
Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 1

REVIEW ARTICLE

Designing New Metaheuristics: Manual Versus
Automatic Approaches
Christian L. Camacho-Villalón*, Thomas Stützle, and Marco Dorigo

Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA),

Université Libre de Bruxelles, 1050 Bruxelles, Belgium.

*Address correspondence to: ccamacho@ulb.ac.be

A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods
applicable to a wide set of optimization problems for which exact/analytical approaches are either limited
or impractical. In other words, a metaheuristic can be considered a general algorithmic framework that can
be easily adapted to different optimization problems. In this article, we discuss the two main approaches
used to create new metaheuristics: manual design, which is based on the designer’s “intuition” and
often involves looking for inspiration in other fields of knowledge, and automatic design, which seeks to
reduce human involvement in the design process by harnessing recent advances in automatic algorithm
configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-
based metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years,
this trend has been strongly criticized due to the uselessness of new metaphors in devising truly novel
algorithms and the confusion such metaheuristics have created in the literature. We then present
automatic design as a powerful alternative to manual design that has the potential to render the “novel”
metaphor-based metaheuristics trend obsolete. Finally, we examine several fundamental aspects of the
field of metaheuristics and offer suggestions for improving them.

Introduction

Optimization is a vast research field with hundreds of years of
history. It deals with a wide variety of optimization problems
and solution methods. Although the early days of optimization
were characterized by the development of algorithms that could
find optimal solutions, it eventually became clear that many
optimization problems cannot be efficiently solved to optimality.
Well-known examples of such problems are multimodal non-
differentiable functions in the continuous optimization domain
[1,2] and NP-hard problems in the discrete optimization domain
[3–5]. With the advent of increasingly powerful computers, heu-
ristic algorithms have rapidly become the mainstream approach
to difficult optimization problems, replacing the use of exact
algorithms in many cases. In other words, the focus of research
has shifted from the design and development of algorithms that
find the best solution to the design and development of algo-
rithms that can rapidly provide solutions that are good, although
not provably optimal. Since the seminal work of Glover [6], the
most commonly used term to refer to this type of algorithm has
been metaheuristic.

There have been many attempts to provide a definition of the
term “metaheuristic” that is both precise and encompasses all
the diverse metaheuristics that have been proposed in the litera-
ture. The definition provided by the Metaheuristics Network
[7], which is the one we adopt in this article, is as follows:

“A metaheuristic is a set of algorithmic concepts that can be
used to define heuristic methods applicable to a wide set of
different problems. In other words, a metaheuristic can be seen

as a general algorithmic framework which can be applied to
different optimization problems with relatively few modifica-
tions to make it adapted to a specific problem.”

Some of the most popular and best-performing metaheuristics
include evolutionary computation [8–12], tabu search [13,14],
simulated annealing [15,16], ant colony optimization [17–19],
particle swarm optimization [20–22], and iterated local search
[23,24].

Seeking to improve the efficiency of metaheuristic implemen-
tations, researchers have redefined the components of various
metaheuristics and explored new ways of implementing them.
However, the resulting high number of possible components to
use increases considerably the complexity of the design process.
Thus, it became less efficient to implement metaheuristics manu-
ally, that is, by handcrafting the components one by one.

To address this problem, and motivated by the early success
of metaheuristics inspired by natural processes (e.g., evolution-
ary computation, simulated annealing, ant colony optimiza-
tion, and particle swarm optimization), some members of the
metaheuristics community have been proposing “novel” meta-
heuristics based on a disparate set of metaphors. However, not
only this approach is just another instance of the inefficient
manual design approach, but it has also caused a number of
undesirable consequences for the entire field. The main nega-
tive consequence is that, most of the time, the only novelty in
a proposed “novel” metaheuristic is the use of new and confus-
ing terminology. Analyses of these “novel” metaheuristics show
that they can often be exactly mapped to already published ones
by changing the terminology used to describe them [25–34].

Citation: Camacho-Villalón CL,
Stützle T, Dorigo M. Designing
New Metaheuristics: Manual
Versus Automatic Approaches.
Intell. Comput. 2023;2:Article
0048. https://doi.org/10.34133/
icomputing.0048

Submitted 22 May 2023
Accepted 5 July 2023
Published 4 December 2023

Copyright © 2023 Christian L.
Camacho-Villalón et al. Exclusive
licensee Zhejiang Lab. No claim to
original U.S. Government Works.
Distributed under a Creative
Commons Attribution License 4.0
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048
mailto:ccamacho@ulb.ac.be
https://doi.org/10.34133/icomputing.0048
https://doi.org/10.34133/icomputing.0048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Ficomputing.0048&domain=pdf&date_stamp=2023-12-04

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 2

Another approach has been to propose automatic algorithm
design methods in which human involvement is less important
[35] and that have no need of novel metaphors. The develop-
ment of these automatic methods and their application in
creating efficient metaheuristic implementations are currently
central topics in the field of metaheuristics. In this paper, we
examine the automatic design approach in detail and describe
how it is being used to create a new generation of high-
performance metaheuristic implementations. Following
this examination of the automatic design approach, we pro-
vide some reflections on fundamental aspects of the field of
metaheuristics that we believe will help advance the field.

The remainder of this paper is organized as follows. The
“Metaheuristics” section provides a general introduction to meta-
heuristics by explaining their main characteristics and classifica-
tions. The “Manual Design of Metaheuristics” section elaborates
on the disadvantages of the manual algorithm design approach
and discusses the trend of “novel” metaphor-based algorithms
and its negative impact on the field. The “Automatic Design of
Metaheuristics” section describes the automatic algorithm design
paradigm and its use in developing high-performance meta-
heuristic implementations from automatically configurable frame-
works. The “Discussion” section presents our perspective on
improving three foundational aspects of the field: the focus of
the research, the way metaheuristic implementations are bench-
marked, and the creation of new metaheuristics. Finally, the
“Conclusions” section provides a summary of the topics discussed
in the paper.

Metaheuristics

Broadly speaking, metaheuristics are optimization techniques
that extract information from the search space and use it to
direct the search toward areas where high-quality solutions can
be found. Most metaheuristics have the following characteristics:
They are iterative—that is, solutions are constructed/perturbed
based on starting points or complete initial solutions by an opti-
mization process that consists of a number of steps that repeat
for multiple iterations; they use randomization—that is, they
make use of random variables in one or more of their compo-
nents; and they have a user-defined termination criterion—e.g.,
reaching a maximum computation time or obtaining a solution
of minimum desired quality.

Metaheuristics can be classified in different ways. For exam-
ple, they can be constructive or perturbative, depending on the
manner in which they create new candidate solutions. They can
be memory-based or without memory, depending on whether
they memorize solutions (or solution components). They can
also be metaphor-based or non-metaphor-based, depending
on whether they are inspired by a metaphor. However, one
of the most common ways to distinguish them is by the number
of solutions handled in each iteration, that is, by distinguish-
ing between those that are single-solution and those that are
population-based.

In single-solution metaheuristics, the optimization process
is based on a single solution that is iteratively improved by
means of small changes. Examples of this type of metaheuristic
include tabu search [13], simulated annealing [16,36], and iter-
ated local search [23]. By contrast, population-based metaheuris-
tics maintain multiple solutions in parallel and combine them
to create new solutions. Most swarm intelligence [22,37–39] and
evolutionary algorithms [8–12,40] belong to this class.

Population-based and single-solution metaheuristics have
different, often complementary, optimization capabilities. For
example, while population-based metaheuristics are typically
better at exploring the search space and quickly identifying some
of the most promising regions, single-solution metaheuristics
tend to be more effective at improving existing solutions. Thus,
it is common to combine these two types of metaheuristics to
produce metaheuristic implementations that are better equipped
to perform robust optimization. Two methods of doing so are
component-based hybrids, in which a population-based meta-
heuristic includes a single-solution metaheuristic as an addi-
tional component in its procedure, and algorithm-sequential
hybrids, in which two metaheuristics are executed one after the
other, with the output of one metaheuristic becoming the input
of the next in the sequence [41,42].

Although most metaheuristics share the same high-level
characteristics (i.e., they are iterative, are randomized, and have
a user-defined termination criterion, as mentioned above), they
can differ in numerous aspects, including the specific mecha-
nisms used to sample the search space, the way they organize
the search process, and the mechanisms they use to control
the exploration–exploitation trade-off. In several cases, these
aspects are implemented in the metaheuristics by taking inspi-
ration from natural, social, or human-made processes. The
metaheuristics that have been created using the “inspiration-
based” approach are commonly referred to as metaphor-based
metaheuristics [43].

Indeed, the approach of looking for inspiration from other
fields of knowledge was important for designing some of the
best-performing metaheuristics. As early as the 1970s, the use
of naturally occurring optimization processes—such as evolu-
tion by natural selection, which inspired evolutionary com-
putation [8,9]—to formulate new optimization algorithms
became appealing to researchers in the areas of computer
science and engineering. However, it was in the 1980s and
early 1990s that the approach of looking for inspiration in
other fields of knowledge began to be vigorously explored in
the field of optimization and became a major driver of its
development. Notably, during these decades, thermodynamic
principles were used to develop simulated annealing [16,36],
the foraging behavior of some ant species was used to develop
ant colony optimization [44–46], and the dynamics and social
interactions of bird flocks were used to develop particle swarm
optimization [20–22].

Owing to their success, these metaphor-based metaheuristics
are among the most extensively studied and well-understood
techniques in the optimization literature. The reason for their
success is not their source of inspiration; rather, it is that they
introduced novel and useful algorithmic concepts that could be
conveniently used for optimization. However, some members
of the metaheuristics research community nevertheless continue
to propose “novel” metaphor-based metaheuristics whose only
novelty is in the chosen metaphor and terminology.

Manual Design of Metaheuristics

General issues with metaheuristic manual design
Historically, new metaheuristics, and metaheuristic implemen-
tations with improved performance, were created by manual
design—that is, algorithm designers manually devised or modi-
fied designs according to their knowledge (empirical, theoreti-
cal, or intuitive) and expertise [35,47].

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 3

Although manual design has been useful for implementing
high-performance metaheuristics, it is becoming less efficient.
Indeed, the design of a high-performance implementation of a
metaheuristic requires both choosing among large sets of pos-
sible metaheuristic components and fine-tuning the values of
their parameters, and it is unrealistic to expect developers who
rely on their own knowledge and expertise to perform these tasks
efficiently. Human algorithm designers are biased by their previ-
ous experience and limited in the number of designs they can
attempt; thus, the design process is time-consuming and error-
prone. In practice, the main disadvantage of manual design is
that it limits the flexibility with which new metaheuristic designs
can be explored and the generality of the developed metaheuris-
tics. In addition, the manual design process is directed by subjec-
tive choices, which may make it difficult for the design process
to be understood a posteriori.

This flexibility limitation is caused by the fact that metaheuris-
tics have been traditionally conceived as monolithic blocks;
that is, they have a predefined rigid structure. This rigid struc-
ture constrains the options for modifying the behavior of the
metaheuristic: The designer can either adjust the parameter
values of the metaheuristic or redefine its components [48].
However, the existence of high-performance hybrid metaheuris-
tic implementations [41,42,49,50] highlights the importance
of metaheuristic designs that go beyond the bounds of the
original monolithic block. However, creating hybrid designs
manually is difficult.

The generality limitation is caused by the fact that, in most
cases, the initial development of a metaheuristic is performed
with some application in mind; the performance of the devel-
oped metaheuristic therefore tends to be very good for the spe-
cific problem or problem class for which the metaheuristic was
developed, but less good for other problems or problem classes.
In general, the performance of a metaheuristic tends to drop
considerably when it is applied to a problem that has different
characteristics from those for which it was originally developed
or when the optimization scenario has specific constraints that
were not considered in the initial metaheuristic design, such as
being allowed to run only for a limited time or being unable to
use problem-related information (e.g., black-box scenarios or
ill-defined real-life problems) [51,52]. In such cases, a new imple-
mentation of the metaheuristic must be designed for the new
problem in order to obtain good results.

However, the process of manually adjusting a metaheuristic
so as to propose a new metaheuristic implementation is laborious
and has several potential pitfalls. First, as mentioned above, the
designer of the new metaheuristic implementation may start by
trying to enhance the behavior of the metaheuristic by using
different parameter values or by modifying one or more of the
metaheuristic components in the implementation that, according
to his/her knowledge and expertise, may hinder the performance
of the metaheuristic. If this process, which depends solely on the
ability of the human designer, does not produce the desired out-
come, the only option may be to design and implement a new
metaheuristic from scratch. The latter task, however, is even more
challenging than the former because the algorithm designer must
now create a better design, once again guided only by his/her
knowledge and previous experience.

Finally, manual design makes the design of a metaheuristic
a subjective process in which the rationale behind some design
decisions remains hidden in the mind of the human designer,
and what is learned by the designer is therefore not shared with

the rest of the research community. In practice, manual design
involves finding a good algorithm design in a large set of options
through trial and error. To reduce the number of options, algo-
rithm designers eliminate designs that, based on their knowl-
edge, they believe would not work for the problem at hand.
Designs that are experimentally tested but do not produce good
results are often discarded rather than reported in technical
papers. Knowing more about which designs have been deemed
unsuitable for testing and which designs have already proven
unsuccessful would help guide the creation of new designs.

The “novel” metaphor-based metaheuristic problem
For better or for worse, manual design has been guided by
optimization processes observed in natural systems. Although
taking inspiration from nature was successful in the early days
of metaphor-based metaheuristics, when innovative and well-
performing metaheuristics such as evolutionary computation,
ant colony optimization, simulated annealing, and particle
swarm optimization were proposed, this is no longer the case.
Instead, it has become commonplace to find papers proposing
“novel” metaheuristics, in which the use of the metaphors does
not provide a clear mapping between a natural behavior and
the implemented optimization process.

In the last few decades, hundreds of metaphors from the
most diverse set of natural, artificial, and even supernatural
behaviors have been used to develop “novel” metaphor-based
metaheuristics. In most cases, these metaheuristics are based
on simplistic mathematical models that vaguely match the
behaviors that inspired them and are presented using elaborate
metaphoric descriptions that make them difficult to understand
(some examples are provided below). Recently, some of the
most widespread “novel” metaphor-based metaheuristics have
been subjected to rigorous analyses, which have provided com-
pelling evidence that, rather than being novel, they are either
copies or minor variations of well-established metaheuristics
and that their only novelty is in the use of new metaphors and
terminology [25–27,29–34].

In particular, three main problems have been identified in
papers proposing “novel” metaphor-based metaheuristics [53].
First, they introduce useless metaphors that lack a scientific basis—
e.g., zombies, reincarnation, and intelligent water drops—and use
new terminology that makes it difficult to understand the ideas
being proposed. Second, they lack meaningful novelty, as typically
the ideas proposed are already known. Third, they use poor experi-
mental validation and comparison practices, such as comparing
“novel” metaheuristics run on recent computers against old algo-
rithms run on old computers, and they use benchmark testbeds
that contain biases that can be exploited by the “novel” metaheuris-
tics, thus favoring their performance. An example of such unfair
comparison was provided in [54], in which it was experimentally
demonstrated that the “novel” slime mold, butterfly, and Harris
hawks metaheuristics, among others, make use of center-bias
operators that increase their efficiency when the testbed includes
problems that have the optimal solution located in the center of
the search space.

The negative consequences of the “novel” metaphor-based
metaheuristics trend extend well beyond the existence of a few
algorithms that were inspired by far-fetched behaviors and
presented in papers with methodological issues. Hundreds of
“novel” metaphor-based metaheuristics have been published
in the literature [55] as a result of this trend, which is grounded
in unscientific practices. The trend persists largely because

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 4

manual design is still the primary method of creating meta-
heuristics. In the remainder of this subsection, we explain why
“novel” metaphor-based metaheuristics are problematic, list
some of their negative consequences, and outline the efforts
that have been made to address the problem.

The metaphor rush
Since the mid-2000s, the field of optimization has witnessed a
rush to find “interesting” behaviors, mostly examples of natural
and social phenomena, that can be used to devise “novel” meta-
heuristics. In the numerous papers proposing this kind of meta-
heuristic, the authors use the following sequence of steps: (a)
They start by claiming to have found a new behavior that has
applications in optimization, (b) they present why, in their opin-
ion, the behavior is interesting, and provide an extensive list of
other “novel” metaheuristics based on “interesting” behaviors,
(c) they describe their proposed metaheuristic using the termi-
nology of the behavior instead of the terminology that is typi-
cally used in optimization, and (d) they compare the “novel”
metaheuristic with other optimization techniques, often ones
that are old and whose performance is much worse than the
state of the art.

Like other authors, such as [56], we avoid citing publications
that propose faulty metaphor-based metaheuristics. The reader
is invited to visit the Evolutionary Computation Bestiary [55]
for a list of the metaheuristics discussed here or to search for
specific metaheuristics on Google Scholar using their names
(which are given in italics in the text). As a concrete example,
we consider the grey wolf optimizer. According to its authors,
this metaheuristic is inspired by “the way grey wolves organize
for hunting,” following a “strict social hierarchy.” To describe
the metaheuristic, the authors introduce a new terminology in
which candidate solutions are referred to as “wolves,” the three
best solutions in the “pack” (i.e., the set of candidate solutions)
are referred to as the “alpha,” “beta,” and “delta” wolves, and the
optimum of the problem is the “prey” the wolves are hunting.
As shown in [30,32], the grey wolf optimizer metaheuristic is
based on the idea of computing, at each iteration, the centroid
of a hypertriangle whose vertices are the positions of the three
best solutions (i.e., “alpha,” “beta,” and “delta”). Then, the com-
puted centroid is used to bias the movement of the remaining
solutions (i.e., the “pack”). The grey wolf optimizer metaheuris-
tic was evaluated on a set of 29 continuous functions, all with
low dimensionality and/or with the optimum at the center of
the search space, as well as on some classic engineering design
problems. When it was compared with PSO, differential evolu-
tion (DE) [57], and covariance matrix adaptation evolution
strategies (CMA-ESs) [54], it was found to have similar perfor-
mance. This similarity in performance is not surprising, con-
sidering that the “novel” grey wolf optimizer metaheuristic was
later shown to be a variant of PSO [30,32].

Another example of a popular “novel” metaphor-based meta-
heuristic is cuckoo search, which is described using the meta-
phor of the “cuckoo’s parasitic behavior.” In this metaheuristic,
initial solutions are referred to as “cuckoos,” while solutions that
have been perturbed are referred to as “eggs.” The cuckoo search
metaheuristic is based on the idea that some “cuckoos” lay “eggs”
in the “nests” of other birds (which are random points in the
search space) and only some of these “eggs” will still exist in the
next iteration. The authors of cuckoo search compared their
metaheuristic against a genetic algorithm and the first version
of PSO. The comparison was performed using 13 continuous

functions that all had an optimum solution at the center of the
search space. Because the authors did not provide any informa-
tion about the dimensionality of the functions, it was initially
difficult to evaluate the quality of their results. However, cuckoo
search turned out to be an evolutionary strategy that uses the
recombination mechanism of DE [31] and therefore does not
advance the state of the art.

Consequences of the metaphor rush
Approximately 500 papers proposing “novel” metaphor-based
metaheuristics have been published [33,58]. The authors of many
of these papers claimed to be proposing a novel technique inspired
by some sort of “intelligent” behavior or even that they opened up
a new avenue of research. See for example “PostDoc: The Human
Optimization,” by Satish Gajawada. Notwithstanding increasing
awareness of the problems that these “novel” metaheuristics are
causing in the field, some members of the metaheuristics com-
munity continue to actively propose more metaheuristics of
this kind.

One of the main problems caused by the publication of papers
proposing “novel” metaheuristics has been the fragmentation of
the literature into dozens of barely distinguishable niches [53,56].
A direct consequence of this fragmentation is a confusing litera-
ture, in which the same ideas and concepts are repeatedly rein-
troduced using different terminologies derived from the use of
new metaphors. This, in turn, makes the comparison of meta-
heuristics increasingly challenging. For example, it is difficult to
compare the optimization capabilities of “grey wolves hunting”
with those of “cuckoos laying eggs.” Moreover, when one analyzes
the mathematical models proposed for these metaheuristics,
they turn out to be either copies or minor variations of optimiza-
tion techniques published many years previously.

The publication of hundreds of “novel” metaphor-based meta-
heuristics has created the impression that every simplistic math-
ematical model based on an “interesting” behavior deserves to be
added to the metaheuristics literature. Although it is the respon-
sibility of scientific venues to ensure that their output is of sci-
entific value, articles with methodological flaws and a lack of
scientific rationale are being peer-reviewed and published despite
their inability to contribute meaningfully to the field. Consider,
for example, the following excerpt from the intelligent water drops
paper: “In nature, we often see water drops moving in rivers, lakes
and seas … We also know that the water drops have no visible
eyes to be able to find the destination (lake or river).” See [28,29]
for a rigorous analysis of this metaheuristic.

Finally, “novel” metaphor-based heuristics damage the repu-
tation of the field, as documented by Sörensen [43] and paro-
died in “A Spectral Approach to Ghost Detection,” by Maturana
and Fouhey. In particular, they damage the fields of swarm
intelligence and evolutionary computation, which are used to
justify the use of metaphors. The truth is that, although meta-
phors can guide the design of successful metaheuristics, they
do so rarely.

Efforts to mitigate the metaphor rush
Efforts to stop the spread of “novel” metaphor-based metaheuris-
tics mainly consist of raising awareness of how they negatively
affect the field. One of the earliest efforts was “A Rigorous Analysis
of the Harmony Search Algorithm” by Dennis Weyland [25],
which showed, by means of a component-by-component com-
parison, that harmony search is an evolutionary algorithm. The
paper also identified systemic problems that allowed harmony

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 5

search to become popular despite its lack of novelty. Another
notable example is “Metaheuristics—The Metaphor Exposed” by
Sörensen [43], the first paper clearly attempting to call attention
to the “metaphor problem” in the field of metaheuristics.

Although these papers barely resonated outside the commu-
nity that was already aware of the problem, they encouraged
other researchers to act and propose possible solutions. Most of
these efforts can be categorized as follows: (a) critical analysis
of metaphor-based metaheuristics; (b) modeling frameworks,
taxonomies, and metaphor-free descriptions; and (c) editorial
policies.

In category (a), we find efforts to clarify whether there is any
real novelty in “novel” metaheuristics and to obtain insights into
the reasons the authors used a particular metaphor. Component-
based analyses, similar to that of Weyland [25], have been conducted
for the following “novel” metaheuristics: biogeography-based
optimization [59], black hole optimization [27], intelligent water
drops [28,29], the grey wolf optimizer, the moth-flame optimiza-
tion algorithm, whale optimization, the firefly algorithm, the bat
algorithm, the antlion optimizer [30,32], and cuckoo search [31].
The conclusions of these analyses are clear: There is no novelty
in any of these “novel” metaheuristics. In a critical study with a
slightly different focus, Melvin et al. [60] demonstrated that the
gravitational search algorithm fails as a metaphor because it is
based on a mathematical model that is inconsistent with Newtonian
gravity. The failure of the gravitational search algorithm shows that
using new metaphors without a sound motivation to do so may
result in ineffective metaheuristics.

Category (b) includes taxonomies and modeling frameworks
that group metaheuristics based on patterns in their design
[26,33,34,61–64]. The goal of these efforts is to provide the meta-
heuristics community with a tool that can identify the compo-
nents that make up a “novel” metaheuristic and, consequently,
reveal whether it is actually novel. The main challenge is to incor-
porate a sufficiently large number of components. While the first
steps in this direction have been taken, this is a huge endeavor.

Also in category (b), we find papers that examine the way
metaphor-based metaheuristics work and their relationship to
other metaheuristics. Examples include papers by Lones [65,66],
which describe some of the “novel” metaphor-based metaheuris-
tics using metaphor-free terminology. In addition, an increasing
number of papers aim to quantify the problem by compiling lists
of metaphor-based metaheuristics and/or analyzing their per-
formance [54,55,58,67,68].

Finally, category (c) contains editorial policies that explicitly
forbid the submission of papers proposing metaphor-based
metaheuristics unless the authors can provide compelling evi-
dence that the use of the metaphor contributes to the advance-
ment of the state of the art. Some journals that have established
this type of policy are 4OR [69], Journal of Heuristics [70], Swarm
Intelligence [71], ACM Transactions on Evolutionary Learning and
Optimization [72], and Engineering Applications of Artificial
Intelligence [73]. Establishing editorial policies is undoubtedly
one of the most effective mechanisms for stopping the publica-
tion of metaphor-based metaheuristics; however, this approach
remains the exception rather than the rule.

Automatic Design of Metaheuristics
As the need to solve increasingly complex problems more effi-
ciently has grown, so has the need for better and more efficient
problem-solving methods. This has motivated researchers to

search for alternative design approaches that are not subject to
the disadvantages of manual design. One of the main goals of
this research has been to reduce the heavy reliance on human
algorithm designers that makes the design process biased, time-
consuming, and error-prone. Automatic algorithm design meth-
ods are a powerful alternative to manual design. These methods
eliminate the need for human involvement by exploiting recent
advances in automatic algorithm configuration methods.

The automatic design of metaheuristic implementations is a
relatively new paradigm in which the creation of a metaheuristic
implementation is handled as an optimization problem that
consists of finding a combination of metaheuristic components
and parameter settings that will perform well when applied to
the optimization problem considered. To achieve this, automatic
design methods for metaheuristic implementations rely on two
main components: a design space—that is, the set of all possible
metaheuristic designs that can be obtained by combining meta-
heuristic components and parameters settings, and an auto-
matic configuration tool (ACT)—that is, a tool that allows the
exploration of the design space of the metaheuristic. In recent
years, several metaheuristic software frameworks (MSFs) have
been proposed that facilitate the automatic design of high-
performance metaheuristic implementations.

In the metaheuristics literature, methods that target the design
of metaheuristic implementations as an optimization problem are
sometimes referred to as hyper-heuristics. A modern definition
of the term hyper-heuristic is as follows: “a search method or learn-
ing mechanism for selecting or generating heuristics to solve com-
putational search problems” [74]. However, the initial research on
hyper-heuristics was not focused on the automatic design of meta-
heuristic implementations but rather on the selection of a suitable
implementation from a portfolio of preexisting metaheuristic
implementations, the so-called “heuristics for choosing heuristics”
for combinatorial optimization problems. Currently, the automatic
design of metaheuristics is approached by hyper-heuristics in the
same way as automatic design methods, that is, by defining a meta-
heuristic design space and using an optimization algorithm to
explore it and find a suitable design. In fact, in the vast majority
of cases, the only difference between automatic design methods
and hyper-heuristics is that hyper-heuristics explore the design
space using genetic programming [75,76].

Metaheuristic design space: Component-based view
The first step in defining a metaheuristic design space is to
derive a component-based view of the considered metaheuris-
tic. To do so, the algorithm designer first identifies ways in
which the components of a metaheuristic can be implemented
(e.g., by studying the different implementations of the meta-
heuristic that have been proposed in the literature) and then
groups them based on their functionality. The components
obtained in this manner define the metaheuristic design space
and are combined using an ACT (as explained in the next sec-
tion). The ACT considers these components, which can be
numerical, categorical, and subordinate, as parameters to be
optimized. Numerical parameters whose values are either real
numbers or integers are classical parameters—e.g., the muta-
tion rate in EC, the evaporation rate in ACO, or particle inertia
in PSO. Categorical parameters are alternatives for the func-
tionality of a particular component—e.g., the recombination
operator in EC, the solution construction rule in ACO, or
population topology in PSO. Finally, subordinate parameters
are those that are only necessary for particular values of other

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 6

parameters—e.g., in ACO, if the MAX − MIN Ant System phero-
mone update rule is selected, then the subordinate parameters
controlling the lower and upper bounds of the pheromone should
also be selected. These parameters together form the parameter
configuration space C, which is used by the configuration tool,
as explained in the next section.

Automatic configuration tools
ACTs were initially developed to automatically select parameter
values in parameterized software to maximize the performance of
the software [77,78]. However, more general-purpose ACTs that
allow the selection of the algorithm components of the implemen-
tation have been proposed. The use of ACTs has increased over
the last decade, not only because they generate high-performance
algorithms that are tailored for a specific problem but also because
of increases in the availability of inexpensive computing power, as
they can be computationally expensive. The working mechanisms
of ACTs are diverse, ranging from experimental design techniques
to surrogate model-based approaches. The specific mechanisms
implemented in an ACT determine how computationally intensive
it is, the types of parameters it can handle, and the types of post-
configuration analyses that can be conducted.

The general workflow followed by ACTs is depicted in Fig. 1.
Given a parameter configuration space C, an iterative process is
performed in which the metaheuristic M being configured is
executed with different parameter configurations c on the set of
test instances I until a given computational budget b is fully used.
The approaches that have been investigated to develop ACTs to
date can be categorized as follows.

Experimental design techniques
These are based on the use of statistical techniques to evaluate
aspects such as the statistical significance of performance dif-
ferences; an example of these techniques is CALIBRA [79].

Heuristic search techniques
These consist, as their name suggests, of the application of
metaheuristics to handle configuration tasks. Examples include
ParamILS [80], which implements an iterated local search in
the parameter configuration space, and the work presented in
[81], in which CMA-ES [82] is used for a configuration task of
numerical parameters.

Surrogate model-based techniques
These aim to predict the shape of the configuration landscape
based on previous executions of the algorithm, with the goal
of avoiding the waste of executions on unpromising regions.
The best-known technique of this type is the sequential model-
based algorithm configuration (SMAC) [83].

Iterated racing approaches
These are based on the idea of performing sequential statisti-
cal testing using the Friedman test and its related post-tests
to create a sampling model that can be refined by iteratively
“racing” candidate configurations and discarding those that
perform poorly. Various racing algorithms are implemented
in the irace package [47].

Although ACTs differ mostly in the way they approach auto-
matic configuration problems and in their generality, there are
also practical differences that may be important for users. For
example, when used out-of-the-box, iterated racing approaches,
such as irace, can impose a higher computational overhead dur-
ing the configuration process compared to surrogate model-
based approaches, such as SMAC, thus making the latter more
suitable for configuration scenarios with expensive objective
functions. However, irace, SMAC, and other actively maintained
ACTs now allow changes to be made to their sampling models
to reduce computation time in expensive configuration scenarios
or to perform a more intensive search if computation time is
abundant. Another important difference between ACTs is the
use of early termination mechanisms for poorly performing con-
figurations, which is also called capping or adaptive capping
[47,80]. These mechanisms help make more efficient use of the
available computation time and are particularly useful for opti-
mization problems involving time-related objective functions.
Finally, a common feature of ACTs is that they provide data that
can be used for conducting post-configuration analyses, such as
parameter importance [84,85] and ablation analysis [86].

Metaheuristic Software Frameworks

An MSF is a parameterized software tool that implements the
design space of a metaheuristic. To automatically generate a meta-
heuristic implementation, an MSF is used in combination with an

Fig. 1. General workflow followed by an automatic configuration tool (ACT) used to configure a metaheuristic.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 7

ACT, which, as explained in the previous section, iteratively exe-
cutes the MSF with different configurations. The ACT evaluates
the performance of each MSF configuration (i.e., metaheuristic
implementation) on a set of problem instances until a configura-
tion for the MSF is found that satisfies the needs of the user.

It is important to differentiate between automatic configura-
tion and automatic design. The former refers to fine-tuning the
parameter values of an already defined metaheuristic design,
whereas the latter refers to composing new metaheuristic designs
by recombining their components in new ways in addition to
fine-tuning their parameter values. Moreover, automatic con-
figuration and automatic design have different goals. The goal of
automatic configuration is to find a high-performance parameter
setting for the considered metaheuristic without changing the
components of its implementation. In contrast, the goal of auto-
matic design is typically to explore combinations of components
and parameter settings that have never been considered.

MSFs proposed in the early days, with few exceptions (such
as ParadisEO [87,88], which we discuss below), only enabled
the use of ACTs to perform automatic configuration tasks. If
users were interested in performing automatic design tasks
using these MSFs, they had to make major adaptations to the
code of the MSF to extend its metaheuristic design space with
new components and rules for combining them. In the worst-
case scenario, a complete reimplementation of the MSF was
necessary. Over time, the approach to designing MSFs has
changed appreciably. In contrast to their earlier counterparts,
most modern MSFs strive for a flexible, modular design that
allows users to apply them to solve different types of problems
and easily extend them with new metaheuristic components
and rules for combining them.

The general approach to combining flexible, modular MSFs
with ACTs to instantiate ad hoc metaheuristic implementations
for specific problems or problem instance distributions is illus-
trated in Fig. 2. The goal of this approach is to enable the auto-
matic solution of new problems by allowing the configuration
tool to find an effective metaheuristic implementation. Therefore,
human involvement is necessary only in cases in which one
wishes to add new metaheuristic components to the MSF; more-
over, this task is typically straightforward, owing to the modular
design of the MSF.

The main challenge in creating MSFs is the definition of the
rules that control the manner in which metaheuristic components

can be combined. There are two main methods to achieve this:
algorithm templates and grammar-based programming. Using
an algorithm template (or top-down design) consists in creating
a parameterized algorithm template in which metaheuristic com-
ponents are represented as possible alternatives in a typically fixed
algorithmic procedure. In contrast, in grammar-based program-
ming (or bottom-up design), the correct combination of compo-
nents is checked against a grammar, that is, a set of “production
rules” that are applied repeatedly. The main difference between
the two approaches is that algorithm templates can be much easier
to define than grammars but provide limited flexibility in the
implementation of metaheuristics (such as component recur-
sion), whereas grammar-based programming can be conceptually
more difficult but allows the creation of designs that are much
more complex [89].

As shown in Table, several MSFs proposed in the literature
enable the automatic design of metaheuristics. The table shows
the main types of metaheuristic components included in each
software framework and the types of problems it can be used
to address. Note that the last four MSFs in the table are of a
more general nature because they include components from
more than one metaheuristic, and that the list in the table is
not exhaustive. Indeed, in a recently published paper [90], some
current contributors and maintainers of ParadisEO identified
47 other MSFs that are available online. However, many are
closed-source, unmaintained, and/or not aimed at designing
new metaheuristic implementations (i.e., they only enable the
use of automatic configuration and therefore only optimize the
values of numerical parameters).

In the following, we present a more detailed discussion of the
last four MSFs listed in Table, namely, ParadisEO, HeuristicLab,
jMetal, and EMILI, which are some of the most comprehensive
and actively maintained MSFs. After describing the general aspects
of each MSF, we provide references to works that explore both
technical and conceptual aspects of their use in the context of
automatic design.

ParadisEO
ParadisEO [87,88,90] is a well-known MSF whose initial devel-
opment dates back to the early 2000s. This MSF includes four
main modules that allow users to compose metaheuristic designs:
evolving objects for population-based metaheuristics, moving
objects for local search algorithms, estimation of distribution objects

Fig. 2. General approach for combining modular MSFs and ACTs.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 8

for estimation of distribution algorithms, and multiobjective
evolving objects for multiobjective optimization. Some of the
key features of ParadisEO are as follows: (a) It has a high runtime
speed (as it is implemented in C++), (b) it integrates a state-of-
the-art benchmarking and profiling tool called IOHprofiler [91]
that simplifies the process of comparing and evaluating imple-
mentations against a benchmark, and (c) it has an active com-
munity of maintainers. ParadisEO has been applied to solve
optimization problems for more than two decades. However, in
its early days, it was manually configured and its use in the con-
text of automatic design is something that has only recently been
investigated. In [92], the authors studied 19 genetic algorithms
for the W-model problem that were automatically generated
using ParadisEO and irace. They found that the implementations
automatically generated by irace were able to outperform all
manually created baseline algorithms and that the fast computa-
tions that ParadisEO is able to provide allow large design spaces
to be handled in short wall-clock times.

HeuristicLab
HeuristicLab [93] is an optimization software system developed
in the early 2000s that incorporates an MSF. In its current version
(version 3.3, released in 2010), the MSF of HeuristicLab has
modules for instantiating many different machine learning (ML)
algorithms (e.g., neural networks, random forests, and support
vector machines) and metaheuristic algorithms (e.g., genetic
programming, evolutionary computation, particle swarm opti-
mization, and simulated annealing). In addition to providing an
MSF, HeuristicLab also has a number of useful features: (a) It
uses a meta-model that allows the representation of arbitrary
optimization algorithms, (b) it allows the manipulation and defi-
nition of metaheuristic designs via a graphical user interface, (c)
it provides easy access to problems that can be used for bench-
marking purposes, and (d) it provides interactive charts for the

analysis of results. Note that while ParadisEO and EMILI
(described below) are implemented in C++, HeuristicLab is
implemented in C# and is therefore slower. Except for one paper
addressing the algorithm selection problem [94], we could not
find any work specifically targeting the automatic design of meta-
heuristics using HeuristicLab.

jMetal
jMetal [95], which was developed in 2009, is an optimization
software system implemented in Java that incorporates an MSF
and has other useful features. jMetal focuses on multi-objective
optimization; therefore, it allows the instantiation of many state-
of-the-art metaheuristics specialized for multi-objective optimi-
zation, such as NSGA-II [96], GDE3 [97], and IBEA [98]. In its
current version, jMetal also includes components from several
single-objective algorithms, such as DE, particle swarm optimi-
zation, and CMA-ES. The main features of jMetal are as follows:
(a) It provides a simple graphical user interface that allows the
parameters of the metaheuristic implementation to be set; (b) it
provides access to five popular testbeds that can be used for
benchmarking purposes (e.g., ZDT [99], DTLZ [100], and WFG
[101]); (c) it provides some of the most widely used quality indi-
cators in multi-objective optimization, namely, hypervolume
[102], spread [96], generational distance [103], inverted genera-
tional distance [103], and epsilon [104]; and (d) it offers support
for performing experimental studies, including the automatic
generation of LaTeX tables, statistical pairwise comparison using
the Wilcoxon test, and R boxplots. Examples of the use of jMetal
to automatically create metaheuristic implementations include
[105] and [106].

EMILI
EMILI [107], which was initially developed in 2015, is an MSF
that implements metaheuristic- and problem-specific components

Table. List of representative MSFs for the automatic design of metaheuristic implementations

Metaheuristic Name of the MSF Type of problem Number of objectives Year Reference

Ant colony optimization ACO-TSP-QAP Discrete Single objective 2017 [133]

Ant colony optimization MOACO Discrete Multiobjective 2012 [134]

Ant colony optimization UACOR Continuous Single objective 2014 [135]

Artificial bee colony ABC-X Continuous Single objective 2017 [136]

Evolutionary computation ModCMA–ES Continuous Single objective 2021 [137]

Evolutionary computation DEAP Discrete/continuous Single/multiobjective 2012 [138]

Evolutionary computation AutoMOEA Discrete/continuous Multiobjective 2015 [48]

Hybrid of particle swarm optimization and
differential evolution

PSO–DE Continuous Single objective 2020 [139]

Particle swarm optimization PSO-X Continuous Single objective 2021 [140]

Particle swarm optimization MOPSO Continuous Multiobjective 2022 [106]

Randomized local search SATenstein Discrete Single objective 2009 [141,142]

Multiple metaheuristics ParadisEO Discrete/continuous Single/multiobjective 2002 [87,88,90]

Multiple metaheuristics HeuristicLab Discrete/continuous Single/multiobjective 2005 [93]

Multiple metaheuristics jMetal Discrete/continuous Single/multiobjective 2010 [95]

Multiple metaheuristics EMILI Discrete/continuous Single objective 2019 [107]

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 9

for stochastic local search algorithms. In its current version, EMILI
is mostly used for single-solution metaheuristics (e.g., iterated
local search, tabu search, and simulated annealing); however, its
design makes it easily extensible to population-based metaheuris-
tics. The distinguishing characteristic of EMILI is its architecture,
which uses a grammatical representation to validate possible com-
binations of algorithm components. The components that make
up the metaheuristic implementation and the order in which they
will be executed are checked against a grammar and then encoded
as a character string so that only valid combinations are produced.
Then, EMILI translates the character string into a parametric form
that can be executed by an ACT. Other important features of
EMILI are as follows: (a) It implements a strict separation between
algorithm- and problem-related components, and (b) it can con-
sider algorithms as recursive metaheuristic components. So far,
the two most relevant works using EMILI to automatically create
metaheuristic designs and implementations are [107], which is
focused on hybrid stochastic local search algorithms for permuta-
tion flowshop problems, and [108], which is focused on simulated
annealing for the quadratic assignment and permutation flowshop
problems.

Discussion
In their 2017 contribution to the Handbook of Metaheuristics, “A
history of metaheuristics” [109], Kenneth Sörensen, Marc Sevaux,
and Fred Glover predicted that the next transition in the develop-
ment of metaheuristics would be toward a scientific period.
Although it seems counterintuitive to predict a scientific period
in a scientific field, they did so because of past research that
is extremely unscientific. Most of this unscientific research is
related to the “novel” metaphor-based metaheuristics discussed
in “Manual Design of Metaheuristics.” This trend persists because
a large community is actively “researching” these kinds of algo-
rithms. Moreover, a number of papers have been published, which
present “novel” metaheuristics in a positive light, ignoring well-
founded criticisms and/or taking such criticisms out of context.
See, e.g., “An exhaustive review of the metaheuristic algorithms
for search and optimization: Taxonomy, applications, and open
challenges,” by Rajwar, Deep, and Das.

We strongly believe that once the metaheuristics community
examines the trend of “novel” metaphor-based metaheuristics and
related research scientifically, papers proposing “novel” meta-
heuristics will be withdrawn from journals and conferences and
the trend will vanish, leaving only a cautionary tale. A good reason
to call for a more scientific view is to attempt to unify an increasing
body of research that is at risk of becoming fragmented. Adopting
a scientific view as the baseline for a field that is still expanding is
the best way to prevent the (re)appearance of detrimental trends
in which personal beliefs can override rational thinking.

One of the most recent attempts to steer the metaheuris-
tics community in a more scientific direction has been the
“Metaheuristics in the Large” community project [110]. In this
project, several prominent researchers presented their long-term
vision for the field, which consists of three main conceptual
underpinnings: (a) extensible and reusable framework templates�
—i.e., modern MSFs, as described above; (b) white-box problem
descriptions—i.e., the use of analytic information to guide meta-
heuristic selection/construction in an informed manner; and (c)
remotely accessible frameworks, components, and problems—
i.e., the creation of service-oriented architectures that enable the
widespread reuse of data and programs.

Another attempt to refocus the field is a recent open letter titled
“Metaphor based metaheuristics, a call for action: The elephant
in the room” [53], which brought together approximately 100
researchers who want to stop the publication of “novel” metaphor-
based metaheuristics by adopting concrete actions, such as calling
for scientific journals to establish clear editorial policies concern-
ing how to manage articles presenting this type of metaheuristics.
This open letter has been one of the most compelling efforts con-
ducted so far to increase awareness of the problem of “novel”
metaphor-based metaheuristics.

Although these documents have already helped steer the field
in a healthier direction, much remains to be done. In particular,
it seems that more effort is required to bring the metaheuristics
community together to address issues that have remained unre-
solved for years. We propose three methods for removing unsci-
entific approaches from the field of metaheuristics: (a) increasing
the amount of research that is either experimentally or theoreti-
cally driven, (b) improving the way metaheuristics are bench-
marked, and (c) changing the current mainstream approach to
creating metaheuristics.

Rethinking the focus of the research
Metaheuristics research is an applied science that deals with the
design and application of optimization algorithms that work well
regardless of the complexity of the considered problems. As such,
the field has always had a strong bias toward application-oriented
research and has extensively used “competitive testing” to make
claims about algorithm performance [111]. Competitive test-
ing measures and compares the performance of the compared
algorithms for a given set of problem instances and for a given
performance measure [112] but does not explain differences in
performance. Therefore, to advance the field and increase our
knowledge of why some techniques work well on some problems
and not on others, it is key to reduce the asymmetry between
the amount of research that is application-oriented and that
which is experimentally or theory-driven.

Studying the interplay between the computational models
underlying a metaheuristic and its performance on different
problem classes is important not only from a research perspec-
tive but also from a practical perspective. Experimental and
theoretical analyses allow us to, for example, (a) understand how
extensible the ideas involved in a metaheuristic are and, there-
fore, to know how they can be used to address other problems;
(b) guide the development of new metaheuristic components
that can further improve performance or solve known issues;
and (c) define guidelines for creating metaheuristic implementa-
tions, i.e., useful indications of the ways in which metaheuristic
components can be combined so that new designs can be created
and tested more easily.

In the last few years, this area seems to have seen improvement,
as application-oriented papers that introduce new optimization
algorithms motivated by empirical evidence or theoretical findings
are now much more frequent. However, important challenges
still need to be overcome regarding the way research is con-
ducted in this field, starting with the methodological practices
that we use to draw conclusions from experimental studies.

Rethinking the way we benchmark metaheuristics
Carl Sagan popularized the phrase “extraordinary claims require
extraordinary evidence” [113]. In the field of metaheuristics, there
is great variety in the way evidence (i.e., data) is collected and
used to draw conclusions about metaheuristic performance—a

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 10

process commonly referred to as benchmarking [112]. At one
end of the spectrum, there are articles about “novel” metaphor-
based algorithms that not only make extraordinary claims but
also are textbook examples of poor scientific practice (see the dis-
cussion in “The ‘novel’ metaphor-based metaheuristic problem”).
At the other end of the spectrum, there are researchers creating
new tools to evaluate metaheuristic performance [114] and inves-
tigating new methodologies to compare metaheuristics using
modern techniques such as deep statistical analysis [115].

In general, although state-of-the-art methodologies and tools
for evaluating optimization algorithms are available in the litera-
ture [115–118], they are not always used to evaluate metaheuris-
tic performance. For example, it is still common to observe
structurally biased metaheuristics that are evaluated on biased
test sets [54] and flawed experimental methodologies that present
unfair comparisons, do not guarantee reproducibility, and neglect
important performance metrics [111,119–123]. To address these
issues, higher scientific standards would need to be implemented
and systematically enforced by the outlets in which the literature
on metaheuristics is published.

Recently, several researchers have proposed a set of guide-
lines and best practices to address poor benchmarking practices
[112]. Among these guidelines and best practices are the fol-
lowing: (a) clearly specifying the goal of the benchmark study
and designing it accordingly; (b) using benchmarks that are
comprehensive in terms of the size, difficulty, and diversity of
the problems; (c) using manual or automatic techniques to con-
figure the parameters of the metaheuristic implementation; (d)
using sound statistical methodologies to decide which experi-
ments should be conducted, how many times each experiment
should be repeated, which data should be gathered, and how it
should be processed, analyzed, interpreted, and presented; and
(e) avoiding generalizing the results without sufficient evidence
or without defining clear bounds within which such generaliza-
tion applies.

In addition to these guidelines and best practices, the authors
identified several opportunities and open issues in the research
on metaheuristic benchmarking. For example, the effort to create/
update testbeds on a regular basis to reflect the complexity
found in ever-changing realistic scenarios is underestimated.
Moreover, there is a need to simultaneously measure different
performance metrics (e.g., anytime behavior versus fixed bud-
get, constraint violation costs, and robustness) to provide a bet-
ter picture of the behavior of a metaheuristic when considering
different objectives. Further, there is a need to implement sound
data management practices that allow the storage, sharing, and
reuse of data from benchmark studies.

It is impossible to overstate the importance of research focused
on improving the way metaheuristics are compared and evalu-
ated. However, the widespread implementation of sound bench-
marking practices has proven relatively challenging for a field that
is experimental in nature and has focused mostly on testing meta-
heuristics as if they were horses in a race for most of its history.
Indeed, despite efforts devoted to improving experimental prac-
tices [111,119–122], good practices have not yet become widely
adopted, particularly in venues where “novel” metaphor-based
metaheuristics are regularly published.

Rethinking the way we create metaheuristics
Based on the discussion in this article, we believe that the
research community should move from manual to automatic
design as the main method of creating metaheuristics. Doing

so would require a focus on the creation of flexible, automati-
cally configurable MSFs that can be extended with new meta-
heuristic components so that other researchers/practitioners
can use them in different contexts. The long-term goal of this
approach is to automate the process of creating metaheuristics
so that when a new problem arises, an effective metaheuristic
implementation can be automatically created in a timely and
unbiased manner. In this article, we discussed the main aspects
of the automatic design approach; readers interested in learning
more about how to use it, both conceptually and in practice,
can refer to [35,124,125], which complement the references
given in the “Metaheuristic Software Frameworks” section.

In addition to automatic design, several research trends have
emerged, which explore methods of integrating ML into meta-
heuristics [126–129] and of using data science tools to analyze
their performance [86,130,131]. The literature has identified dif-
ferent levels of ML integration [127,129], such as problem-level
integration—where ML can aid in modeling aspects of the opti-
mization problem (e.g., the objective function and constraints)
and in performing fitness landscape analysis, algorithm-level
integration—where ML is used to select a suitable algorithm from
an algorithm portfolio, and component-level integration—where
ML is used to automate the task of selecting and fine-tuning the
algorithm components that perform best for a particular prob-
lem. Data analytics tools [e.g., functional analysis of variance
(ANOVA) [130], forward selection [131], and ablation [86]] have
been used to obtain knowledge about algorithm performance
from the data collected during the design process.

The productive synergy created between ML, data science,
and metaheuristics has resulted not only in new ways to design
and implement increasingly effective algorithms but also in
new ways to study these techniques and understand why spe-
cific designs perform well, whereas others do not. Although in
the literature is already available a vast diversity of metaheuris-
tic techniques and mechanisms for creating new designs, many
opportunities remain. For example, we consider it particularly
promising to devote effort to (a) creating modeling frameworks
that allow better characterization of metaheuristics [34]; (b)
developing advanced methods of benchmarking metaheuris-
tics, such as the creation of readily accessible statistical tools
[114,115]; and (c) extending the existing ecosystem of MSFs
and investigating ways to increase the re-usability of their com-
ponents [132].

Conclusions
Over the last few decades, metaheuristics have been the method
of choice for finding approximate solutions to difficult optimiza-
tion problems. However, although they have allowed important
advances in the optimization field, the majority of metaheuris-
tics are created in the same way as in the early days—that is, they
are the result of a time-consuming, error-prone process in which
a human designer manually creates the components to be used
in the metaheuristic implementation. Although this method of
creating metaheuristics has been successful in the past, it is now
time to move toward a new method of creating metaheuristics
that avoids the pitfalls of manual design. In this article, we exam-
ined an alternative approach, called automatic design, in detail.

The automatic design of metaheuristics is based on the use
of a component-based view to define a metaheuristic design
space and the application of ACTs to explore different designs
until a design that satisfies the needs of the user is found.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 11

Research on the automatic design of metaheuristics has already
led to several MSFs that enable the use of ACTs to efficiently
design high-performance implementations.

We also discussed the problematic trend of “novel” meta-
heuristics based on a wide variety of metaphors, which exists
in part due to the prevalence of manual design as the primary
method for creating metaheuristics. To illustrate why metaphor-
based metaheuristics are problematic, we chose two examples
of highly-cited “novel” metaheuristics from among many in the
literature and showed how they turned out to lack any novelty
and are therefore only a source of confusion and reiteration of
known ideas.

Finally, we discussed three fundamental research directions
that can contribute to further advances in the field of meta-
heuristics: (a) focus on experimentally or theoretically driven
research rather than purely application-driven research and
competitive testing, (b) use state-of-the-art benchmarking
practices to evaluate metaheuristics, and (c) use modern tools
and mechanisms to automatically create high-performance
metaheuristic implementations.

In this paper, we focused particularly on the last of the three
fundamental aspects, which argues for changing the way meta-
heuristic implementations are created. The area of automatic
design is growing rapidly, and it seems only a matter of time
before modern automatic design methods become widespread
and replace manual design as the mainstream approach to
designing new metaheuristics. We believe that this will help to
put a definitive end to the trend of “novel” metaphor-based meta-
heuristics and will have a positive, long-lasting effect on the way
we see, understand, and apply these optimization algorithms.

Acknowledgments

We thank the two anonymous reviewers for taking the time
and effort necessary to review the manuscript and provide valu-
able comments and suggestions to improve it.
Funding: C.L.C.-V., T.S., and M.D. acknowledge support from
the Belgian F.R.S.-FNRS, of which they are, respectively, FNRS
Aspirant and Research Directors.
Author contributions: All authors contributed equally to the
writing of the manuscript.
Competing interests: The authors declare that they have no
competing interests.

Data Availability
Not applicable.

References

	 1.	 Luenberger DG, Ye Y. Linear and nonlinear programming.
Cham: Springer; 2016.

	 2.	 Andréasson N, Evgrafov A, Patriksson M. An introduction
to continuous optimization: Foundations and fundamental
algorithms. Mineola (New York): Courier Dover Publications;
2020.

	 3.	 Garey MR, Johnson DS. Computers and intractability: A
guide to the theory of NP-completeness. San Francisco (CA):
Freeman & Co, 1979.

	 4.	 Papadimitriou CH, Steiglitz K. Combinatorial optimization –
Algorithms and complexity. Englewood Cliffs (NJ): Prentice
Hall; 1982.

	 5.	 Tovey CA. Tutorial on computational complexity. Interfaces.
2002;32:30–61.

	 6.	 Glover F. Future paths for integer programming and links to
artificial intelligence. Comput Oper Res. 1986;13:533–549.

	 7.	 Metaheuristics Network. Project Summary, http://www.
metaheuristics.org/. Version visited last on 2023 March 26.

	 8.	 Fogel DB, Owens AJ, Walsh MJ. Artificial intelligence through
simulated evolution. New York City (New York): John Wiley
& Sons; 1966.

	 9.	 Holland JH. Adaptation in natural and artificial systems. Ann
Arbor (Michigan): University of Michigan Press; 1975.

	 10.	 Rechenberg I. Evolutionsstrategie: Optimierung technischer
systeme nach prinzipien der biologischen evolution. Stuttgart
(Germany): Frommann-Holzboog; 1973.

	 11.	 Schwefel HP. Numerische optimierung von computer–modellen
mittels der evolutionsstratesgie. Basel (Switzerland):
Birkhäuser; 1977.

	 12.	 Schwefel HP, Numerical optimization of computer models.
Hoboken (New Jersey): John Wiley & Sons Inc.; 1981.

	 13.	 Glover F. Tabu search—Part I. INFORMS J Comput.
1989;1:190–206.

	 14.	 Glover F. Tabu search—Part II. INFORMS J Comput.
1990;2:4–32.

	 15.	 Kirkpatrick S. Optimization by simulated annealing:
Quantitative studies. J Stat Phys. 1984;34:975–986.

	 16.	 Černý V. A thermodynamical approach to the traveling
salesman problem: An efficient simulation algorithm. J Optim
Theory Appl. 1985;45:41–51.

	 17.	 Dorigo M. Ant algorithms solve difficult optimization
problems. In: Kelemen J, editor. Advances in Artificial Life:
6th European Conference—ECAL 2001. Berlin (Germany):
Springer; 2001. p. 11–22.

	 18.	 Dorigo M, Stützle T. Ant colony optimization. Cambridge
(MA): MIT Press; 2004.

	 19.	 Dorigo M. Ant colony optimization. Scholarpedia.
2007;2(3):1461.

	 20.	 Kennedy J, Eberhart R. Particle swarm optimization.
Paper presented at: Proceedings of ICNN’95-International
Conference on Neural Networks. IEEE; 1995; Perth, WA,
Australia. p. 1942–1948.

	 21.	 Eberhart R, Kennedy J. A new optimizer using particle
swarm theory. Paper presented at: Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science. 1995; Nagoya, Japan. p. 39–43.

	 22.	 Kennedy J, Eberhart RC, Shi Y. Swarm intelligence. San
Francisco (CA): Morgan Kaufmann Publishers; 2001.

	 23.	 Ramalhinho Lourenço H, Martin O, Stützle T. Iterated local
search. In: Glover F, Kochenberger G, editors. Handbook of
metaheuristics. Norwell (MA): Kluwer Academic Publishers;
2002. p. 321–353.

	 24.	 Hoos HH, Stützle T. Stochastic local search: Foundations and
applications. Amsterdam (The Netherlands): Elsevier; 2004.

	 25.	 Weyland D. A rigorous analysis of the harmony search
algorithm: How the research community can be misled
by a “novel” methodology. Int J Appl Met Comput.
2010;12:50–60.

	 26.	 Thymianis M, Tzanetos A. Is integration of mechanisms a
way to enhance a nature-inspired algorithm? Nat Comput.
2022;1:1–21.

	 27.	 Piotrowski AP, Napiorkowski JJ, Rowinski PM. How novel
is the “novel” black hole optimization approach? Inf Sci.
2014;267:191–200.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048
http://www.metaheuristics.org/
http://www.metaheuristics.org/

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 12

	 28.	 Camacho-Villalón CL, Dorigo M, Stützle T. Why the Intelligent
Water Drops Cannot Be Considered as a Novel Algorithm.
In: Dorigo M, Birattari M, Blum C, Christensen AL, Reina A,
Trianni V, editors. Swarm Intelligence, 11th International
Conference, ANTS 2018. Heidelberg (Germany): Springer;
2018. p. 302–314.

	 29.	 Camacho-Villalón CL, Dorigo M, Stützle T. The intelligent
water drops algorithm: Why it cannot be considered a novel
algorithm. Swarm Intell. 2019;13:173–192.

	 30.	 Camacho-Villalón CL, Stützle T, Dorigo M. Grey wolf,
firefly, bat algorithms: three widespread algorithms that do
not contain any novelty. In: Dorigo M, Stützle T, Blesa MJ,
Blum C, Hamann H, Heinrich MK, Strobel V, editors. Swarm
Intelligence, 12th International Conference, ANTS 2020.
Heidelberg (Germany): Springer. 2020:121–33.

	 31.	 Camacho-Villalón CL, Dorigo M, Stützle T. An analysis
of why cuckoo search does not bring any novel ideas to
optimization. Comput Oper Res. 2022;142:Article 105747.

	 32.	 Camacho-Villalón CL, Dorigo M, Stützle T. Exposing
the grey wolf, moth-flame, whale, firefly, bat, and antlion
algorithms: Six misleading optimization techniques inspired
by bestial metaphors. Int Trans Oper Res. 2022;30(2):13176.

	 33.	 Tzanetos A, Dounias G. Nature inspired optimization
algorithms or simply variations of metaheuristics? Artif Intell
Rev. 2021;54(3):1841–1862.

	 34.	 de Armas J, Lalla-Ruiz E, Tilahun SL, Voß S. Similarity
in metaheuristics: A gentle step towards a comparison
methodology. Nat Comput. 2022;21:265–87.

	 35.	 Stützle T, López-Ibáñez M. Automated design of
metaheuristic algorithms. In: Gendreau M, Potvin JY, editors.
Handbook of metaheuristics. New York City (New York):
Springer; 2019. p. 541–579.

	 36.	 Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by
simulated annealing. Science. 1983;220(4598):671–680.

	 37.	 Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence:
From natural to artificial systems. New York: Oxford
University Press; 1999.

	 38.	 Blum C, Merkle D. Swarm intelligence—Introduction
and applications. In: Blum C, Merkle D, editors. Natural
computing series. Berlin (Germany): Springer Verlag; 2008.

	 39.	 Dorigo M, Birattari M. Swarm intelligence. Scholarpedia.
2007;2(9):1462.

	 40.	 Goldberg DE. Genetic algorithms in search, optimization and
machine learning. Boston (MA): Addison-Wesley; 1989.

	 41.	 Blum C, Roli A. Hybrid metaheuristics: An introduction.
In: Blum C, Blesa MJ, Roli A, Sampels M, editors. Hybrid
metaheuristics: An emergent approach for optimization. Berlin
(Germany): Springer; 2008. p. 1–30.

	 42.	 Talbi EG. Hybrid metaheuristics. Heidelberg (Germany):
Springer Verlag; 2013.

	 43.	 Sörensen K. Metaheuristics—The metaphor exposed. Int
Trans Oper Res. 2015;22(1):3–18.

	 44.	 Dorigo M. Optimization, learning and natural algorithms
[thesis]. Dipartimento di Elettronica, Politecnico di Milano,
Italy; 1992.

	 45.	 Dorigo M, Maniezzo V, Colorni A. The ant system: An
autocatalytic optimizing process. Technical report 91-016.
Revised. Politecnico di Milano, Italy: Dipartimento di
Elettronica; 1991.

	 46.	 Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization
by a Colony of cooperating agents. IEEE Trans Syst Man
Cyber Part B. 1996;26:29–41.

	 47.	 López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T,
Birattari M. The irace package: Iterated racing for automatic
algorithm configuration. Oper Res Perspect. 2016;3:43–58.

	 48.	 Bezerra LCT, López-Ibáñez M, Stützle T. Automatic
component-wise design of multi-objective evolutionary
algorithms. IEEE Trans Evol Comput. 2016;20(3):403–827.

	 49.	 Talbi EG. A taxonomy of hybrid metaheuristics. J Heuristics.
2002;8(5):541–564.

	 50.	 Maniezzo V, Boschetti MA, Stützle T. Matheuristics—
Algorithms and implementations. EURO Advanced Tutorials
on Operational Research. Cham: Springer; 2022.

	 51.	 Blackwell T, Branke J. Multiswarms, exclusion, and anti-
convergence in dynamic environments. IEEE Trans Evol
Comput. 2006;10(4):459–472.

	 52.	 Hansen N, Ros R, Mauny N, Schoenauer M, Auger A.
Impacts of invariance in search: When CMA-ES and PSO
face ill-conditioned and non-separable problems. Appl Soft
Comput. 2011;11(8):5755–5769.

	 53.	 Aranha C, Camacho-Villalón CL, Campelo F. Metaphor-
based metaheuristics, a call for action: The elephant in the
room. Swarm Intell. 2022;16:1–6.

	 54.	 Kudela J. A critical problem in benchmarking and analysis
of evolutionary computation methods. Nat Mach Intell.
2022;4(12):1238–1245.

	 55.	 Campelo F, Aranha C. Evolutionary Computation Bestiary.
https://github.com/fcampelo/EC-Bestiary. Version visited last
on 2021 March 26.

	 56.	 Campelo F, Aranha C. Sharks, zombies and volleyball:
Lessons from the evolutionary computation bestiary. In:
LIFELIKE Computing Systems Workshop. Aachen (Germany):
CEUR Workshop Proceedings (CEUR-WS.org); 2021.

	 57.	 Storn R, Price K. Differential evolution—A simple and
efficient heuristic for global Optimization over continuous
spaces. J Glob Optim. 1997;11(4):341–359.

	 58.	 Ma Z, Wu G, Suganthan PN, Song A, Luo Q. Performance
assessment and exhaustive listing of 500+ nature-
inspired metaheuristic algorithms. Swarm Evol Comput.
2023;77:Article 101248.

	 59.	 Simon D, Rarick R, Ergezer M, Du D. Analytical and
numerical comparisons of biogeography based optimization
and genetic algorithms. Inf Sci. 2011;181(7):1224–1248.

	 60.	 Melvin G, Dodd TJ, Groß R. Why ‘GSA: A gravitational
search algorithm’ is not genuinely based on the law of gravity.
Nat Comput. 2012;11:719–720.

	 61.	 Fong S, Wang X, Xu Q, Wong R, Fiaidhi J, Mohammed S.
Recent advances in metaheuristic algorithms: Does the
Makara dragon exist? J Supercomput. 2016;72(10):3764–3786.

	 62.	 Molina D, Poyatos J, Ser JD, García S, Hussain A, Herrera F.
Comprehensive taxonomies of nature-and bio-inspired
optimization: Inspiration versus algorithmic behavior, critical
analysis recommendations. Cogn Comput. 2020;12(1):897–939.

	 63.	 Cruz-Duarte JM, Ortiz-Bayliss JC, Amaya I, Shi Y, Terashima-
Marín H, Pillay N. Towards a generalised metaheuristic
model for continuous optimisation problems. Mathematics.
2020;8(11):2046.

	 64.	 Stegherr H, Heider M, Hähner J. Classifying metaheuristics:
Towards a unified multi-level classification system. Nat
Comput. 2020;21(5):1–17.

	 65.	 Lones MA. Metaheuristics in nature-inspired algorithms.
In: Igel C, Arnold DV. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2014. New
York (NY): ACM Press; 2014. p. 1419–1422.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 13

	 66.	 Lones MA. Mitigating metaphors: A comprehensible guide to
recent nature-inspired algorithms. SN Comput Sci. 2020;1:1–12.

	 67.	 Tzanetos A, Fister I Jr, Dounias G. A comprehensive database of
nature-inspired Algorithms. Data Brief. 2020;31:Article 105792.

	 68.	 Kudela J. The evolutionary computation methods no one
should use. 2023. arXiv:2301.01984.

	 69.	 4OR—A Quarterly Journal of Operations Research Research
papers; https://www.springer.com/journal/10288. Version
visited last on 2023 March 19.

	 70.	 Journal of Heuristics. Policies on Heuristic Search Research.
https://www.springer.com/journal/10732/updates/17199246.
Version visited last on 2021 March 26.

	 71.	 Dorigo M. Swarm intelligence: A few things you need
to know if you want to publish in this journal. https://
www.springer.com/cda/content/document/cda_
downloaddocument/ Additional_submission_instructions.
pdf. Version visited last on 2021 March 26.

	 72.	 ACM Transactions on Evolutionary Learning and Optimization.
Guidelines for Authors. https://dl.acm.org/journal/telo/author-
guidelines. Version visited last on 2021 March 26.

	 73.	 Engineering Applications of Artificial Intelligence. Aims & Scope.
https://www.sciencedirect.com/journal/engineering-applications-
of-artificial-intelligence. Version visited last on 2023 March 3.

	 74.	 Burke EK, Gendreau M, Hyde MR, Kendall G, Ochoa G,
Özcan E, Qu R. Hyper-heuristics: A survey of the state of the
art. J Oper Res Soc. 2013;64(12):1695–1724.

	 75.	 Koza J. Genetic programming: On the programming of
computers by the means of natural selection. Cambridge (MA):
MIT Press; 1992.

	 76.	 Sabar NR, Ayob M, Kendall G, Qu R. Grammatical evolution
hyper-heuristic for combinatorial optimization problems.
IEEE Trans Evol Comput. 2013;17(6):840–861.

	 77.	 Nannen V, Eiben AE. A method for parameter calibration
and relevance estimation in evolutionary algorithms. In:
Keijzer M, Cattolico M. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2006. New
York (NY): ACM Press; 2006. p. 183–190.

	 78.	 Audet C, Orban D. Finding optimal algorithmic parameters using
derivative-free Optimization. SIAM J Optim. 2006;17(3):642–664.

	 79.	 Adenso-Dıéaz B, Laguna M. Fine-tuning of Algorithms using
fractional experimental design and local search. Oper Res.
2006;54(1):99–114.

	 80.	 Hutter F, Hoos HH, Leyton-Brown K, Stützle T. ParamILS:
An automatic algorithm configuration framework. J Artif
Intell Res. 2009;36(1):267–306.

	 81.	 Yuan Z, Montes de Oca MA, Stützle T, Birattari M.
Continuous optimization algorithms for tuning real
and integer algorithm parameters of swarm intelligence
algorithms. Swarm Intell. 2012;6:49–75.

	 82.	 Hansen N, Ostermeier A. Completely derandomized
self-adaptation in evolution strategies. Evol Comput.
2001;9(2):159–195.

	 83.	 Hutter F, Hoos HH, Leyton-Brown K. Sequential model-
based optimization for general algorithm configuration. In:
Coello CA, editor. Learning and intelligent optimization, 5th
International Conference, LION 5. Lecture Notes in Computer
Science. Heidelberg (Germany): Springer; 2011. p. 507–523.

	 84.	 Pérez Cáceres L, Bischl B, Stützle T. Evaluating random
forest models for irace. In: Bosman PAN, editor. GECCO’17
Companion. New York (NY): ACM Press; 2017. p. 1146–1153.

	 85.	 Hutter F, Hoos HH, Leyton-Brown K. An efficient approach
for assessing hyperparameter importance. Paper presented at:

Proceedings of the 31th International Conference on Machine
Learning, ICML 2014; 2014 June 21–26; Beijing, China.

	 86.	 Fawcett C, Hoos HH. Analysing differences between
algorithm configurations through ablation. J Heuristics.
2016;22(4):431–458.

	 87.	 Keijzer M, Merelo JJ, Romero G, and Schoenauer M. Evolving
objects: A general purpose evolutionary computation library.
Paper presented at: Artificial Evolution: 5th International
Conference, Evolution Artificielle, EA 2001; 2001 October
29–31; Le Creusot, France.

	 88.	 Cahon S, Melab N, Talbi EG. ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics.
J Heuristics. 2004;10(3):357–380.

	 89.	 Mascia F, López-Ibáñez M, Dubois-Lacoste J, Stützle T.
Grammar-based generation of stochastic local search
heuristics through automatic algorithm configuration tools.
Comput Oper Res. 2014;51:190–199.

	 90.	 Dréo J, Liefooghe A, Verel S. Paradiseo: From a modular
framework for evolutionary computation to the automated
design of metaheuristics: 22 years of Paradiseo. In: Chicano F,
editor. GECCO’21 Companion. New York (NY): ACM Press;
2021. p. 1522–1530.

	 91.	 Doerr C, Wang H, Ye F, Van Rijn S, and Bäck T. IOHprofiler:
A benchmarking and profiling tool for iterative optimization
heuristics. 2018. arXiv:1810.05281.

	 92.	 Aziz-Alaoui A, Doerr C, Dreo J. Towards large scale
automated algorithm design by integrating modular
benchmarking frameworks. In: Chicano F, editor. GECCO’21
Companion. New York (NY): ACM Press; 2021. p. 1365–1374.

	 93.	 Wagner S, Affenzeller M. Heuristiclab: A generic and
extensible optimization environment. Paper presented
at: Adaptive and Natural Computing Algorithms,
Proceedings of the International Conference; 2005;
Coimbra, Portugal.

	 94.	 Beham A, Wagner S, Affenzeller M. Algorithm selection on
generalized quadratic assignment problem landscapes. In:
Aguirre H, editor. Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2018. New York (NY):
ACM Press; 2018. p. 253–260.

	 95.	 Durillo J, Nebro A, Alba E. The jMetal framework for
multi-objective optimization: Design and architecture. In:
Ishibuchi H. Proceedings of the 2010 Congress on Evolutionary
Computation (CEC 2010). Piscataway (NJ): IEEE Press; 2010.
p. 4138–4325.

	 96.	 Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput. 2002;6(2):182–197.

	 97.	 Kukkonen S, Lampinen J. GDE3: The third evolution step
of generalized differential evolution. In: Proceedings of the
2005 Congress on Evolutionary Computation (CEC 2005).
Piscataway (NJ): IEEE Press; 2005. p. 443–450.

	 98.	 Zitzler E, Künzli S. Indicator-based selection in multiobjective
search. In: Yao X et al. Proceedings of PPSN-VIII, Eigth
International Conference on Parallel Problem Solving from
Nature. Heidelberg (Germany): Springer; 2004. p. 832–842.

	 99.	 Zitzler E, Thiele L, Deb K. Comparison of multiobjective
evolutionary Algorithms: Empirical results. Evol Comput.
2000;8(2):173–195.

	100.	 Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test
problems for evolutionary multiobjective optimization. In:
Abraham A, Jain L, Goldberg R, editors. Optimization EM.
London (UK): Springer; 2005. p. 105–145.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048
https://www.springer.com/journal/10288
https://www.springer.com/journal/10732/updates/17199246
https://www.springer.com/cda/content/document/cda_downloaddocument/
https://www.springer.com/cda/content/document/cda_downloaddocument/
https://www.springer.com/cda/content/document/cda_downloaddocument/
https://dl.acm.org/journal/telo/author-guidelines
https://dl.acm.org/journal/telo/author-guidelines
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 14

	101.	 Huband S, Hingston P, Barone L, While L. A review of
multiobjective test problems and a scalable test problem
toolkit. IEEE Trans Evol Comput. 2006;10(5):477–506.

	102.	 Zitzler E, Thiele L. Multi objective evolutionary
Algorithms: A comparative case study and the strength
Pareto evolutionary algorithm. IEEE Trans Evol Comput.
1999;3(4):257–271.

	103.	 Van Veldhuizen DA, Lamont GB. Evolutionary computation
and convergence to a pareto front. In: Koza JR, editor.
Genetic Programming 1998: Proceedings of the Third Annual
Conference, Late Breaking Papers. California: Stanford
University; 1998. p. 221–228.

	104.	 Knowles JD, Thiele L, Zitzler E. A tutorial on the performance
assessment of stochastic multiobjective optimizers. TIK-
Report 214. Revised version. Computer Engineering and
Networks Laboratory (TIK)—Swiss Federal Institute of
Technology (ETH), Zürich, Switzerland, 2006.

	105.	 Nebro AJ, López-Ibáñez M, Barba-González C, García-Nieto J.
Automatic configuration of NSGA-II with jMetal and irace.
In: López-Ibáñez M, editor. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2019. New
York (NY): ACM Press; 2019. p. 1374–1381.

	106.	 Doblas D, Nebro AJ, López-Ibáñez M, García-Nieto J, Coello
Coello CA. Automatic design of multi-objective particle swarm
optimizers. In: Dorigo M, Hamann H, López-Ibáñez M,
García-Nieto J, Engelbrecht A, Pinciroli C, Strobel V,
Camacho-Villalón C. Swarm Intelligence, 13th International
Conference, ANTS 2022. Lecture Notes in Computer Science.
Springer; 2022. p. 28–40.

	107.	 Pagnozzi F, Stützle T. Automatic design of hybrid stochastic
local search algorithms for permutation flowshop problems.
Eur J Oper Res. 2019;276:409–421.

	108.	 Franzin A, Stützle T. Revisiting simulated annealing: A
component-based analysis. Comput Oper Res. 2019;104:191–206.

	109.	 Sörensen K, Sevaux M, Glover F. A history of metaheuristics.
In: Handbook of heuristics. New York City (New York):
Springer; 2018. p. 791–808.

	110.	 Swan J, Adriaensen S, Brownlee AE, Hammond K, Johnson CG,
Kheiri A, Krawiec F, Merelo JJ, Minku LL, Özcan E, et al.
Metaheuristics’ in the large’. Eur J Oper Res. 2022;297(2):393–406.

	111.	 Hooker JN. Testing heuristics: We have it all wrong. J Heuristics.
1996;1:33–42.

	112.	 Bartz-Beielstein T, Doerr C, Berg Dvd, et al. Benchmarking
in optimization: Best practice and open issues.
arXiv:2007.03488 2020.

	113.	 Sagan C. Broca’s brain: Reflections on the romance of science.
New York City (New York): Random House; 1979.

	114.	 Eftimov T, Petelin G, Korošec P. DSCTool: A web-
service-based framework for statistical comparison of
stochastic optimization algorithms. Appl Soft Comput.
2020;87(6):Article 105977.

	115.	 Eftimov T, Korošec P, Seljak BK. A novel approach
to statistical comparison of metaheuristic stochastic
optimization algorithms using deep statistics. Inf Sci.
2017;417(C):186–215.

	116.	 Derrac J, García S, Molina D, Herrera F. A practical tutorial
on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence
algorithms. Swarm Evol Comput. 2011;1(1):3–18.

	117.	 Sheskin DJ. Handbook of parametric and nonparametric
statistical procedures. New York City (New York): Chapman &
Hall/CRC; 2011.

	118.	 R Development Core Team. R: A language and environment
for statistical computing. Vienna (Austria): R Foundation for
Statistical Computing; 2008.

	119.	 Hooker JN. Needed: An empirical science of Algorithms.
Oper Res. 1994;42:201–212.

	120.	 Bartz-Beielstein T, Chiarandini M, Preuss PL. Experimental
methods for the analysis of optimization algorithms. Berlin
(Germany): Springer; 2010.

	121.	 García-Martínez C, Gutiérrez PD, Molina D, Lozano M,
Herrera F. Since CEC 2005 competition on real-
parameter optimisation: A decade of research, progress
and comparative analysis’s weakness. Soft Comput.
2017;21(19):5573–5583.

	122.	 Campelo F, Takahashi F. Sample size estimation for power
and accuracy in the experimental comparison of algorithms.
J Heuristics. 2019;25(1):305–338.

	123.	 López-Ibáñez M, Branke J, Paquete L. Reproducibility in
evolutionary computation. ACM Trans Evol Learn Optim.
2021;1(4):1–21.

	124.	 Hoos HH. Programming by optimization. Commun ACM.
2012;55(2):70–80.

	125.	 Qu R, Kendall G, Pillay N. The general combinatorial
optimization problem: Towards automated algorithm design.
IEEE Comput Intell Mag. 2020;15(2):14–23.

	126.	 Song H, Triguero I, Özcan E. A review on the self and dual
interactions between machine learning and optimisation.
Prog Artif Intell. 2019;8:143–165.

	127.	 Talbi EG. Machine learning into metaheuristics: A survey and
taxonomy. ACM Comput Surv (CSUR). 2021;54(6):1–32.

	128.	 Gambella C, Ghaddar B, Naoum-Sawaya J. Optimization
problems for machine learning: A survey. Eur J Oper Res.
2021;290(3):807–828.

	129.	 Karimi-Mamaghan M, Mohammadi M, Meyer P,
Karimi-Mamaghan AM, Talbi EG. Machine learning at
the service of meta-heuristics for solving combinatorial
optimization problems: A state-of-the-art. Eur J Oper Res.
2022;296(3):393–422.

	130.	 Hooker G. Generalized functional ANOVA diagnostics for
high-dimensional functions of dependent variables. J Comput
Graph Stat. 2012;16(3):709–732.

	131.	 Hutter F, Hoos HH, Leyton-Brown K. Identifying key
algorithm parameters and instance features using forward
selection. In: Learning and Intelligent Optimization, 7th
International Conference, LION 7. Ed. by Pardalos PM,
Nicosia G. Vol. 7997. Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 2013:364–81.

	132.	 Swan J, Adriænsen S, Barwell AD, Hammond K, White DR.
Extending the open-closed principle to automated algorithm
configuration. Evol Comput. 2019;27(1):173–193.

	133.	 López-Ibáñez M, Stützle T, Dorigo M. Ant colony
optimization: A component-wise overview. In: Martıé R,
Pardalos PM, Resende MGC. Handbook of heuristics. Springer
International Publishing; 2017. p. 1–37.

	134.	 López-Ibáñez M, Stützle T. The automatic design of multi-
objective ant colony optimization algorithms. IEEE Trans Evol
Comput. 2012;16(6):861–875.

	135.	 Liao T, Stützle T, Montes de Oca MA, Dorigo M. A
unified ant colony optimization algorithm for continuous
optimization. Eur J Oper Res. 2014;234:3, 597–609.

	136.	 Aydın D, Yavuz G, Stützle T. ABC-X: A generalized,
automatically configurable artificial bee colony framework.
Swarm Intell. 2017;11:1–38.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 15

	137.	 de Nobel J, Vermetten D, Wang H, Doerr C, Bäck T. Tuning
as a means of assessing the benefits of new ideas in interplay
with existing algorithmic modules. In: Chicano F, editor.
GECCO’21 Companion. New York (NY): ACM Press; 2021. p.
1375–1384.

	138.	 Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C.
DEAP: Evolutionary algorithms made easy. J Mach Learn Res.
2012;13:2171–2175.

	139.	 Boks R, Wang H, Bäck T. A modular hybridization of particle
swarm optimization and differential evolution. In: Coello
CAC. GECCO’20 Companion. New York (NY): ACM Press;
2020. p. 1418–1425.

	140.	 Camacho-Villalón CL, Dorigo M, Stützle T. PSO-X: A
component-based framework for the automatic design of
particle swarm optimization algorithms. IEEE Trans Evol
Comput. 2022;26(3):402–416.

	141.	 KhudaBukhsh AR, Xu L, Hoos HH, Leyton-Brown K.
SATenstein: Automatically building local search SAT solvers
from components. In: Boutilier C, editor. IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial
Intelligence. Menlo Park (CA): AAAI Press; 2009. p. 517–524.

	142.	 KhudaBukhsh AR, Xu L, Hoos HH, Leyton-Brown K.
SATenstein: Automatically building local search SAT solvers
from components. Artif Intell. 2016;232:20–42.

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048

Use of this article is subject to the Terms of service

Intelligent Computing (ISSN 2771-5892) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005.

Copyright © 2023 Christian L. Camacho-Villalón et al.

Exclusive licensee Zhejiang Lab. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License
4.0 (CC BY 4.0).

Designing New Metaheuristics: Manual Versus Automatic Approaches
Christian L. Camacho-Villalón, Thomas Stützle, and Marco Dorigo

Citation: Camacho-Villalón C, Stützle T, Dorigo M. Designing New Metaheuristics: Manual Versus Automatic
Approaches. Intell Comput. 2023;2:0048. DOI: 10.34133/icomputing.0048

A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide
set of optimization problems for which exact/analytical approaches are either limited or impractical. In other words, a
metaheuristic can be considered a general algorithmic framework that can be easily adapted to different optimization
problems. In this article, we discuss the two main approaches used to create new metaheuristics: manual design, which
is based on the designer’s “intuition” and often involves looking for inspiration in other fields of knowledge, and automatic
design, which seeks to reduce human involvement in the design process by harnessing recent advances in automatic
algorithm configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-based
metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years, this trend has been
strongly criticized due to the uselessness of new metaphors in devising truly novel algorithms and the confusion such
metaheuristics have created in the literature. We then present automatic design as a powerful alternative to manual
design that has the potential to render the “novel” metaphor-based metaheuristics trend obsolete. Finally, we examine
several fundamental aspects of the field of metaheuristics and offer suggestions for improving them.
Image

View the article online
https://spj.science.org/doi/10.34133/icomputing.0048

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://www.science.org/content/page/terms-service
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Designing New Metaheuristics: Manual Versus Automatic Approaches
	Introduction
	Metaheuristics
	Manual Design of Metaheuristics
	General issues with metaheuristic manual design
	The “novel” metaphor-based metaheuristic problem
	The metaphor rush
	Consequences of the metaphor rush
	Efforts to mitigate the metaphor rush

	Automatic Design of Metaheuristics
	Metaheuristic design space: Component-based view
	Automatic configuration tools
	Experimental design techniques
	Heuristic search techniques
	Surrogate model-based techniques
	Iterated racing approaches

	Metaheuristic Software Frameworks
	ParadisEO
	HeuristicLab
	jMetal
	EMILI

	Discussion
	Rethinking the focus of the research
	Rethinking the way we benchmark metaheuristics
	Rethinking the way we create metaheuristics

	Conclusions
	Acknowledgments
	Data Availability
	References

