virtually
impossible to discuss in detail (as done in this paper and in Camacho-
Villalén et al., 2018, 2019, 2020) all the metaphor-based algorithms
published in the literature; they are simply too many and new ones
are being published with alarming regularity (see, e.g., Campelo, 2021;
Lones, 2020). We hope that our work can help the research community
to see that finding an interesting metaphor with a sound basis and
whose usage can bring useful and truly novel ideas on how to solve
optimization problems is difficult.

CRediT authorship contribution statement

Christian L. Camacho-Villalén: Conceptualization, Methodology,
Investigation, Writing — original draft, Writing — review & editing.
Marco Dorigo: Conceptualization, Investigation, Writing — review &
editing. Thomas Stiitzle: Conceptualization, Investigation, Writing —
review & editing.

Funding

Christian L. Camacho-Villalén, Marco Dorigo and Thomas Stiitzle
acknowledge support from the Belgian F.R.S.-FNRS, of which they are,
respectively, FNRS Aspirant and Research Directors.

References

Anon, 2015. Policies on heuristic search research. J. Heuristics https://www.springer.
com/journal/10732/updates/17199246, version visited last on March 26, 2021.

Anon, 2021. Acm transactions on evolutionary learning and optimization. Guidelines
for authors. https://dl.acm.org/journal/telo/author-guidelines, version visited last
on March 26, 21.

Aranha, C., Camacho-Villalén, C.L., Campelo, F., Dorigo, M., Ruiz, R., Sevaux, M.,
Sorensen, K., Stiitzle, T., 2021. Metaphor-based metaheuristics, a call for action:
the elephant in the room. Swarm Intelligence 16 (1), 1-6.

Béck, T., Fogel, D.B., Michalewicz, Z., 1997. Handbook of Evolutionary Computation.
IOP Publishing.

Bédck, T., Hoffmeister, F., Schwefel, H.-P., 1991. A survey of evolution strategies. In:
Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan
Kaufmann, pp. 2-9.

Béck, T., Schwefel, H.-P., 1993. An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1 (1), 1-23.

Camacho-Villalén, C.L., Dorigo, M., Stiitzle, T., 2018. Why the intelligent water
drops cannot be considered as a novel algorithm. In: Dorigo, M., Birattari, M.,
Blum, C., Christensen, A.L., Reina, A., Trianni, V. (Eds.), Swarm Intelligence, 11th
International Conference, ANTS 2018. In: 11172 of Lecture Notes in Computer
Science, Springer, pp. 302-314.

Camacho-Villalén, C.L., Dorigo, M., Stiitzle, T., 2019. The intelligent water drops
algorithm: why it cannot be considered a novel algorithm. Swarm Intell. 13 (3-4),
173-192. http://dx.doi.org/10.1007/5s11721-019-00165-y.

Computers and Operations Research 142 (2022) 105747

Camacho-Villalén, C.L., Stiitzle, T., Dorigo, M., 2020. Grey wolf, firefly and bat
algorithms: Three widespread algorithms that do not contain any novelty. In:
International Conference on Swarm Intelligence. Springer, pp. 121-133.

Campelo, F., 2021. Evolutionary computation bestiary. https://github.com/fcampelo/
EC-Bestiary, version visited last on 26 2021.

Cerny, V., 1985. A thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. J. Optim. Theory Appl. 45 (1), 41-51.

Dorigo, M., 2016. Swarm Intelligence A Few Things You Need To Know if You Want
To Publish in this Journal, https://www.springer.com/cda/content/document/cda_
downloaddocument/Additional_submission_instructions.pdf, version visited last on
March 26, 2021.

Dorigo, M., Maniezzo, V., Colorni, A., 1991. The Ant System: An Autocatalytic Optimiz-
ing Process. Tech. Rep. 91-016 Revised, Dipartimento di Elettronica, Politecnico di
Milano, Italy.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. — B 26 (1), 29-41.

Dorigo, M., Stiitzle, T., 2004. Ant Colony Optimization. MIT Press, Cambridge, MA.

Fogel, D.B., Owens, A.J., Walsh, M.J., 1966. Artificial Intelligence Through Simulated
Evolution. John Wiley & Sons.

Fong, S., Wang, X., Xu, Q., Wong, R., Fiaidhi, J., Mohammed, S., 2016. Recent advances
in metaheuristic algorithms: Does the makara dragon exist? J. Supercomput. 72
(10), 3764-3786.

Garcia-Martinez, C., Gutiérrez, P.D., Molina, D., Lozano, M., Herrera, F., 2017. Since
CEC 2005 competition on real-parameter optimisation: a decade of research,
progress and comparative analysis’s weakness. Soft Comput. 21 (19), 5573-5583.

Gass, S.I., Fu, M.C. (Eds.), 2013. Encyclopedia of Operations Research and Management
Science, 3 Springer Verlag.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Boston, MA, USA.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Iwamatsu, M., 2002. Generalized evolutionary programming with levy-type mutation.
Comput. Phys. Comm. 147 (1-2), 729-732.

Kappler, C., 1996. Are evolutionary algorithms improved by large mutations? In:
International Conference on Parallel Problem Solving from Nature. Springer, pp.
346-355.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220, 671-680.

Lee, C.-Y., Yao, X., 2004. Evolutionary programming using mutations based on the 1évy
probability distribution. IEEE Trans. Evol. Comput. 8 (1), 1-13.

Lones, M.A., 2020. Mitigating metaphors: A comprehensible guide to recent
nature-inspired algorithms. SN Comput. Sci. 1 (1), 1-12.

Melvin, G., Dodd, T.J., Grof3, R., 2012. Why ‘GSA: a gravitational search algorithm’ is
not genuinely based on the law of gravity. Nat. Comput. 11 (4), 719-720.

Michalewicz, Z., Schoenauer, M., 2013. Evolutionary algorithms, In: Gass and Fu (Gass
and Fu, 2013), pp. 517-527.

Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Adv. Eng. Softw. 69,
46-61.

Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M., 2014. How novel is the novel
black hole optimization approach? Inform. Sci. 267, 191-200.

Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: A Practical
Approach To Global Optimization. Springer, New York, NY.

Rechenberg, 1., 1971. Evolutionsstrategie: Optimierung Technischer Systeme Nach
Prinzipien Der Biologischen Evolution (Ph.D. thesis). Department of Process
Engineering, Technical University of Berlin.

Rechenberg, I, 1973. Evolutionsstrategie: Optimierung Technischer Systeme Nach
Prinzipien Der Biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany.

Schaffer, J.D., 1985. Multiple objective optimization with vector evaluated genetic
algorithms. In: Grefenstette, J.J. (Ed.), ICGA. Lawrence Erlbaum Associates, pp.
93-100.

Schwefel, H.-P., 1981. Numerical Optimization of Computer Models. John Wiley & Sons
Inc..

Shah-Hosseini, H., 2007. Problem solving by intelligent water drops. In: Proceedings
of the 2007 Congress on Evolutionary Computation. CEC 2007, IEEE, IEEE Press,
Piscataway, NJ, pp. 3226-3231.

Simon, D., Rarick, R., Ergezer, M., Du, D., 2011. Analytical and numerical comparisons
of biogeography-based optimization and genetic algorithms. Inform. Sci. 181 (7),
1224-1248.

Sorensen, K., 2015. Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22
(1), 3-18. http://dx.doi.org/10.1111/itor.12001.

Sorensen, K., Arnold, F., Palhazi Cuervo, D., 2019. A critical analysis of the improved
clarke and wright savings algorithm. Int. Trans. Oper. Res. 26 (1), 54-63.

Sorensen, K., Glover, F., 2013. Metaheuristics, In: Gass and Fu (Gass and Fu, 2013),
pp. 960-970.

Storn, R., Price, K., 1997. Differential evolution — A simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11 (4), 341-359.
Weyland, D., 2010. A rigorous analysis of the harmony search algorithm: How
the research community can be misled by a novel methodology. Int. J. Appl.

Metaheuristic Comput. 12 (2), 50-60.

https://www.springer.com/journal/10732/updates/17199246
https://www.springer.com/journal/10732/updates/17199246
https://www.springer.com/journal/10732/updates/17199246
https://dl.acm.org/journal/telo/author-guidelines
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb3
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb3
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb3
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb3
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb3
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb4
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb4
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb4
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb5
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb5
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb5
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb5
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb5
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb6
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb6
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb6
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb7
http://dx.doi.org/10.1007/s11721-019-00165-y
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb9
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb9
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb9
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb9
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb9
https://github.com/fcampelo/EC-Bestiary
https://github.com/fcampelo/EC-Bestiary
https://github.com/fcampelo/EC-Bestiary
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb11
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb11
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb11
https://www.springer.com/cda/content/document/cda_downloaddocument/Additional_submission_instructions.pdf
https://www.springer.com/cda/content/document/cda_downloaddocument/Additional_submission_instructions.pdf
https://www.springer.com/cda/content/document/cda_downloaddocument/Additional_submission_instructions.pdf
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb13
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb13
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb13
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb13
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb13
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb14
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb14
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb14
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb15
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb16
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb16
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb16
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb17
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb17
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb17
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb17
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb17
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb18
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb18
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb18
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb18
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb18
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb19
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb19
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb19
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb20
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb20
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb20
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb21
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb21
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb21
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb22
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb22
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb22
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb23
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb23
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb23
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb23
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb23
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb24
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb24
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb24
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb25
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb25
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb25
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb26
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb26
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb26
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb27
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb27
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb27
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb29
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb29
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb29
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb30
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb30
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb30
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb31
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb31
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb31
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb32
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb32
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb32
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb32
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb32
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb33
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb33
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb33
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb34
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb34
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb34
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb34
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb34
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb35
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb35
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb35
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb36
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb36
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb36
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb36
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb36
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb37
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb37
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb37
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb37
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb37
http://dx.doi.org/10.1111/itor.12001
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb39
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb39
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb39
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb41
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb41
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb41
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb42
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb42
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb42
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb42
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb42

C.L. Camacho-Villalén et al.

Weyland, D., 2015. A critical analysis of the harmony search algorithm: How not to
solve Sudoku. Oper. Res. Perspect. 2, 97-105.

Yang, X.-S., 2009. Firefly algorithms for multimodal optimization. In: International
Symposium on Stochastic Algorithms. Springer, pp. 169-178.

Yang, X.-S., 2010. A new metaheuristic bat-inspired algorithm. In: Nature Inspired
Cooperative Strategies for Optimization. NICSO 2010, In: 284 of Studies in
Computational Intelligence, Springer, Berlin, Germany, pp. 65-74.

Computers and Operations Research 142 (2022) 105747

Yang, X.-S., 2021. Cuckoo search (cs) algorithm. https://www.mathworks.com/
matlabcentral/fileexchange/29809- cuckoo-search-cs-algorithm, mATLAB Central
File Exchange. Retrieved March 12, 2021.

Yang, X.-S., Deb, S., 2009. Cuckoo search via 1évy flights. In: 2009 World Congress on
Nature & Biologically Inspired Computing. NaBIC, pp. 210-214.

Yang, X.-S., Deb, S., 2010. Engineering optimisation by cuckoo search. Int. J. Math.
Modell. Numer. Optim. 1 (4), 330-343.

http://refhub.elsevier.com/S0305-0548(22)00044-2/sb43
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb43
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb43
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb44
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb44
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb44
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb45
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb45
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb45
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb45
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb45
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb47
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb47
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb47
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb48
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb48
http://refhub.elsevier.com/S0305-0548(22)00044-2/sb48

	An analysis of why cuckoo search does not bring any novel ideas to optimization
	Introduction
	The three (inconsistent) components of cuckoo search
	The metaphor of the cuckoo search algorithm
	The proposed cuckoo search algorithm
	The implemented cuckoo search algorithm

	Differences between the metaphor, the algorithm and the implementation of cuckoo search
	Is the metaphor of cuckoo search justified?
	Usefulness and novelty
	Sound motivation

	Conclusions
	CRediT authorship contribution statement
	
	References

