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Abstract. In this paper, we carry out a review of the grey wolf, the
firefly and the bat algorithms. We identify the concepts involved in these
three metaphor-based algorithms and compare them to those proposed in
the context of particle swarm optimization. We provide compelling evi-
dence that the grey wolf, the firefly, and the bat algorithms are not novel,
but a reiteration of ideas introduced first for particle swarm optimization
and reintroduced years later using new natural metaphors. These three
algorithms can therefore be added to the growing list of metaphor-based
algorithms—to which already belong algorithms such as harmony search
and intelligent water drops—that are nothing else than repetitions of old
ideas hidden by the usage of new terminology.

1 Introduction

Algorithms inspired by natural or artificial metaphors have become a common
place in the stochastic optimization literature [4]. Despite being invariably pre-
sented as novel methods, many of these algorithms do not seem to be proposing
novel ideas; rather, they reintroduce well-known concepts already proposed in
previously published algorithms [23]. That is, the same ideas developed in the
context of local search (LS) heuristics, evolutionary algorithms (EAs), and ant
colony optimization (ACO), to mention a few, appear in these “novel” algo-
rithms, although presented using new terminology. In addition to this, it is often
the case that rather than clearly expressing new ideas in plain algorithmic terms
and highlighting differences with what has already been proposed in the litera-
ture, authors of these algorithms focus on aspects such as the novelty and beauty
of the new inspiring source.

Several are the undesirable consequences of this practice. Perhaps the most
detrimental one is that it has generated a lot of confusion in the literature, since
using different terminologies for referring to concepts already defined makes
it difficult to compare algorithms—both conceptually and experimentally—
hindering our understanding. Additionally, presenting ideas using unconven-
tional terminology instead of the normal one used in optimization, adds an
unnecessary extra effort to distinguish between what is novel and what is not.
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A number of studies [2,3,12,17,24,26,27] have shown that the use of
metaphors has served the sole purpose of hiding the similarities among different
methods, thus allowing copies of well-known approaches to be misrepresented
as new. One of the first examples of this was provided in 2010 by Weyland
[26,27] in a rigorous analysis of the harmony search (HS) algorithm. In this
analysis, Weyland found that this seemingly new method was the same as a
particular evolutionary algorithm, called “evolution strategy (μ+1)” [20], which
was proposed about 30 years before the HS algorithm. Similarly, other studies
in the same direction have shown that the black holes optimization algorithm is
a simplification of particle swarm optimization (PSO) [17], and, more recently,
that the intelligent water drops algorithm is a special case of ACO [2,3]. Even
though it has been shown that a number of these algorithms are a reiteration of
well-known ideas and it has been suggested that the whole trend is unhealthy
and damaging for the entire research field [23,24], new algorithms and new vari-
ants of metaphor-based algorithms continue to be published with alarming high
frequency.

In this paper, we review the concepts utilized in three highly-cited algorithms
proposed for continuous optimization problems: the grey wolf, the firefly and the
bat algorithms. We provide evidence that (i) using new metaphors, (ii) changing
the terminology, and (iii) presenting the algorithm in a confusing way allowed to
overlook the fact that they were all PSO variants.

The rest of the paper is organized as follows. In Sect. 2, we briefly review
the basic concepts of PSO and some of its most popular variants. In Sect. 3, we
describe the three metaphor-based algorithms that we analyze using standard
PSO terminology. In this way, it becomes immediately apparent the fact that
these algorithms are indeed PSO variants. In Sect. 4, we conclude the paper
by highlighting some aspects that make the analysis of these ‘novel’ metaphor-
inspired algorithms a challenging endeavor.

2 Particle Swarm Optimization

Particle swarm optimization is arguably the most popular swarm intelligence
algorithm to tackle continuous optimization problems. It was introduced by
Kennedy and Eberhart [7,9] in 1995, and is inspired by the observation of social
dynamics in bird flocks. The optimization capabilities of PSO come from the
repeated application of a set of rules that allow particles, which represent prob-
lem solutions, in the swarm to identify and move in promising directions in the
search space that they estimate from locations that they previously visited and
that correspond to good solutions [11]. Particles employ simple memory struc-
tures to keep track of important information collected during the search process,
such as their own position and velocity and the position of the best among
neighboring particles.

In the standard PSO (SPSO) [21,22] algorithm, each particle i knows at every
iteration t its current position x i

t , its velocity v i
t , its personal best position p i

t ,
and the position l i

t of its local best particle, where the local best particle is
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the particle j in the neighborhood of particle i that has the best personal best
position p j

t . Many different types of neighborhood are possible among which
star, ring, and lattices are typical options; when the neighborhood consists of all
the particles in the swarm, then the local best particle is called global best and
its position, which is the same for all particles i, is indicated by gt.

The rules to update a particle’s position and velocity in SPSO are:

x i
t+1 = x i

t + v i
t+1 (1)

v i
t+1 = ωv i

t + ϕ1a
i
t � (p i

t − x i
t ) + ϕ2b

i
t � (l i

t − x i
t ) (2)

where ω is the inertia weight that controls the effect of the velocity at time t,
ϕ1 and ϕ2 are the acceleration coefficients that weigh the relative influence of
the personal best and local best position, ai

t and bi
t are two random vectors

used to provide diversity to particle’s movement, and � indicates the Hadamard
(pointwise) product between two vectors.

Over the years, many variants of PSO have been proposed to improve the
optimization capabilities of the algorithm. One of them is SPSO-2011 [5,30],
that was developed with the goal of preventing the issue of rotation variance
that affects SPSO. In this variant, the velocity update rule—Eq. 2 above—was
modified as follows:

v i
t+1 = ωv i

t + x′ i
t − x i

t (3)

where x′ i
t is a randomly generated point in the hypersphere Hi(c i

t , |c i
t − x i

t |)
with center c i

t and radius |c i
t − x i

t |, and | · | is the Euclidean norm (L2).
The center c i

t is computed as

c i
t = (L i

t + P i
t + x i

t )/3 (4)

where

P i
t = x i

t + ϕ1a
i
t � (p i

t − x i
t )

L i
t = x i

t + ϕ2b
i
t � (l i

t − x i
t )

(5)

The two key concepts proposed in SPSO-2011 consist of (i) the definition of
the new point c i

t in the search space defined as a function of the position of three
particles in the swarm: x i

t , p i
t and l i

t (Eq. 4), and (ii) the use of c i
t to generate

a point x′ i
t that is then used to update the particles’ velocities; the point x′ i

t is
randomly selected from a hyper-spherical distribution with center c i

t and radius
|c i

t − x i
t |, which is invariant to rotation (Eq. 3).

Another interesting variant is the fully informed PSO (FiPSO) [13], in which
the authors propose to use the whole swarm to influence particles’ new velocities:

v i
t+1 = χ

(
v i

t +
∑

k∈T i
t

ϕai
kt � (

p k
t − x i

t

))
(6)

where χ = 0.7298 is a constant value called constriction coefficient and defined
in [6], T i

t is the set of particles in the neighborhood of i, and ϕ is a parameter.
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The main innovation in this variant is a generalization of some of the algorithmic
ideas used in PSO. In particular, while in most previous PSO variants only one
particle (the local best) contributed to update the particles’ velocities, here the
number of particles that influence the velocity update becomes a design choice
typically referred as model of influence.

One last example of a PSO variant relevant for our analysis in the next section
is the “bare-bones” PSO [8]. This variant belongs to a class of PSO algorithms
typically referred to as velocity-free variants in which the rule to update the
position of particles does not include a velocity vector:

x i
t+1 = N

(
p i

t + l i
t

2
, |p i

t − l i
t |

)
(7)

Although in this variant the particles’ new position is obtained by sampling
values from a normal distribution whose center (p i

t +l i
t )/2 and dispersion |p i

t −l i
t |

are computed as a function of p i
t and l i

t , many other ways have been proposed
to compute x i

t+1 in velocity-free PSOs. For example, in [15,16], it was proposed
a way of instantiating various velocity-free variants from a generalized position
update rule given by

x i
t+1 = x i

t + ε(y − x i
t ) (8)

where ε is an acceleration coefficient and y is a vector which is obtained com-
bining information from other particles, for example:

y =
u1p

1
t + u2p

2
t

u1 + u2

(9)

where u1 and u2 are random values drawn from U [0, 1], and p1
t and p2

t are the
personal best positions of two neighbor particles of i chosen according to some
criterion. Velocity-free PSO variants are relatively less common in the literature
of PSO, and they vary in all kind of aspects, including the way in which the
current position of a particle is taken into account in the computation of x i

t+1.

3 The Grey Wolf, Firefly, and Bat Algorithms—Explained

The three algorithms that we analyze in this paper—grey wolf, firefly, and bat
algorithms—are taken from the evolutionary computation bestiary [4]. We chose
them not only because they were amenable to the analysis that we present in
this paper, but also because they were highly cited1, which gives a reasonable
indication of the impact these algorithms have had on the research community.

In the reminder of this section, we present a detailed description of the grey
wolf, firefly and bat algorithms using terminology and concepts belonging to
PSO. The idea is to recreate together with the reader these three algorithms
from concepts that he/she is already familiar with, and to give the details of the

1 Grey Wolf Optimizer [14]: 3656 citations; Firefly Algorithm [28]: 3018 citations; and
Bat Algorithm [29]: 3549 citations. Source: Google Scholar. Retrieved: July 10, 2020.
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metaphor employed by the authors only after the algorithm has been described
in plain algorithmic terms. By doing so, it will be easier to understand if the
metaphor was necessary (or useful) to understand the proposed algorithm and if
the introduced concepts were indeed new or just hidden by the unconventional
terminology used.

3.1 Grey Wolf Optimizer (GWO)

GWO as a PSO Algorithm. The grey wolf optimizer (GWO) [14] is an
algorithm in which, in PSO terms, the three best particles in the swarm are used
to bias the movement of the remaining swarm particles. This idea is implemented
in GWO by defining three vectors sk

t as follows:

s1
t = g1

t − (2ϕt − 1)r1
t

∣∣2 q1
t � g1

t − x i
t

∣∣
s2

t = g2
t − (2ϕt − 1)r2

t

∣∣2 q2
t � g2

t − x i
t

∣∣
s3

t = g3
t − (2ϕt − 1)r3

t

∣∣2 q3
t � g3

t − x i
t

∣∣
(10)

where g1
t , g2

t and g3
t indicate the position of the three best particles in the

swarm at iteration t, rk
t , qk

t (k = 1, 2, 3) are random vectors with values drawn
from U [0, 1] that will induce perturbation to the components of sk

t , and ϕt is a
decreasing acceleration coefficient that goes from 2 to 0.

The position update rule combining the information of the three best particles
sk

t is defined as follows:

x i
t+1 = (s1

t + s2
t + s3

t )/3 (11)

How Does GWO Compare to PSO? The values sk
t in Eq. 10 are defined in

a very similar way to P i
t and Li

t of Eq. 5. The main difference is that instead of
defining the vectors in terms of x i

t (as in SPSO-2011), in GWO they are defined
in terms of the three values gk

t (see Eq. 10). The kind of perturbation induced
by qk

t in Eq. 10 is equivalent to the one induced by vectors ai
t or bi

t in PSO (see
Eq. 2); however, the one induced by rk

t is different because the entries of rk
t are

multiplied by (2ϕt −1) producing both positive and negative values. Computing
the Euclidean norm of (2 qk

t � gk
t − x i

t ) to generate new random points in a
radius |2 qk

t � gk
t − x i

t | is the same idea as proposed in SPSO-2011 to generate
a random point around the hypersphere center ci

t (see Eq. 3). To compute a ϕt

that linearly decreases from 2 to 0, GWO uses the same mechanism proposed in
the “self-organizing hierarchical PSO with time-varying acceleration coefficients”
[19] for computing ϕ1, with the only difference that the lower bound in GWO is
set to 0 instead of 0.5 as done in [19].

The position update rule introduced in Eq. 11 is an extension of the recom-
bination rule in velocity-free PSOs (Eqs. 8 and 9) which uses the three best
particles in the swarm. Similarly to how it was done in bare-bones PSO (Eq. 7),
where the authors employed the recombination operator shown in Eq. 9 assum-
ing u1 = u2 for computing the center of the normal distribution, the authors of
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GWO employed the same recombination operator (also assuming u1 = u2 = u3)
for computing the particles’ position.

The Metaphor of Grey Wolves Hunting. The authors of GWO say in
their original paper published in 2014 [14] that they were inspired by the way
in which grey wolves organize their hunting following a strict social hierarchy in
which they divide—from top to bottom—their pack: α, β, δ and ω wolves. The
authors of GWO mention that there are three phases during hunting, each one
composed of a number of steps: (i) tracking, chasing, and approaching the prey;
(ii) pursuing, encircling, and harassing the prey until it stops moving; and (iii)
attacking towards the prey. However, GWO does not consider 5 of the 7 steps
mentioned, and seems to take inspiration only from two steps respectively in
phase (i) and (iii): encircling and attacking.

In GWO, a solution to the problem being tackled is called a “wolf”, the
optimum of the problem is referred to as the “prey” that the wolves are hunting,
and the three best solutions and the remaining particles are named as αt, βt, δt

and ωt respectively, in analogy to the levels in the wolves social hierarchy. The
GWO algorithm then consists in the “wolves encircling and attacking the prey”.

To model encircling the authors used Eq. 11 while attacking the prey was
modeled by linearly decreasing the value of ϕ from 2 to 0 in Eq. 10. In fact, in
the imaginary of the metaphor, when ϕt is lower than 1, wolves can concentrate
around the prey (therefore attacking it); and when it is greater than 1, they
search for other preys.2 The authors mentioned that the use of qk

t , as done
in Eq. 10, emphasizes the search behavior of wolves in a similar way in which
ϕt > 1 does it, although, in their view, qk

t represents “the effect of obstacles
when wolves approach a prey in nature.”

Unfortunately, as it should be clear to the reader by now, the wolf hunting
metaphor is neither necessary nor useful to the definition and understanding
of the way GWO works. In fact, it is not at all clear what is the optimization
process in the wolf hunting that is translated in effective choices in the design
of the optimization algorithm. While there is not a PSO variant that exactly
matches GWO, as we have shown above, all the concepts introduced in GWO
are related to existing concepts already proposed in the PSO literature and
the only contribution given by the use of novel terms such as “wolf”, “prey”,
“attacking”, and so on is to create confusion and to hinder understanding.

3.2 Firefly Algorithm (FA)

FA as a PSO Algorithm. The firefly algorithm (FA) [28] is, in PSO termi-
nology, an algorithm in which the swarm of particles is fully-connected and the
particles movement is influenced only by those other particles in the swarm that
have a higher quality. This means that the movement of the best particle is
2 Although search is not an activity in the hunting phases of wolves, the authors

explain it as “the divergence among wolves during hunting in order to find a fitter
prey” [14, p. 50].
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not influenced by any other particle. In FA, at each iteration particles are sorted
according to their quality; the particle position update is then applied iteratively
starting with worst quality particle and ending with the best quality particle.
When particle i updates its position, it has to determine the set W i

t ⊆ T i
t (where

T i
t is the set of particles in the neighborhood of i) that contains the |W i

t | parti-
cles with quality higher than its own. Updating a particle’s position for the next
iteration t + 1 requires |W i

t | movements of the particle (one for each particle in
W i

t ), where the position of the particle obtained in movement s − 1 (indicated
by m i

t,s−1) is the starting position for the next one (m i
t,s). The initial position

of the particle is set to m i
t,s=0 = x i

t , ∀ i ∀ t.
The position update rule of FA is given by the following two equations:

x i
t+1 = m i

t,s=|W i
t | (12)

m i
t,s = m i

t,s−1 + ϕ
w i

t,s,m i
t,s−1

t

(
wi

t,s − m i
t,s−1

)
+ ξri

t,s (13)

where wi
t,s is an element of the ordered set W i

t , ϕ
w i

t,s,m i
t,s−1

t is an acceleration
coefficient3 whose value depends on the Euclidean distance between the two
intermediate points wi

t,s and m i
t,s−1, and ri

t,s is a vector whose components are
random numbers drawn from the uniform distribution U [0, 1] multiplied by a
real scalar ξ.

The acceleration coefficient ϕw ,m is computed as follows:

ϕw ,m = α · e−γ|w−m |2 (14)

where |w − m| is the Euclidean distance between the position of two particles
w and m, γ is a parameter that allows to control the weight given to |w − m|2,
and α a parameter that controls the weight of the exponential function. Because
of the way ϕw ,m is computed, solutions have larger displacements when they
are located close to each other and smaller ones when they are far away.

How Does FA Compare to PSO? To better understand how FA is a combi-
nation of known PSO concepts, we consider the case in which |W i

t | = 1. In this
case, particle i updates its position performing only one movement. This allows
us to rewrite Eqs. 12 and 13 as follows:

x i
t+1 = x i

t + ϕ
i,w i

t
t

(
wi

t − x i
t

)
+ ξri

t (15)

Equation 15 can be obtained from Eq. 8 by setting ε = 1, y = wi
t and by

adding ξri
t at the end of the equation. While setting the value of ε and adding

ξri
t are typical design choices for velocity-free PSO variants, using the current

position wi
t of a neighbor instead of the neighbor’s personal best position is not

a common design choice for an implementation using Eqs. 8 and 9. In practice,
3 Note that in the following we will use the shorter notation ϕw ,m

t when the meaning
is clear from the context.
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using the neighbor’s current position may increase the diversity of the solutions
in the algorithm since a particle’s position changes more often than its personal
best position, which is updated only when a new better quality position is found.
The last term ξri

t in Eq. 15—a random perturbation—is used to increase the
exploration of the algorithm and also allows the global best solution to move
from its initial position in the search space.

The Metaphor of Fireflies Flashing. The author of the FA algorithm, first
published in 2009 [28], says he was inspired by the flashing behavior of fireflies.
Because of the metaphor used, he introduced the following terms: “fireflies”
to indicate solutions of the considered problem, and “brightness” to indicate
a function that computes the value of the acceleration coefficient ϕw ,m . The
acceleration coefficient ϕw ,m weighs the distance between two solutions accord-
ing to their positions in the search space—in the context of the fireflies flashing
metaphor, this is meant to model the fact that fireflies are attracted to other
“brighter” fireflies.

Most of the metaphor of fireflies flashing is explained in terms of the different
behaviors that can be obtained varying the value of parameter γ, for which the
author considered two limit cases: γ → 0 and γ → ∞. When γ → 0, the value
of ϕw ,m → 1 and the attraction among fireflies becomes constant regardless of
their distance in the search space. In the metaphor of fireflies flashing, this is the
case when “the light intensity does not decay in an idealized sky” and “fireflies
can be seen anywhere in the domain” [28, p. 174].

For the other limiting case, when γ → ∞, the value of ϕw ,m → 0 (making the
attractiveness among fireflies negligible) and new solutions can only be created
by means of the random vector ξri

t,s (see Eq. 13). According to the metaphor,
this is the case when fireflies are either “short-sighted because they are randomly
moving in a very foggy region”, or (for reasons not explained in the paper) “they
feel almost zero attraction to other fireflies.”

As can be seen from the explanations given for the use of the metaphor,
its usefulness in describing and understanding the proposed algorithm is very
doubtful. The only contribution of the metaphor of fireflies flashing seems to
be the idea of using an exponential function based on the distance between
two particle to compute the value of ϕ. However, this ideas was also explored
before in the context of PSO in a variant called extrapolation PSO (ePSO) [1],
published around 2 years before FA, in late 2007.

In ePSO, a particle i experiences a stronger attraction toward gt when
f(gt) � f(x i

t ), where f(·) is the objective function of a minimization prob-
lem, and a weak attraction when f(gt) � f(x i

t ). Note that, although it is the
same idea, it is applied with opposite goals in the two algorithms, that is, in
ePSO particles are more attracted towards particles that are far away while in
FA they are attracted more to particles that are closer. Also, the distance is
defined differently, since ePSO uses the distance with regard to the function
evaluation and FA uses the Euclidean distance.
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3.3 Bat Algorithm (BA)

BA as a Hybrid PSO and Simulated Annealing Algorithm. The bat
algorithm (BA) [29] is an algorithm in which (i) particles in the swarm move
by identifying good search directions exploiting the location of the global best
particle, and (ii) there is the occasional introduction of new random solutions
around the global best solution that are accepted using a simulated annealing
like criterion. Using PSO terminology, the BA algorithm can be explained as
follows.

Each particle employs two parameters: the probability ρi
t—increasing over

time—of randomly generating a solution around gt, and the probability ζi
t—

decreasing over time—to accept the new solution generated. At each iteration
t and with probability ρi

t, a particle generates a random point around gt and
keeps it in a variable zi

t, which will be accepted as the new position of the
particle if two conditions are verified: (i) the quality of zi

t must be higher than
that of gt, that is, f(zi

t) < f(gt), where f(·) is the objective function;4 (ii) zi
t

is accepted with probability ζi
t . Therefore, for zi

t to be accepted the following
variable Accept must be true: Accept = ((f(zi

t) < f(gt)) ∧ (U [0, 1] < ζi
t)).

If the random particle around gt is not generated (this happens with proba-
bility (1 − ρi

t)) or when Accept is false5 (i.e., zi
t was rejected), particles update

their position by adding a velocity vector to their current position.
The process described above is mathematically modeled as follows:

xi
t+1 =

{
gt + ζ̂t ri

t, if Generate ∧ Accept

xi
t + vi

t+1 if (Generate ∧ (¬Accept)) ∨ (¬Generate) (16)

where ζ̂t is the average of the parameters ζi
t of all the particles in the swarm,

ri
t is a vector with values randomly distributed in U [−1, 1], and Generate is a

logical variable which is true when the algorithm decides, with probability ρi
t, to

create a random solution around gt.
The equations to update the probabilities ρi

t and ζi
t are:

ρi
t+1 = ρt=0(1 − e−β1t′

)

ζi
t+1 =

{
β2 ζi

t if Generate ∧ Accept

ζi
t otherwise

(17)

where β1 > 0 and 0 < β2 < 1 are parameters, t′ is an iteration counter that is
updated every time Generate ∧ Accept = TRUE in Eq. 16, and ρt=0 is the initial
value of parameter ρ. As it is clear from Eq. 17, the value of ρi

t tends to ρt=0

and the value of ζi
t tends to 0. Also, note that since the value ζi

t decreases with

4 In this paper, we consider minimization problems; the obvious adaptation should be
made in case of maximization problems.

5 Due to the constraint that both conditions have to be met, it may be the case that
zi
t is rejected even when its quality is higher than that of gt.
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the number of iterations, so does ζ̂t; this means that for increasing t values the
solutions generated in the first case of Eq. 16 will be closer and closer to gt.

As mentioned above and indicated in Eq. 16, when (Generate ∧ (¬Accept)) ∨
(¬Generate) the particles update their positions by adding a velocity vector to
their current position, which is defined as follows:

vi
t+1 = vi

t + di
t � (gt − xi

t) (18)

where, except for di
t, the components of Eq. 18 are the same as those of SPSO

(see Eq. 2). The vector di
t is computed as follows:

di
t = ϕ1 + ai

t(ϕ2 − ϕ1) (19)

where ϕ1 and ϕ2 are parameters and ai
t is the same random vector as in Eq. 2.

How Does BA Compare to PSO and Simulated Annealing?6 The veloc-
ity update rule of BA—Eq. 18—is a special case of SPSO—Eq. 2. It can be easily
seen that, if we set ω = 1 and ϕ1 = 0 in the velocity update rule of SPSO, it
simplifies to the BA velocity update rule in Eq. 18. The only difference is that, in
BA, the magnitude of the random vector ai

t depends on the value of parameters
ϕ1 and ϕ2.

The parameter ζi
t is very similar to the temperature acceptance criterion T

first introduced in simulated annealing (SA) [10]. Two minor differences are that
(i) in BA, the value of ζi

t is updated only when a solution is accepted, while in
SA the value of T is typically updated at the end of each iteration; and (ii)
that BA only accepts solutions with better quality than that of the global best
solution, while SA can accept both improving and worsening solutions.

The Metaphor of Bats Echolocation. BA introduces a rather technical
terminology, in which “bats” are the solutions to the considered problem, the
range of “frequencies” in which bats emit their sound are ϕ1 and ϕ2 (defined in
Eq. 19), the “loudness” of bats’ sound is the acceptance criterion (ζi

t), and the
“pulse emission rate” of their sound is the probability ρi

t of starting the process
in which new solutions are generated around gt.

The author of BA says he was inspired by the echolocation that some bat
species use to find their way in the dark by producing sound waves that echo
when they are reflected off an object. In order to develop the bat algorithm, the
author strongly simplified several aspects of this process. In the words of the
author, it was assumed that: (i) “bats are able to differentiate in some magical
way between food/prey and background barriers”; (ii) “bats can automatically
adjust the frequency and rate in which they are emitting sound”; and (iii) “the
loudness of their sound can only decrease from a large value to almost 0.”

6 Note that, although in this paper we compared BA with PSO and SA, BA could
also be interpreted as a variant of differential evolution (DE) [25]. This is because
the probability ρi

t and the Accept criterion in BA are used in the same way as the
mutation probability and the acceptance between donor and trial vectors in DE [18].
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The author imagined that bats have two different flying modes, which cor-
respond to the two cases in Eq. 16. In the first flying mode, bats fly randomly
adjusting their “pulse emission rate” ρi

t and “loudness” ζi
t . According to the

metaphor, bats decrease the pulse emission rate and produce louder sounds when
they are randomly searching for a prey; and vice-versa when they have found
one. Bats adjusting their pulse emission rate and loudness was modeled using
Eq. 17. In the second flying mode, modeled by Eqs. 18 and 19, bats control their
step size and range of movement by adjusting their sound frequency (vector di

t

in Eq. 19) and by moving towards the best bat in the swarm.
As it should be clear to the reader at this point, the metaphor of bats echolo-

cation seems to be an odd and confusing way of explaining the algorithm. This
is because there are so many simplifications and unrealistic assumptions in the
way in which the metaphor was translated into algorithmic terms that metaphor
and algorithm seem to be two completely different things. In fact, except for gen-
eralities, the metaphor described by the author in his article does not provide a
convincing basis for the choices made in the design of the resulting algorithm.

4 Conclusions

In this article, we have rewritten three highly-cited, metaphor-based algorithms
in terms of PSO. We have shown that, perhaps contrary to the goal of the
authors, the metaphors of grey wolves hunting, fireflies flashing, and bats echolo-
cation do not facilitate understanding the corresponding GWO, FA and BA
algorithms; rather, they create confusion because they hide their strong similar-
ities with existing PSO algorithms. Even though with the help of imagination
it is possible to vaguely understand how some of the ideas coming from the
metaphor were used to match the corresponding algorithms, it is hard to see
how such metaphors are useful at all.

After reviewing the GWO, FA and BA algorithms, we found that none of
them propose truly novel ideas. In fact, they can all be seen as variants of existing
PSO algorithms. Therefore, we conclude that these three algorithms are unnec-
essary since they do not add anything new to the tools that can be used to
tackle optimization problems. In future work, we intend to experimentally com-
pare GWO, FA and BA with other PSO variants and to analyze the impact that
the specific design choices used in these algorithms have on their performance.

The problem of well-known concepts being reintroduced using new termi-
nology has been spreading in the literature for over 15 years and is currently
one of the main criticisms of metaphor-based algorithms. Rigorous analyses
[3,12,17,24,26] have shown that a number of these algorithms are equivalent,
or differ minimally, from well-known methods. Yet, instead of being proposed
as variants of existing algorithms, they are often introduced as completely novel
approaches—just as it was the case for the three algorithms studied in this paper.
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