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Abstract—The particle swarm optimization (PSO) algorithm
has been the object of many studies and modifications for more
than 25 years. Ranging from small refinements to the incorpo-
ration of sophisticated novel ideas, the majority of modifications
proposed to this algorithm have been the result of a manual
process in which developers try new designs based on their own
knowledge and expertise. However, manually introducing changes
is very time consuming and makes the systematic exploration of
all the possible algorithm configurations a difficult process. In
this article, we propose to use automatic design to overcome
the limitations of having to manually find performing PSO algo-
rithms. We develop a flexible software framework for PSO, called
PSO-X, which is specifically designed to integrate the use of
automatic configuration tools into the process of generating PSO
algorithms. Our framework embodies a large number of algo-
rithm components developed over more than 25 years of research
that have allowed PSO to deal with a large variety of problems,
and uses irace, a state-of-the-art configuration tool, to automa-
tize the task of selecting and configuring PSO algorithms starting
from these components. We show that irace is capable of find-
ing high-performing instances of PSO algorithms never proposed
before.

Index Terms—Automatic algorithm design, continuous
optimization, particle swarm optimization (PSO).

I. INTRODUCTION

COMPUTATIONAL intelligence algorithms, such as
particle swarm optimization (PSO) and evolutionary

algorithms (EAs), are widely used to tackle complex
optimization problems for which exact approaches are often
impractical [1], [2]. The application of these algorithms has
been shown to be instrumental in a growing number of areas
where efficiently using resources, obtaining a higher degree of
automation, or finding support in decision making are needed
on a regular basis. While the application of computational
intelligence algorithms usually seeks higher efficiency and
automation, their development is, on the contrary, mostly done
following a manual approach based on the intuition and exper-
tise of the developers [3]. The manual development of such
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algorithms presents a number of drawbacks: it is a slow pro-
cess based on trial and error; it limits the number of design
alternatives that an implementation designer can explore; and it
does not provide a principled way to explore the space of pos-
sible algorithms, thus making the development process difficult
to reproduce.

To alleviate these issues, it has been recently proposed a devel-
opment framework based on components [5], [6], which includes
automatic configuration tools for creating high-performing algo-
rithms. As opposed to manual approaches, where algorithms
are typically seen as monolithic blocks with a few numerical
parameters whose design is modified based on the experience
and knowledge of the algorithm designer, in a component-based
approach [3] algorithms are seen as a particular combination
of algorithm components. The design of algorithms using a
component-based approach relies on three key elements: 1) a
software framework from which algorithm components can be
selected; 2) a set of rules indicating a coherent way to combine
the components in the software framework; and 3) the use of
an automatic configuration tool to evaluate the performance of
different designs and parameter settings.

Compared to the number of works devoted to other widely
used algorithms, such as ant colony optimization [5] and
artificial bee colony [7], there are very few previous work
attempting the automatic design of PSO algorithms. The two
most relevant of these works are [8] and [9], where the authors
used grammatical evolution (GE) to evolve novel velocity
update rules in PSO. The main limitation of these works is
the low number of different components that can be com-
bined. In [8], only the social and cognitive components of the
velocity update rule can be automatically designed; in [9], the
list of components includes also the topology and swarm size,
but the grammar that defines the rules to combine components
is based on the standard version of PSO and makes difficult
to include recent algorithm components.

To overcome these limitations, in this article, we propose
PSO-X, a flexible, component-based framework containing a
large number of algorithm components previously proposed in
the PSO literature. In PSO-X, each algorithm component can
assume a set of different values and PSO-X generates a specific
PSO algorithm by selecting a value for each possible component.
To do so, PSO-X uses a generalized PSO template that is
flexible enough to combine the algorithm components in many
different ways, and that is sufficient to synthesize many well-
known PSO variants published in the last two decades. Most
of such flexibility is achieved through the use of a generalized
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velocity update rule (GVUR)—the core component of PSO.
The goal of using a generalized velocity rule is to facilitate
the abstraction of the elements typically used in this algorithm
component in order to allow the combination of concepts that
operate at different levels of the algorithm design. For example,
with our template and the GVUR, a high-level component, such
as the type of distribution of all next possible particle positions,
can interact with specific types of perturbation and a number
of strategies to compute their magnitude.

PSO-X provides two important benefits when implement-
ing PSO algorithms: first, the possibility of easily creating
many different implementations combining a wide variety of
algorithm components from a single framework; second, the
possibility of using automatic configuration tools to tailor
implementations of PSO to specific problems according to
different scenarios. Here, we aim at showing that developing
PSO algorithms using PSO-X is more efficient and produces
implementations capable of outperforming manually designed
PSO algorithms. To assess the effectiveness of our PSO-X
framework, we compare the performance of six automatically
generated PSO implementations with ten of the best-known
variants proposed in the literature over a set of 50 benchmark
problems for evaluating continuous optimizers.

The remainder of this article is structured as follows. In
Section II, we present a review of the main concepts of
PSO and of the mechanism used by irace to automatically
create high-performing implementations. In Section III, we
identify particular design choices proposed since the earliest
PSO publication and discuss their functional purpose in the
implementation of the algorithm. In Section IV, we introduce
our PSO algorithm template and, from Sections IV-A–IV-E,
we explain how it can be used to create PSO variants.
The experimental procedure we followed is explained in
Section V. The results of the experiments conducted to eval-
uate the performance of the PSO-X algorithms are presented
in Section VI. In Section VII, we conclude this article and
mention future research directions.

II. PRELIMINARIES

A. Continuous Optimization Problems

In this article, we consider the application of PSO to
continuous optimization problems. Without loss of general-
ity, we consider minimization problems where the goal is
to minimize a d-dimensional continuous objective function
f : S ⊆ R

d → R by finding a vector �o ∈ S such that ∀ �x ∈ S,
f (�o) ≤ f (�x). The search space S is a subset of R

d in which
a solution is represented by a real-valued vector �x, and each
component xj of �x is constrained by a lower and upper bound
such that lbj ≤ xj ≤ ubj, for j = 1, . . . , d. The vector �o repre-
sents the solution for which the evaluation function f (·) returns
the minimum value.

B. Particle Swarm Optimization

Particle swarm optimization [10] is a stochastic search
algorithm where a set of “particles” search for approximate
solutions of continuous optimization problems. In PSO, each
particle moves in the search space by repeatedly applying
velocity and position update rules. Each particle i has, at every

iteration t, three associated vectors: 1) the position �x i
t ; 2) the

velocity �v i
t ; and 3) the personal best position �p i

t . The vector �x i
t

is a candidate solution to the optimization problem considered
whose quality is evaluated by the objective function f (·).

In addition to these vectors, each particle i has a set Ni of
neighbors and a set Ii of informants. Set Ni contains the par-
ticles from which i can obtain information, whereas Ii ⊆ Ni

contains the particles that will indeed provide the information
used when updating i’s velocity. The way the sets Ni—which
define the topology of the swarm [11]—and the sets Ii— which
we refer to as models of influence—are defined are two impor-
tant design choices in PSO. Sets Ni can be defined in many
different ways producing a large number of possible differ-
ent topologies; the two extreme cases are the fully connected
topology, in which all particles are in the neighborhood of all
other particles, and the ring topology, where each particle is
a neighbor of just two adjacent particles. Examples of other
partially connected topologies include lattices, wheels, random
edges, etc. The model of influence can also be defined in dif-
ferent ways, but the vast majority of implementations employ
either the best-of-neighborhood which contains the particle
with the best personal best solution in the neighborhood of i
(which includes particle i itself), or the fully informed model,
in which Ii = Ni.

In the standard PSO (StaPSO) [12], the rule used to update
particles’ position is

�x i
t+1 = �x i

t + �v i
t+1 (1)

where the velocity vector �v i
t+1 of the ith particle at iteration

t + 1 is computed using an update rule that involves �v i
t , �p i

t ,
and �l i

t . The vector �l i
t indicates the best among the personal best

positions of the particles in the neighborhood of i; formally, it
is equal to �p k

t where k = arg minj∈Ni{f (�p j
t )}. Note that when a

fully connected topology is employed, vector �l i
t becomes the

global best solution and is indicated as �gt.
The velocity update rule of StaPSO is defined as follows:

�v i
t+1 = ω�v i

t + ϕ1Ui
1t

(�p i
t − �x i

t

)+ ϕ2Ui
2t

(�l i
t − �x i

t

)
(2)

where ω is a parameter, called inertia weight, used to control
the influence of the previous velocity, and ϕ1 and ϕ2 are two
parameters known as the acceleration coefficients (ACs) that
control the influence of (�p i

t − �x i
t ) and (�l i

t − �x i
t ). The goal of

vectors (�p i
t − �x i

t ) and (�l i
t − �x i

t ), respectively, known as the
cognitive influence (CI) and the social influence (SI), is to
attract particles toward high-quality positions found so far. Ui

1t
and Ui

2t are two d×d diagonal matrices whose diagonal values
are random values drawn from U(0, 1]; their function is to
induce perturbation to the CI and SI vectors.

The rule to update the personal best position of particle i is

�p i
t+1 =

{ �x i
t+1, if

((
f
(�x i

t+1

)
< f

(�p i
t

)) ∧ (�x i
t+1 ∈ S

))

�p i
t , otherwise.

(3)

C. Automatic Algorithm Configuration

We employed a state-of-the-art offline configuration tool
called irace [13]. This tool has been shown to be capa-
ble of dealing with the task of selecting, configuring, and
generating high-performing algorithms by finding good algo-
rithm configurations whose performance can be generalized
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to unseen problem instances. To do so, irace implements
a procedure called iterated racing [13], which is based on
the machine learning model selection approach called rac-
ing [14] and on Friedman’s nonparametric two-way analysis
of variance. Iterated racing consists of the following steps.
First, it samples candidate configurations from the parameter
space. Second, it evaluates the candidate configurations on a
set of instances by means of races, whereby each candidate
configuration is run on one instance at a time. Third, it dis-
cards the statistically worse candidate configurations identified
using a statistical test based on Friedman’s nonparametric two-
way analysis of variance by ranks. During the configuration
process, which is done sequentially and uses a given compu-
tational budget, irace adjusts the sampling distribution in
order to bias new samplings toward the best configurations
found so far. When the computational budget is over, irace
returns the configuration that performed best over the set of
training instances. irace is capable of handling the differ-
ent types of parameters included in our framework, that is,
numerical (e.g., ω, ϕ1, or ϕ2), categorical (e.g., topology), and
subordinate parameters, that is, parameters that are only nec-
essary for particular values of other parameters (e.g., when
the size of the population changes in the implementation, it
is necessary to configure the maximum and minimum num-
ber of particles in the swarm, but not when the size remains
constant).

III. DESIGN CHOICES IN PSO

Many algorithm components have been proposed for PSO
over the years [15], [16] with the goal of improving its
performance and enabling its application to a wider variety
of problems. In this article, we have categorized these algo-
rithm components into five different groups: 1) those used
to set the value of the main algorithm parameters; 2) those
that control the distribution of particles positions in the search
space; 3) those used to apply perturbation to the velocity
and/or position vectors; 4) those regarding the construction
and application of the random matrices; and 5) those related
to the topology, model of influence, and population size.

Group 1) comprises the time-varying and adaptive/self-
adaptive parameter control strategies used to compute the
value of ω, ϕ1, and ϕ2. Time-varying strategies take place
at specific iterations of the algorithm execution; while adap-
tive and self-adaptive strategies use information related to
the optimization process (e.g., particles average velocity,
convergence state of the algorithm, average quality of the
solutions found, etc.) to adjust the value of the parameters.
Because the value of ω, ϕ1, and ϕ2 heavily influences the
exploration/exploitation behavior of the algorithm, parameter
control strategies are abundant in the PSO literature [17]. In
particular, a lot of attention has been given to control strate-
gies focused on adjusting the value of ω, which is intrinsically
related to the local convergence of the algorithm. Locally con-
vergent implementations not only guarantee to find a local
optimum in the search space but also prevent issues, such as
1) swarm explosion, which happens when a particle’s velocity
vector grows too large and the particle becomes incapable of
converging to a point in the search space [19] and 2) poor

problem scalability, which means that the algorithm performs
poorly on high-dimensional problems [20]. In fact, the poor
problem scalability issue has become very relevant in the last
years because of the increasing number of problems involving
large-dimensional spaces where PSO is applicable. It has been
observed that unwanted particles roaming in high-dimensional
spaces is a substantial part of this issue and that, in variants,
such as StaPSO, parameter values for ω, ϕ1, and ϕ2 that per-
form well in low-dimensional spaces will most likely perform
poorly in large dimensional ones [21]. A number of strategies
have been proposed to address this issue, such as reinitial-
ization [22], group-based random diagonal matrices [23], and
perturbation mechanisms [20].

In group 2) are the algorithm components used to control
the distribution of all next possible positions (DNPPs) of the
particles. The chosen DNPP determines the way particles are
mapped from their current position to the next one. We con-
sider the three main DNPP proposed in the literature—the
rectangular (used in StaPSO), the spherical (used in standard
PSO 2011 (SPSO11) [24]), and the additive stochastic, which
comprises the recombination operators proposed for simple
dynamic PSO algorithms [25]. Although some DNPP map-
pings suffer from transformation variance—which happens
when the algorithm performs poorly under mathematical trans-
formations of the objective function, such as scale, translation,
and rotation—there are a number of algorithm components that
have been developed to prevent this issue.

Group 3) is composed of the algorithm components that
allow to apply perturbations to the particles velocity/position
vectors. In general, in PSO, perturbation mechanisms can be
informed or random. Informed perturbation mechanisms receive
a position vector as an input (typically �p i

t or �x i
t ) and use it to

compute a new vector that replaces the one that was received.
The typical way in which informed mechanisms work is by
using the components of the input vector as the center of a
probability distribution and mapping random values around
them; however, other options found in the literature include
computing the Hadamard product between the input vector and
a random one, or randomly modifying the components of the
input vector. Differently, random perturbation mechanisms add
a random value to a particle’s position or velocity. Perturbation
mechanisms proposed for PSO are used to improve the diver-
sity of the solutions [20], [26], avoid stagnation [27], and avoid
divergence [28]. Additionally, some of these mechanisms allow
to modify the DNPP of the particles; an example is the mech-
anism proposed in [20], where a Gaussian distribution is used
to map random points on spherical surfaces centered around
the position of the informants.

One of the main challenges in most perturbation mech-
anisms is the determination of the perturbation magnitude
(PM): a strong perturbation may prevent particles from effi-
ciently exploiting high-quality areas of the search space, while
a weak one may not produce any improvement at all. In order to
allow convergent implementations to take advantage of the per-
turbation mechanism, some magnitude control strategies take
into account the state of the optimization process to adjust the
magnitude at run time. An example is [28], where a parameter
decreases the PM when the best solution found so far has been
constantly improving, whereas increases it when the algorithm
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is stagnating. Another example is [20], where the magnitude
is computed based on the Euclidean distance between the par-
ticles so as to decrease it as particles converge to the best
solution found so far.

The algorithm components in group 4) corresponds to the
random matrices, whose function, similarly to some perturba-
tion mechanism of group 3), is to provide diversity to particles
movement. The main difference between the random matri-
ces and the perturbation mechanisms described above is that
the former can be used to produce changes in the magnitude
and direction of the CI and SI vectors, while the latter allows
only to apply perturbation to individual positions used in the
computation of the CI and SI. In the StaPSO algorithm, the
random matrices [Ui

1 and Ui
2, see (2)] are usually constructed

as diagonal matrices with values drawn from U(0, 1); however,
in some implementations of StaPSO (e.g., [16]), the matrices
are replaced by two random values ri

1 and ri
2—in this case,

particles oscillate linearly between �p i
t and �l i

t without being
able to move in different directions, preventing transformation
variance [16] but affecting the performance of the algorithm.
Using random rotation matrices (RRMs), instead of random
diagonal matrices, is another way to address transformation
variance in PSO. RRMs allow to apply random changes to the
length and direction of the vectors in the velocity update rule
without being biased toward some particular reference frame.
The two main methods that have been used to create RRMs
in the context of PSO are exponential map [29] and Euclidean
rotation [30].

The last group of algorithm components we identified in our
work, group 5), includes the topology, model of influence, and
population size. The topology plays an important role in the
way the algorithm will modulate its exploration–exploitation
capabilities. In addition to the well-known fully connected,
ring, and von Neumann topologies, there are other topologies
that have been explored in the PSO literature, such as the
hierarchical and small-world network. In [31], a topology that
decreases connectivity over time was proposed. Concerning
the model of influence, besides the best-of-neighborhood and
the fully informed, another option is the ranked fully informed
model of influence [32], in which the contribution of each
informant is weighted according to its rank in the neighborhood.
Concerning population size, it has recently been proposed to
increase or decrease the number of particles according to some
metrics [33], [34]. The number of particles in the swarm has an
impact on the tradeoff between solution quality and speed of
the algorithm [16], [34]. In general, a large population should
be used as it can produce better results. However, a small
population may be the best option when the objective function
evaluation (FE) is expensive or when the number of possible
FEs is limited.

IV. DESIGNING PSO ALGORITHMS FROM ALGORITHM

TEMPLATE

In this section, we explain the way in which the algorithm
components reviewed in the previous section can be combined
using the PSO-X framework. In the reminder of this article,
we use Sans Serif font to indicate the name of the algorithm
components and of their options as implemented in PSO-X.

Algorithm 1 Algorithm Template Used by PSO-X
Require: set of parameters
1: swarm ← INITIALIZE(Population, Topology, Model of influence)
2: repeat
3: for i← 1 to size(swarm) do
4: �v i

t+1 ← ω1 �v i
t + ω2 DNPP(i, t)+ ω3 Pertrand(i, t)

5: apply velocity clamping %optional
6: �x i

t+1 ← �x i
t + �v i

t+1
7: end for
8: for i← 1 to size(swarm) do
9: compute f (�x i

t )

10: update �p i
t using Eq. 3

11: end for
12: apply stagnation detection, particles reinitialization %optional
13: if type(Population) 
= constant then
14: swarm ← UPDATEPOPULATION(swarm, Population)
15: end if
16: if type(Topology) = time-varying or type(Population) 
= constant then
17: swarm ← UPDATETOPOLOGY(swarm, Topology, Model of influence)
18: end if
19: until termination criterion is met
20: return global best solution

A. Algorithm Template for Designing PSO Implementations

Algorithm 1 depicts the PSO-X’s algorithm template. A
swarm of particles (swarm) is created using the INITIALIZE()
procedure that assigns to each particle a set Ni, a set Ii, an
initial position, and an initial velocity based on the Population,
Topology, and Model of influence indicated by the framework
user. Additionally, the INITIALIZE() procedure creates and
initializes any variable required to use the algorithm components
included in the implementation. The two for cycles of lines 3–
7 and lines 8–11 correspond to the standard implementation
of PSO—except for line 4 that shows our GVUR, defined as
follows:

�v i
t+1 = ω1 �v i

t + ω2 DNPP(i, t)+ ω3 Pertrand(i, t) (4)

where DNPP represents the type of mapping from a particle’s
current position to the next one, and Pertrand represents an
additive perturbation mechanism. The parameter ω1 is the same
as the inertia weight in StaPSO [see (2)] and its value can be
computed using the strategies that have been developed for this
purpose (the list of the strategies available to compute its value
are shown in Table 4 of the supplementary material [4]). The
parameters ω2 and ω3 control the influence that will be given
to the DNPP and Pertrand components; their values can be
set equal to ω1 or be computed using the random component,
where ω2, ω3 ∼ U [0.5, 1], or the constant component, where
ω2 and ω3 are user selected constants in the interval [0, 1]. We
use three independent ω parameters so that it is easy to disable
any of the GVUR components. For example, a velocity-free
PSO can be easily obtained by setting ω1 = 0. After all particles
have updated their position, two procedures can take place: 1)
UPDATEPOPULATION(), that increases/decreases the size of
the swarm according to the type of Population employed and
2) UPDATETOPOLOGY(), that connects newly added particles
to a set of neighbors, or disconnect particles when the topology
connectivity reduces over time.

All implementations that can be created using Algorithm 1
and combining algorithm components with different function-
alities, such as different DNPPs or topologies, are considered
valid implementations by PSO-X. This allows enough flex-
ibility to explore many new designs without increasing too
much the computational complexity of the implementations.
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In particular, in PSO-X, we do not allow the recursive use of
components, as it is done in the component-based framework
using grammars [3]. In Table 2 of the supplementary mate-
rial [4], we show the algorithm components and parameters
in the framework, their domain and type, and the condition(s)
under which each parameter is used in PSO-X.

B. DNPP Component

The six options defined in PSO-X for the DNPP component
are DNPP-rectangular, DNPP-spherical, DNPP-standard,
DNPP-discrete, DNPP-Gaussian, and DNPP-Cauchy–
Gaussian.

The DNPP-rectangular option is defined as follows:

DNPP-rectangular =
n∑

k∈Ii
t

ϕk
t Mtxk

t

(
Pertinfo

(
�p k

t

)
− �x i

t

)
(5)

where Mtx and Pertinfo are, as mentioned before, high-level
representations of the different types of random matrices
and informed perturbation mechanisms used in PSO. The
DNPP-rectangular is by far the most commonly used in
implementations of PSO, including StaPSO [12], the constric-
tion coefficient PSO [19], the fully informed PSO (FiPSO) [35],
etc. In the standard application of DNPP-rectangular (i.e.,
as in StaPSO), each term added in (5) is a vector located
on a hyperrectangular surface whose side length depends on
the distance between �p k

t and �x i
t . However, when the per-

turbation component of DNPP-rectangular is an informed
Gaussian—as in the locally convergent rotationally invariant
PSO (LcRPSO) [20]—or an RRM—as in the diverse rota-
tionally invariant PSO (DvRPSO) [29]—the surface on which
the different vectors computed in (5) are located becomes
hyperspherical or semi-hyperspherical, respectively.

Another option is DNPP-spherical [24], where a vector
located on a hypersphere is used in the computation of a particle
new position. The equation to compute the DNPP-spherical
option is as follows:

DNPP-spherical = Hi
(�c i

t ,
∣∣�c i

t − �x i
t

∣∣)− �x i
t (6)

where H(�c i
t , |�c i

t −�x i
t |) is a random point drawn from a hyper-

spherical distribution with center �c i
t and radius |�c i

t − �x i
t |. The

center �c i
t is computed as follows:

�c i
t =
�x i

t + �L i
t + �P i

t

3
(7)

where

�P i
t = �x i

t + ϕ1tMtxt
(
Pertinfo(�p i

t )− �x i
t

)
(8)

�L i
t = �x i

t +
n∑

k∈Ii
t\{i}

ϕk
2tMtxk

t

(
Pertinfo(�p k

t )− �x i
t

)
(9)

and ϕk
2t = (ϕ2t/|Ii

t \ {i}|). The main difference between
DNPP-spherical and the standard implementation of DNPP-
rectangular is that the hypersphere Hi(�c i

t , |�c i
t −�x i

t |) is invariant
to rotation around its center, whereas DNPP-rectangular is
rotation variant unless another component is used to over-
come this issue—e.g., a Gaussian perturbation, as done in the
LcRPSO variant. While the DNPP-spherical and the LcRPSO

combining the DNPP-rectangular with a Gaussian perturba-
tion component use the same idea, they work in a different
way. In the DNPP-spherical DNPP, there is a single vector
mapped randomly in the hypersphere H(�c i

t , |�c i
t − �x i

t |) and the
informants of i participate only in the computation of vector
�L i

t [see (9)];1 whereas in the LcRPSO variant, there are n
different vectors, one for each informant of i, each mapped
on a spherical surface, and the new velocity of the particle is
obtained by adding all n vector, as shown in (5).

The DNPP-standard, DNPP-discrete, DNPP-Gaussian,
and DNPP-Cauchy–Gaussian options belong to the class of
simple dynamic PSO algorithms [25], [36] and have the form
�q i

t −�x i
t , where vector �q i

t is computed differently in each option

DNPP-standard: �qi
t =

ϕ1�p ′it +ϕ2�p ′kt
ϕ1+ϕ2

(10)

DNPP-discrete: �qi
t = ηd�p ′it +(1− ηd)�p ′kt ) (11)

DNPP-Gaussian: �qi
t = N (

�p ′it +�p ′kt
2

, |�p ′it − �p ′kt |) (12)

DNPP-Cauchy–Gaussian:

�qi
t =

⎧
⎨

⎩

pi,j
t +C(1)

∣∣∣p′i,jt − p′k,jt

∣∣∣, if U [0, 1] ≤ r

pk,j
t +N (0, 1)

∣∣∣p′i,jt − p′k,jt

∣∣∣, otherwise
(13)

where ηd ∼ U{0, 1} is a discrete random number drawn from
a Bernoulli distribution, C(1) is a random number generated
using a Cauchy distribution with scaling parameter 1, N (0, 1)

is a random number from a Normal distribution with mean 0
and variance 1, and r is a parameter that allows the user to
select the probability with which the Cauchy or the Normal
distributions are used in (13). Vectors �p ′ it and �p ′ kt are computed
using �p ′ it = Pertinfo(�p i

t ) and �p ′ kt = Pertinfo(�p k
t ) with k ∈ Ii.

Unlike options DNPP-standard, DNPP-discrete, and
DNPP-Gaussian, where the mapping between particles i and
k is deterministic, in DNPP-Cauchy–Gaussian, the value of
the jth dimension of �q i

t is computed with probability r using
�p i

t and a Cauchy distribution; and with probability 1− r using
�p k

t and a Normal distribution.
Although we kept the original definition of these DNPPs

for the most part, we did two modifications: we included the
Pertinfo component (i.e., vectors �p ′ it and �p ′ kt instead of �p i

t and
�p k

t ) and the possibility of using a random informant model of
influence (MoI-random informant), which consists in choosing
a random particle from Ni and use it as informant.

C. Pertrand and Pertinfo Components

The two types of perturbation components included in PSO-X
are: 1) Pertinfo, which modifies an input vector and 2) Pertrand,
which generates a random vector that is added to the velocity
vector. Pertinfo, as explained in Section IV-B, is a component
used by the DNPP component. Differently, Pertrand is used
directly in the GVUR.

As shown in Table I, both Pertinfo and Pertrand are
optional components in PSO-X that can be omitted from
the implementation using the none option. The options for
Pertinfo, when the component is present in the implementation,

1In the original definition of (9), vector �L i
t was defined considering a

best-of-neighborhood model of influence. In this article, we have extended
the computation of �L i

t to an arbitrary number of informants.
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TABLE I
OPTIONS FOR COMPUTING PERTINFO AND PERTRAND COMPONENTS IN

PSO-X WHEN THEY ARE USED IN THE IMPLEMENTATION

are Pertinfo-Gaussian, Pertinfo-Lévy, and Pertinfo-uniform.
Pertinfo-Gaussian and Pertinfo-Lévy compute a random vector
by using a probability distribution whose center and disper-
sion are given by the input vector �r and by the parameter σt
that controls the magnitude of the perturbation. Similarly, in
Pertinfo-uniform, the PM depends on a parameter bt, that con-
trols the interval in which a random vector �s will be generated
using a uniform distribution. Regarding the Pertrand compo-
nent, both Pertrand-rectangular and Pertrand-noisy employ
a random uniform distribution to generate a random vector;
the magnitude of the perturbation is controlled in this case by
parameters τt and δt, respectively.

In Pertinfo-Lévy, the value of γt can be used to switch
between a Gaussian and a Cauchy distribution [37]. That is,
when γt = 1, the Lévy distribution is equivalent to the Gaussian
distribution, and when γt = 2, it is equivalent to the Cauchy
distribution. In PSO-X, the value of γt is obtained sampling
from the discrete uniform distribution U{10, 20}

γt = U{10, 20}/10.

This allows to vary the probability of generating a random
value in the tail of the distribution. This way of computing the
value of γt is similar to the one used in [36] for computing the
DNPP-Cauchy–Gaussian option assuming r = 0.5 to give
the same probability to each case [see (13)].

Since the PM plays a critical role in the effectiveness of
perturbation components, setting its value (either offline or
during the algorithm execution) is often challenging. In PSO-X,
we implemented four strategies for computing the PM that can
be used with any of the Pertinfo and Pertrand components. These
strategies are PM-constant value, PM-Euclidean distance,
PM-obj.func. distance, and PM-success rate.

The PM-constant value strategy [26] is the simplest and
consists in using a value that remains constant during the
execution of the algorithm. This strategy guarantees that the PM
is always greater than zero—a condition that has to be verified
for all perturbation strategies. However, the main problem with
the PM-constant value strategy is that using the same value
may not be effective for the different stages of the optimization
process. For example, particles that are farther away from the
global best solution may benefit from a large PM value in
order to move to higher quality areas, while for those particles

that are near the global best solution, a small PM value would
make exploitation easier.

The PM-Euclidean distance strategy [20] consists in using
the Euclidean distance between the current position of particle
i and the personal best of a neighbor k. This strategy is defined
as follows:

PMi,k
t =

⎧
⎨

⎩

ε · PMi,k
t−1, if �x i

t = �p k
t

ε ·
√

∑d
j=1

(
�x i,j

t − �p k,j
t

)2
, otherwise

(14)

where 0 < ε ≤ 1 is a parameter used to weigh the distance
between �x i

t and �p k
t .

The PM-obj.func. distance is very similar to the PM-
Euclidean distance, but the distance between particles is
measured in terms of the quality of the solutions. The equation
to compute the PM using PM-obj.func. distance is

PMi
t =

⎧
⎪⎨

⎪⎩

m · PMi
t−1, if �p i

t = �l i
t

m · f
(�l i

t

)
−f(�x i

t )

f
(�l i

t

) , otherwise
(15)

where 0 < m ≤ 1 is a parameter. For particles whose quality
is very similar to that of the local best, the PM will be small,
enhancing exploitation; and for those whose quality is poor
compared to that of the local best, the PM will be large allowing
them move to far areas of the search space.

The mechanism implemented in PM-success rate [28] to
compute the PM takes into account the success rate of the
algorithm in terms of improving the best solution’s quality.
The value of the PM is adjusted depending on the number
of consecutive iterations in which the swarm has succeeded
(#successes) or failed (#failures) to improve the best solution
found so far, where iteration t→ t+1 is a success if f (�gt+1) <

f (�gt), a failure otherwise. The PM-success rate strategy is
defined as follows:

PM =
⎧
⎨

⎩

PM · 2, if #successes > sc
PM · 0.5, if #failures > fc
PM, otherwise

(16)

where the threshold parameters sc and fc are user defined.

D. Mtx Component

The options for the Mtx algorithm component in PSO-X are
Mtx-random diagonal, Mtx-random linear, Mtx-exponential
map, and Mtx-Euclidean rotation. The Mtx-random diagonal
and Mtx-random linear options are both d×d diagonal matrices
whose values are drawn from a U(0, 1); the only difference
between them is that, in Mtx-random linear, one random
value is repeated d times in the matrix diagonal, whereas, in
Mtx-random diagonal, the matrix contains d independently
sampled values.

The Mtx-exponential map [29] option is based on an
approximation method called exponential map whereby RRMs
can be constructed avoiding matrix multiplication, which is
computationally expensive. Mtx-exponential map is defined
as

Mtx-exponential map = I +
maxβ∑

β=1

1

β!

( απ

180

(
A− AT))

(17)
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where I is the identity matrix, α is a scalar representing the
rotation angle, and A is an n× n random matrix with uniform
random numbers in [−0.5, 0.5]. To keep the computational
complexity low, we set maxβ = 1.

The Mtx-Euclidean rotation [30] rotates a vector in any
combination of planes.2 An Mtx-Euclidean rotation for rotat-
ing axis xi in the direction of xj by the angle α is given
by a matrix [rmn] with rii = rjj = cos α, rij = − sin α, and
rji = sin α, and the remaining values are set to 1 if they are
on the diagonal or to zero otherwise. Since [rmn] is an identity
matrix except for the entries at the intersections between rows
i and j and columns i and j, the multiplication between [rmn]
and �v is done as follows:

[rmn] �v =
⎧
⎨

⎩

vkrii + vjrji, if k = i
vkrjj + virij, if k = j
vk, otherwise

(18)

where vk indicates the kth entry of vector �v. We use
Mtx-Euclidean rotationall to indicate when Mtx-Euclidean
rotation is used to rotate a vector in all possible combination
of planes, and Mtx-Euclidean rotationone to indicate when it
is used to rotate in only one plane.

The strategies to compute the rotation angle are α-constant,
α-Gaussian, and α-adaptive. In α-constant, the value of α is
defined by the user, whereas in α-Gaussian and α-adaptive,
it is obtained by sampling values from N (0, σ ). The value
of σ when the Gaussian distribution is used can be a user
defined parameter, as in α-Gaussian, or be computed using
an adaptive approach, as in α-adaptive, which is defined as
follows:

σ = ζ × irt√
d
+ ρ (19)

where ζ and ρ are two parameters and irt is the number of
improved particles in the last iteration divided by the population
size.

The last option for the Mtx component is Mtx-Increasing
group-based [23] that divides a random diagonal matrix into
gt groups and every element in each group has the same value,
generated uniformly random. The number of groups at each
iteration is computed using the following equation:

gt = d − 1

tmax − 1
× (t − 1)+ 1 (20)

where d is the number of problem dimensions and tmax is
the iteration number at which the algorithm stops. Note the
algorithm starts with gt = 1 and the number increases over
time until there are gt = d groups, which is equivalent to
gradually transforming an Mtx-random linear component into
a Mtx-random diagonal one.

E. Topology, Model of influence and Population
Components

In addition to the well-known options for the Topology
component discussed in Sections II-B and III and showed in

2For a d-dimensional vector �u, there is a composition of d(d − 1)/2-D
rotation matrices built up in order to rotate �u in all possible combinations
of planes. See [30, Appendix III] for further details.

TABLE II
AVAILABLE OPTIONS IN PSO-X FOR POPULATION, TOPOLOGY, AND

MODEL OF INFLUENCE ALGORITHM COMPONENTS

Table II, we implemented in PSO-X the Top-hierarchical and
Top-time-varying options.

In Top-hierarchical [38], particles are arranged in a regular
tree—i.e., a tree graph with a maximum branching degree
(bd) and height (h)—where they move up and down based
on the quality of their �pt vector, and sets Ni contain only the
particles that are in the same branch of the tree as particle i
but in a higher position. The topology is updated at the end of
each iteration starting from the root node and consists of each
particle comparing the quality of its �pt vector with that of its
parent and switching places when it has higher quality.

The Top-time-varying [31] is a topology that reduces its
connectivity over time: it starts as a fully connected topology
and every κ iterations a number of edges is randomly removed
from the graph until the topology is transformed into a ring. The
value of κ , which controls the velocity at which the topology
is transformed, is a multiple of the number of particles in the
swarm, so that the larger the value of κ the faster the topology
will be disconnected. Additionally, the number of edges to be
removed follows an arithmetic regression pattern of the form
n− 2, n− 3, . . . , 2, where n is the swarm size.

The options for the Model of influence component are MoI-
best-of-neighborhood, where sets Ii contains i and the local
best particle in the neighborhood of i; the MoI-fully informed,
where sets Ii = Ni; MoI-ranked fully informed, which is
similar to the MoI-fully informed, but particles in Ii are ranked
according to their quality so that the influence of a particle
with rank r is twice the influence of a particle with rank r−1;
and MoI-random informant, which allows particles to select
a random neighbor from Ni to form set Ii.

The options for the Population component are Pop-
constant, Pop-time-varying, and Pop-incremental. In Pop-
time-varying [33], there is a maximum (popmax) and minimum
(popmin) number of particles that can be in the swarm at any
given time. Particles are added or removed according to two
criteria: 1) add one particle if the best solution found has
not improved in the previous k consecutive iterations and the
swarm size is smaller than popmax and 2) remove the particle
with the lowest quality if the best solution found has improved
in the previous k consecutive iterations and the swarm size is
larger than popmin. Whenever criterion 1) is verified, but the
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swarm size is equal to popmax, the particle with the lowest
quality is removed before adding the new random particle.

In Pop-incremental [34], the algorithm starts with an initial
number of particles (popini) and, at each iteration, there are
ξ new particles added to the swarm until a maximum number
is reached (popfin).

The initial position of newly added particles (xnew) can be
computed using Init-random or Init-horizontal. In Init-random

xnew,j = U[
lbj, ubj]

where lbj and ubj are the lower and upper bound of the jth
dimension of the search space. In Init-horizontal, a horizontal
learning approach is applied to xnew,j after it has been randomly
initialized in the search space

x′new,j = U[
lbj, ubj]

xnew,j = x′new,j + U [0, 1) ·
(

g j
t − x′new,j

)
.

Using a dynamic population requires that the topology is
updated in order to assign newly added particles to a neighbor-
hood or to reconnect particles that were connected to a particle
that was removed. This is handled as follows.

1) Particles Are Added to a Fixed Topology: The topology
is extended by connecting a newly added particle with a
set of neighbors randomly chosen. In Top-hierarchical,
new particles are always placed at the bottom of the tree.

2) Particles Are Added to a Time-Varying Topology: We
assign Ĉi

t neighbors to every new particle, where Ĉi
t is

the average number of neighbors that every particle in
the swarm has at iteration t.

3) Particles Are Removed: The topology is repaired to ensure
that every particle has the right number of neighbors.

F. Acceleration Coefficients

The four strategies that can be used to compute the ACs
in PSO-X are: 1) AC-constant; 2) AC-random; 3) AC-time-
varying; and 4) AC-extrapolated. In AC-random, the value
of ϕ1t and ϕ2t is drawn from U [ϕmin, ϕmax], where 0 ≤ ϕmin ≤
ϕmax ≤ 2.5 are user selected parameters. The AC-time-varying
strategy is the one proposed in [39], where ϕ1 decreases from 2.5
to 0.5 and ϕ2 increases from 0.5 to 2.5. In the AC-extrapolated
strategy, proposed in [40], the value of the ACs is a function of
the iteration number and particles quality computed as follows:

ϕ1 = e−(t/tmax)

ϕ2 = e(ϕ1·�i
t) (21)

where �i
t = |(f (�l i

t ) − f (�x i
t ))/f (�lt)| adjusts the value of ϕ2 in

terms of the difference between f (�x i
t ) and f (�l i

t ). This means
that when f (�l i

t ) � f (�x i
t ), the step size of the particle will be

larger, and when f (�l i
t ) � f (�x i

t ) it will be smaller.

G. Reinitialization Components and Velocity Clamping

The last group of components in PSO-X have been proposed
with the goal of avoiding performance issues that affect PSO,
such as divergence and stagnation.

The first ones is stagnation detection [41]. It is used
to perturb the velocity vector of a particle when its current
position is too close to the global best solution, and the velocity

magnitude is not large enough to let the particle move to other
parts of the search space. That is, when ||�v i

t ||+ ||�gt−�x i
t || ≤ μ,

where μ > 0 is a user defined threshold for the perturbation to
occur. When the stagnation condition is verified, the velocity
vector of the particle is randomly regenerated as follows:

�v i
t = (2�r − 1) · μ

where �r ∼ U(0, 1].
The second component, particles reinitialization [22] is

used to regenerate the position vector of the particles in case
of early stagnation or ineffective movement is occurring. Early
stagnation is considered to be affecting the implementation
when the standard deviation of the �pt vectors is lower than
0.001. In this case, each entry of the particles position vector
is randomly reinitialized with probability 1/d. The second
criterion, which tries to identify when particles are moving
ineffectively, consists in detecting when the overall change of
�gt is lower than 10−8 for 10 ·d/pop iterations and regenerating
particles positions using the following equation:

x i,j
t+1 =

(
gj

t − x i,j
t

)
/2 for j = 1, . . . , d.

The last one is velocity clamping [10], [42] and consists in
restricting the values of each dimension in the velocity vector
of a particle within certain limits to prevent overly large steps.
This is done using the following equation:

�v j
t+1

⎧
⎪⎨

⎪⎩

vmax, if �v j
t+1 > vmax

−vmax, if �v j
t+1 < −vmax

�v j
t+1, otherwise

(22)

where v j
max and −v j

max are maximum and minimum allowable
value for the particle’s velocity in dimension j. The value
v j

max = [(ubj − lbj)/2] is set according to the lower lbj and
upper ubj bounds for dimension j on the search space.

V. EXPERIMENTAL PROCEDURE

A. Benchmark Problems

We conducted experiments on a set of 50 static bench-
mark continuous functions belonging to the CEC’05 and
CEC’14 “Special Session on Single-Objective Real-Parameter
Optimization” [43], [44], and to the Soft Computing (SOCO’10)
“Test Suite on Scalability of EAs and Other Metaheuristics
for Large-Scale Continuous Optimization Problems” [45]. A
detailed description of the benchmark functions can be found
in the given references and in the supplementary material [4]
of this article.

The test set of continuous functions—Table V-B—is com-
posed of 12 unimodal functions (f1−12), 14 multimodal functions
(f13−26), and 24 hybrid composition functions (f27−50). With
the exception of f41, none of the hybrid composition functions
is separable, and the ones from f42−50 include also a rotation
in the objective function.

B. Experimental Setup

The computational budget used with irace was of 50 000
executions for creating the PSO-X algorithms and of 15 000
executions for tuning the parameter of the PSO variants included
in our comparison. The reason for using different budgets is
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that there are 58 parameters involved in the creation of the PSO-
X algorithms, and only between 5 and 10 parameters in the
tuning of the PSO variants. The functions employed for creating
and configuring the algorithms with irace (i.e., the training
instances) used d = 30, and the ones used for our experimental
evaluation used d = 50 and d = 100, depending on the
scalability of each function. In order to present statistically
meaningful results, we perform 50 independent runs of each
algorithm on each function and report the median (MED)
result—to measure the quality of the solutions produced by
the algorithms—and the median error (MEDerr) with respect
to the best solution found by any of the algorithms.

In all cases, the algorithm was stopped after reaching 5000×d
objective FEs. Both the tuning and the experiments were carried
out on a single-core Intel Xeon E5-2680 running at 2.5 GHz
with 12-Mb cache size under Cluster Rocks Linux version
6.0/CentOS 6.3. The PSO-X framework was codified using
C++ and compiled with gcc 4.4.6.3 The version of irace
is 3.2.

VI. ANALYSIS OF THE RESULTS

The analysis of the results is divided into two parts. In the
first part, we analyze the performance and capabilities of six
automatically generated PSO-X algorithms, named PSO-Xall,
PSO-X hyb, PSO-X mul, PSO-X uni, PSO-X cec, and PSO-X soco.
Each of these PSO-X algorithms has been created using a set
of training instances composed of different functions. For PSO-
Xall, we used all the 50 functions (f1−50), whereas for PSO-Xuni,
we used only the unimodal functions (f1−12), for PSO-Xmul
only the multimodal ones (f13−26) and for PSO-Xhyb, only the
hybrid compositions (f27−50). In the case of PSO-Xcec and
PSO-X soco, we used the entire set of functions of the CEC’05
and SOCO’10 test suites, respectively. Unlike the SOCO’10
test suite, the CEC’05 competition set includes many rotated
objective functions and more complex hybrid compositions. The
idea of using different training instances is to try to identify
the algorithm components that result in higher performance
when tackling functions of different classes.

In the second part, we compare the performance of our auto-
matically generated PSO-X algorithms with ten well-known
variants of PSO. We used two versions of each PSO variant:
one whose parameters were tuned with irace (indicated by
“tnd”) and the other that uses the default parameter settings
proposed by the original authors (indicated by “dft”). The
variants included in our comparison are as follows.

1) Enhanced rotation-invariant PSO [30]—a variant that uses
the AC-random strategy, Mtx-Euclidean rotation, and
α-adaptive.

2) Fully informed PSO [35]—a traditional PSO variant that
uses the constriction coefficient velocity update rule4

(CCVUR) and the MoI-fully informed.
3) Frankenstein’s PSO [31]—a PSO variant that uses

Top-time-varying, MoI-fully informed, and ω1 =
linear decreasing.

3The source code of PSO-X can be downloaded from http://iridia.ulb.ac.
be/supp/IridiaSupp2021-001/PSO-X.zip.

4This rule is defined as �v i
t+1 = χ(�v i

t +ϕ1Ui
1t(�p i

t −�x i
t )+ϕ2Ui

2t(
�l i
t −�x i

t )),
where χ = 0.7298 is called the constriction coefficient [19]. It can obtained
from (4) by setting ω1 = ω2 = 0.7298 and using the DNPP-rectangular
option.

4) Gaussian “bare-bones” PSO [46] (GauPSO)—a variant
that uses the DNPP-Gaussian option of the DNPP-
additive stochastic as the only mechanism to update
particles positions.

5) Hierarchical PSO [38] (HiePSO)—a variant based on
Top-hierarchical that can be implemented using either
ω1 = linear decreasing or ω1 = linear increasing.

6) Incremental PSO [34] (IncPSO)—a variant of PSO
that uses the CCVUR and Pop-incremental with
Init-horizontal.

7) Locally convergent rotation-invariant PSO [20]—a more
recent variant of PSO in which the Pertinfo-Gaussian
component is used together with the PM-Euclidean dis-
tance strategy, Mtx-random linear, and the AC-random
strategy.

8) Restart PSO [22] (ResPSO)—a variant of StaPSO using
velocity clamping and particles reinitialization.

9) Standard PSO [12]—the PSO algorithm described in
Section II-B that uses (1)–(3).

10) Standard PSO 2011—a variant of StaPSO that uses the
DNPP-spherical option.

In Table IV, we show the parameter configuration of the
versions that we used in the comparison. Note that, with the
goal of simplifying their description, we have only mentioned
the components that are different in these algorithms from
those in StaPSO. This means that, unless specified otherwise,
we assumed that the following components and parameters
setting are used in their implementation: Pop-constant, Top-
fully connected with MoI-best-of-neighborhood, DNPP-
rectangular with Mtx-random diagonal and Pertinfo =
Pertrand = none, ω1 = constant, ω2 = 1.0, ω3 = 0,
and AC-constant.

A. Comparison of Automatically Generated PSO Algorithms

The algorithm components in the automatically generated
PSO-X algorithms are listed as follows, and their configuration
is given in Table V.

1) PSO-Xall: Pop-incremental with Init-random, Top-
fully connected with MoI-best-of-neighborhood,
DNPP-rectangular with Pertinfo-Lévy and PM-
success rate, Mtx-random diagonal, and velocity
clamping.

2) PSO-Xhyb: Pop-constant, Top-Von Neumann with
MoI-best-of-neighborhood, DNPP-rectangular with
Pertinfo-Lévy and PM-success rate, Mtx-random
diagonal, and velocity clamping.

3) PSO-Xmul: Pop-incremental with Init-horizontal, Top-
time-varying with MoI-best-of-neighborhood, DNPP-
rectangular with Pertinfo-Lévy and PM-success rate,
Mtx-random linear, and stagnation detection.

4) PSO-Xuni: Pop-incremental with Init-random, Top-
fully connected with MoI-best-of-neighborhood,
DNPP-rectangular with Pertinfo-Lévy and PM-
success rate, Mtx-random diagonal, and velocity
clamping.

5) PSO-Xcec: Pop-constant, Top-Von Neumann with
MoI-best-of-neighborhood, DNPP-rectangular with
Pertinfo-Lévy and PM-success rate, Pertrand-noisy
with PM-success rate and Mtx-random diagonal.
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TABLE III
BENCHMARK FUNCTIONS

TABLE IV
PARAMETER SETTINGS OF THE TEN PSO VARIANTS INCLUDED IN

OUR COMPARISON

6) PSO-Xsoco: Pop-constant, Top-ring with MoI-ranked
fully informed, DNPP-rectangular with Pertinfo-
Gaussian and PM-success rate, Mtx-random diago-
nal, and velocity clamping.

In Table VI, we report the median of the results obtained by
the algorithms on each function. At the bottom of the table,
we show the number of times each algorithm obtained the
best result among the six (“Wins”), the average median value

TABLE V
PARAMETER SETTINGS OF THE SIX AUTOMATICALLY GENERATED

PSO-X ALGORITHMS

(“Av.MED”), the average ranking of the algorithm across all 50
functions (“Av.Ranking”), and whether the overall performance
of any of the compared algorithm was significantly worse (“+”)
or equal (“≈”) than the best-ranked algorithm according to
a Wilcoxon’s rank-sum test at 0.95 confidence interval with
Bonferroni’s correction. PSO-Xall was the algorithm that ranked
best of the six followed by PSO-Xcec and PSO-Xhyb, while
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TABLE VI
MEDIAN RESULTS OF THE PSO-X ALGORITHMS IN f1–50 WITH d = 50

PSO-X soco was the one that returned the best median result
in the higher number of cases. The symbol “+” next to some
of the median values in Table VI indicates the cases where
we found a statistical difference function-wise in favor of
PSO-X all according also to a Wilcoxon–Bonferroni test with
α = 0.05. PSO-Xuni, which ranked last of the six, was the
algorithm that performed statistically worse than PSO-Xall in
most functions (26 out of 50 functions), while PSO-Xmul, PSO-
Xcec, PSO-X hyb, and PSO-X soco were worse in 23, 19, 17, and
14 functions, respectively. In the following, we examine the
performance of the six PSO-X algorithms across the different
function classes in our benchmark set, focusing on those that
are specific to a function class, and the effect of their algorithm
differences in their performance.

1) Comparison of the PSO-X Algorithms on Specific
Function Classes: In order to know whether our PSO-X
algorithms are able to obtain better results in specific func-
tion classes, we analyze their performance according to the
average ranking (Av.Ranking) they obtained in the unimodal

(f1−12), multimodal (f13−26), hybrid composition (f27−50), and
rotated (frotated = f2−4,6,14,16,18,20,22−26,42−50) functions. The
Av.Ranking gives us an indication of how good or bad is the
performance of an algorithm across the different classes based
on the result of the winner of each function. In Table VII, we
present this information together with the algorithms average
median error (Av.MEDerr). In our analysis, we pay particular
attention to the results of PSO-Xuni, PSO-Xmul, PSO-Xhyb,
and PSO-Xcec, that are the algorithms we would expect to
obtain better results because of the functions used for creating
them.

As shown in Table VII, according to the median solution
quality, the performance of the algorithms is weakly correlated
with the class of functions used with irace. Although PSO-
Xmul ranked first in its function class of specialization, PSO-
Xuni was outperformed by all the algorithms in the unimodal
functions, PSO-Xhyb was outperformed by PSO-Xall in the
hybrid compositions, and PSO-Xcec was outperformed by PSO-
Xhyb and PSO-X mul in the rotated functions. An analysis of
the results using the average median error of the algorithms
shows similar results, although, in this case, the performance
of PSO-Xuni and PSO-Xmul was weakly correlated to the class
of functions used in their training sets.

There are a few possible reasons why the use of different sets
of functions did not have a stronger effect on the performance of
our algorithms. The first one is the way in which we separated
the functions, that captures some features of the functions,
but neglects others, such as separability, noise, and different
combination of objective functions transformations.5 Another
possible reason is the presence of slightly overfitted models
during the creation of these algorithms with irace. The effect
of overfitting can be observed more clearly for PSO-Xuni than
for the rest of the algorithms. For a number of functions
(e.g., f6,12) the median solution obtained by PSO-Xuni was
significantly better than that of the other algorithms, which
contributes to lower the value of the Av.MED and Av.MEDerr
metrics, but not to improve its ranking in its respective classes
of specialization. Among the possible causes for the overfitting
are the use of training sets with different number of instances
(PSO-Xuni has 12 instances, while the best-ranked algorithm,
PSO-X all, has 50) and of an exceedingly large computational
budget used with irace.

2) PSO-X Algorithm Differences: The first thing to note
about the design of the six PSO-X algorithms is that, despite they
were created using different sets of functions, they all share the
same core components, i.e., DNPP-rectangular with Pertinfo-
Lévy or Pertinfo-Gaussian. This combination of components,
as we discuss in Section IV-B, has the ability of making
the implementation rotation invariant, which is an important
characteristic given that 22 out of the 50 functions in our
benchmark test set have a rotation in their objective function.
In all cases, the strategy to control the PM was PM-success
rate and, with the exception of PSO-Xuni, they all have a
parameter setting where fc is larger than sc. This setting allows
to decrease rapidly the PM when particles have been constantly
improving the global best solution, but makes harder to switch

5Note, for example, that there are rotated functions in the training set
of the six PSO-X algorithms, except for PSO-Xsoco that includes only
translations.
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TABLE VII
AVERAGE RANKING (AV.RANKING) AND AVERAGE MEDIAN ERROR

(AV.MEDERR) OBTAINED BY THE PSO-X ALGORITHMS IN f1–12
(UNIMODAL), f13–26 (MULTIMODAL), f27–50 (HYBRID), AND fRotated

WITH d = 50

back to a larger PM if the algorithm happens to stagnate. In this
sense, PSO-X all, PSO-X hyb, PSO-X mul, PSO-Xcec, and PSO-
Xsoco are biased toward exploitation, and PSO-Xuni toward
exploration.

Although PSO-Xhyb and PSO-X cec obtained similar results
in most functions and ranked almost the same across the whole
benchmark set, the performance of PSO-Xcec was better in the
CEC’05 hybrid compositions (f41−50), and worse in functions
f27, f30, f31, and f34 that belong to the SOCO’10 test suite. Based
on the components and parameter setting in PSO-Xhyb and PSO-
Xcec, this difference can be attributed to the Pertrand component
that is present only in PSO-Xcec. The Pertrand component was
advantageous for PSO-Xcec to tackle the more complex search
spaces of the CEC’05 hybrid compositions, where the algorithm
performed its best, but affected its solutions quality in most of the
SOCO’10 test suite hybrid compositions. Another interesting
comparison can be done between PSO-Xall (ranked first) and
PSO-X uni (ranked last). These two algorithms have the exact
same components and differ only in the population size, which
is roughly three times larger in PSO-Xuni compared to PSO-
Xall; parameter ω1, which is equal to ω2 in PSO-Xuni and
random in PSO-Xall; and parameters fc and sc, whose value
is inverted in PSO-Xuni compare to PSO-Xall (see Table IV).
Data from Table VI shows that the configuration of PSO-Xuni
is quite performing to tackle functions with large plateaus and
quite regular landscapes, such as Elliptic (f2), Schwefel (f6, f8,
and f12), or Rosenbrock (f15 and f16), where PSO-Xuni was the
best performing of the six. However, when PSO-Xuni faced less
regular and multimodal landscapes, its performance declined
significantly. Given the large number of parameters in PSO-X
compared to most PSO variants in the literature, framework
users could be interested in obtaining information about the
sampling distribution of the parameters and the way in which
they interact with each other. We present this information in
Section 4.2 of the supplementary material [4].

B. Comparison With Other PSO Algorithms

We also compared our PSO-X algorithms with ten traditional
and recently proposed PSO variants. As mentioned before,
for each algorithm, we collected data using both a default
(dft) version—that uses the parameter settings proposed by the
authors—and a tuned (tnd) version—whose parameters were
configured with irace. Based on a Wilcoxon–Bonferroni test
at α = 0.05, we selected the best performing of the two versions
of each algorithm. However, since the computed p-values were
larger than 0.05 for enhanced rotation-invariant PSO (ERiPSO),

Frankenstein’s PSO (FraPSO), and SPSO11, we selected the
version that obtained the lower median value across the 50
functions. In Table VIII, we show the median of the 50 runs
executed by each algorithm for each function and, in Table IX,
we show the mean ranking obtained by each algorithm according
to the different classes in which we separated the functions
in the benchmark set. To complement the information given
in the tables, in Section 6 of the supplementary material [4],
we present the distribution of the results obtained by the 16
compared algorithms using box plots.

In terms of the median solution quality, except for PSO-
Xuni, the performance of the automatically generated PSO-X
algorithms was better than any of the PSO variants in our
comparison. PSO-Xcec obtained the best ranking followed by
PSO-X mul and PSO-Xhyb, and it was also the algorithm that
returned the best median value in most functions. Regarding
the performance of the algorithms on specific problems classes,
PSO-X cec obtained the best ranking according to the Av.MED
result in the unimodal and rotated functions, PSO-Xmul the best
one in the multimodal functions, and PSO-Xall the best one in
the hybrid functions; whereas the algorithms that obtained the
lower Av.MEDerr were LcRPSOdft in the unimodal and rotated
functions, and PSO-Xmul in the multimodal and hybrid com-
position functions. To put these results in context, in Table IX,
we have used boxes to highlight the results of the PSO variants
whose ranking was equally good, or better, than any of the
PSO-X algorithms.

Note that only IncPSOtnd and StaPSOtnd were capable of
outperforming the results obtained by some of the PSO-X
algorithms, especially in the rotated functions, where those
two algorithms were as competitive as those automatically
generated. However, in the case of the hybrid composition
functions the results are quite compelling in favor of PSO-
X, since even the worst automatically generated algorithm
performed significantly better than any of the PSO variants.
This is a very strong point in favor of our PSO-X algorithms
not only because half of the functions in our benchmark set are
hybrid compositions, but also because these kind of functions
are the hardest to solve and the most representative of real-world
optimization problems.

According to Wilcoxon pairwise tests between PSO-Xcec
and the PSO variants using the data presented in Table VIII,
the median solution values obtained by FinPSOtnd, StaPSOtnd,
and IncPSOtnd are not statistically different from PSO-Xcec.
FinPSOtnd was the best performing of the PSO variants in
the unimodal functions, and IncPSOtnd in the multimodal and
rotated functions. The three PSO variants have some common-
alities regarding their design, including that they all use low
connected topologies (Von Nemann and ring) during most of
their execution (see Table IV) and, in the case of FinPSOtnd and
IncPSOtnd, they both use the CCVUR. While our experimental
results show that only IncPSOtnd and StaPSOtnd are clearly
better than one of our algorithms (PSO-Xuni) across the whole
benchmark set, the three PSO variants (FinPSOtnd, StaPSOtnd,
and IncPSOtnd) produced results that are competitive with the
PSO-X algorithms in some specific classes of functions. Finally,
it is worth pointing out that none of the default versions of
the PSO variants that we included in our comparison (i.e.,
ERiPSOdft, FraPSOdft, and LcRPSOdft) performed as well as
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TABLE VIII
MEDIAN RESULTS RETURNED BY THE SIX AUTOMATICALLY GENERATED PSO-X ALGORITHMS AND TEN OTHER PSO VARIANTS IN f1–40 WITH

d = 100 AND f41–50 WITH d = 50

TABLE IX
AVERAGE RANKING (AV.RANKING) AND AVERAGE MEDIAN ERROR (AV.MEDERR) OBTAINED BY THE SIX AUTOMATICALLY GENERATED PSO-X

ALGORITHMS AND TEN OTHER PSO ALGORITHMS IN f1–12 (UNIMODAL), f13–26 (MULTIMODAL), f27–50 (HYBRID), AND fRotated

the ones that were configured with irace in terms of median
solution quality. It is particularly interesting the case of StaPSO
and FinPSO, whose performance improved dramatically after
the configuration process. However, it is extremely common
to see these two variants implemented with default parameters
in many papers proposing and comparing new algorithms.

C. Are PSO-X Implementations Convergent?

Local convergence is one of the most salient characteristics
of high-performing PSO implementations. It prevents unwanted

roaming (which often results in particles leaving the search
space) and allows particles to improve the initial solutions for
any number of dimensions. Creating convergent implementation
using PSO-X is possible because 1) the value of the three
main parameters of PSO (ω1, ϕ1, and ϕ2) is limited within
the theoretical region where local convergence is expected
to occur6 and 2) PSO-X is implemented both a number of

6In Section 4 of the supplementary material [4], we report the value of
these parameters for the six PSO-X algorithms and the ten PSO variants
and the conditions for order-1 stability.
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algorithm components that have been shown to result in particles
local convergence (e.g., DNPP-spherical, Pertinfo-Gaussian,
Pertinfo-Lévy, etc.) and strategies that limit the magnitude of
the velocity vector (velocity clamping).

As it can be observed in Tables IV and V, the six PSO-
X algorithm that PSO-X automatically created use the two
main algorithm components proposed for the LcRPSO (i.e.,
DNPP-rectangular and Pertinfo-Gaussian).7 In [20], it was
formally and experimentally demonstrated that LcRPSO is
locally convergent because the Pertinfo-Gaussian component
satisfies the local convergence condition, which ensures that the
mapping between the input vector �r and the perturbed vector
N (�r, σt) is located in any definable region of the search space
(see [20, Appendix 1] for the formal definition of this condition).
Although our PSO-X algorithms are six different specializations
of LcRPSO, by using a number of algorithm components that
were found to be good design choices during the configuration
process, they exhibit better performance than any of the variants
considered in this study. We believe this shows the power
of combining automatic configuration and component-based
framework to create high-performing algorithms.

VII. CONCLUSION

In this article, we have proposed PSO-X, a flexible, auto-
matically configurable framework that combines algorithm
components and automatic configuration tools to create high-
performing PSO implementations. Six PSO algorithms were
automatically created from the PSO-X framework and com-
pared with ten well-known PSO variants published in the
literature. The results obtained after solving a set of 50
benchmark functions with different characteristics and com-
plexity showed that the automatically created PSO-X algorithms
exhibited higher performance than their manually created
counterparts.

In PSO-X, we have incorporated many relevant ideas
proposed in the literature for the PSO algorithm, including
different topologies, models of influence, and ways of han-
dling the population; several strategies to set the value of the
algorithm parameters; a number of ways to construct and apply
random matrices; and various kinds of distributions of parti-
cles positions in the search space. With PSO-X, we seek to
provide a tool that can simplify the application of PSO to
tackle continuous optimization problems, and also to bring
clarity on the main design choices available when implement-
ing it. There is, however, one clear limitation in our work:
since PSO is an intensively studied algorithm with hundreds of
variants, including in PSO-X the totality of the ideas proposed
for this algorithm is challenging. Hence, a continuous effort
must be done to keep adding new algorithms to PSO-X so that
implementations remain competitive with the state of the art.

As future work, we are planning to explore two directions.
The first one is to create a version of PSO-X from which hybrid
PSO algorithms can be created; we are particularly interested in
including components from exact methods (e.g., Nelder–Mead
Simplex method [47]) and from evolutionary computation (e.g.,
evolutionary random grouping [36]), which have been shown

7Note that, in addition to Pertinfo-Gaussian, it is possible to use the
Pertinfo-Lévy component, since the Lévy distribution is a generalization of
the Gaussian.

to be highly competitive and even the state of the art for
many problems. The second direction consists of extending
PSO-X with components from recent stochastic optimization
algorithms, in particular those that are controversial (see [48],
and the references in this article), in order to see if we can
highlight similarities between those algorithms and what have
been proposed in the context of PSO.
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