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A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods 
applicable to a wide set of optimization problems for which exact/analytical approaches are either limited 
or impractical. In other words, a metaheuristic can be considered a general algorithmic framework that can 
be easily adapted to different optimization problems. In this article, we discuss the two main approaches 
used to create new metaheuristics: manual design, which is based on the designer’s “intuition” and 
often involves looking for inspiration in other fields of knowledge, and automatic design, which seeks to 
reduce human involvement in the design process by harnessing recent advances in automatic algorithm 
configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-
based metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years, 
this trend has been strongly criticized due to the uselessness of new metaphors in devising truly novel 
algorithms and the confusion such metaheuristics have created in the literature. We then present 
automatic design as a powerful alternative to manual design that has the potential to render the “novel” 
metaphor-based metaheuristics trend obsolete. Finally, we examine several fundamental aspects of the 
field of metaheuristics and offer suggestions for improving them.

Introduction

Optimization is a vast research field with hundreds of years of 
history. It deals with a wide variety of optimization problems 
and solution methods. Although the early days of optimization 
were characterized by the development of algorithms that could 
find optimal solutions, it eventually became clear that many 
optimization problems cannot be efficiently solved to optimality. 
Well-known examples of such problems are multimodal non-
differentiable functions in the continuous optimization domain 
[1,2] and NP-hard problems in the discrete optimization domain 
[3–5]. With the advent of increasingly powerful computers, heu-
ristic algorithms have rapidly become the mainstream approach 
to difficult optimization problems, replacing the use of exact 
algorithms in many cases. In other words, the focus of research 
has shifted from the design and development of algorithms that 
find the best solution to the design and development of algo-
rithms that can rapidly provide solutions that are good, although 
not provably optimal. Since the seminal work of Glover [6], the 
most commonly used term to refer to this type of algorithm has 
been metaheuristic.

There have been many attempts to provide a definition of the 
term “metaheuristic” that is both precise and encompasses all 
the diverse metaheuristics that have been proposed in the litera-
ture. The definition provided by the Metaheuristics Network 
[7], which is the one we adopt in this article, is as follows:

“A metaheuristic is a set of algorithmic concepts that can be 
used to define heuristic methods applicable to a wide set of 
different problems. In other words, a metaheuristic can be seen 

as a general algorithmic framework which can be applied to 
different optimization problems with relatively few modifica-
tions to make it adapted to a specific problem.”

Some of the most popular and best-performing metaheuristics 
include evolutionary computation [8–12], tabu search [13,14], 
simulated annealing [15,16], ant colony optimization [17–19], 
particle swarm optimization [20–22], and iterated local search 
[23,24].

Seeking to improve the efficiency of metaheuristic implemen-
tations, researchers have redefined the components of various 
metaheuristics and explored new ways of implementing them. 
However, the resulting high number of possible components to 
use increases considerably the complexity of the design process. 
Thus, it became less efficient to implement metaheuristics manu-
ally, that is, by handcrafting the components one by one.

To address this problem, and motivated by the early success 
of metaheuristics inspired by natural processes (e.g., evolution-
ary computation, simulated annealing, ant colony optimiza-
tion, and particle swarm optimization), some members of the 
metaheuristics community have been proposing “novel” meta-
heuristics based on a disparate set of metaphors. However, not 
only this approach is just another instance of the inefficient 
manual design approach, but it has also caused a number of 
undesirable consequences for the entire field. The main nega-
tive consequence is that, most of the time, the only novelty in 
a proposed “novel” metaheuristic is the use of new and confus-
ing terminology. Analyses of these “novel” metaheuristics show 
that they can often be exactly mapped to already published ones 
by changing the terminology used to describe them [25–34].
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Another approach has been to propose automatic algorithm 
design methods in which human involvement is less important 
[35] and that have no need of novel metaphors. The develop-
ment of these automatic methods and their application in 
creating efficient metaheuristic implementations are currently 
central topics in the field of metaheuristics. In this paper, we 
examine the automatic design approach in detail and describe 
how it is being used to create a new generation of high-
performance metaheuristic implementations. Following 
this examination of the automatic design approach, we pro-
vide some reflections on fundamental aspects of the field of 
metaheuristics that we believe will help advance the field.

The remainder of this paper is organized as follows. The 
“Metaheuristics” section provides a general introduction to meta-
heuristics by explaining their main characteristics and classifica-
tions. The “Manual Design of Metaheuristics” section elaborates 
on the disadvantages of the manual algorithm design approach 
and discusses the trend of “novel” metaphor-based algorithms 
and its negative impact on the field. The “Automatic Design of 
Metaheuristics” section describes the automatic algorithm design 
paradigm and its use in developing high-performance meta-
heuristic implementations from automatically configurable frame-
works. The “Discussion” section presents our perspective on 
improving three foundational aspects of the field: the focus of 
the research, the way metaheuristic implementations are bench-
marked, and the creation of new metaheuristics. Finally, the 
“Conclusions” section provides a summary of the topics discussed 
in the paper.

Metaheuristics

Broadly speaking, metaheuristics are optimization techniques 
that extract information from the search space and use it to 
direct the search toward areas where high-quality solutions can 
be found. Most metaheuristics have the following characteristics: 
They are iterative—that is, solutions are constructed/perturbed 
based on starting points or complete initial solutions by an opti-
mization process that consists of a number of steps that repeat 
for multiple iterations; they use randomization—that is, they 
make use of random variables in one or more of their compo-
nents; and they have a user-defined termination criterion—e.g., 
reaching a maximum computation time or obtaining a solution 
of minimum desired quality.

Metaheuristics can be classified in different ways. For exam-
ple, they can be constructive or perturbative, depending on the 
manner in which they create new candidate solutions. They can 
be memory-based or without memory, depending on whether 
they memorize solutions (or solution components). They can 
also be metaphor-based or non-metaphor-based, depending 
on whether they are inspired by a metaphor. However, one 
of the most common ways to distinguish them is by the number 
of solutions handled in each iteration, that is, by distinguish-
ing between those that are single-solution and those that are 
population-based.

In single-solution metaheuristics, the optimization process 
is based on a single solution that is iteratively improved by 
means of small changes. Examples of this type of metaheuristic 
include tabu search [13], simulated annealing [16,36], and iter-
ated local search [23]. By contrast, population-based metaheuris-
tics maintain multiple solutions in parallel and combine them 
to create new solutions. Most swarm intelligence [22,37–39] and 
evolutionary algorithms [8–12,40] belong to this class.

Population-based and single-solution metaheuristics have 
different, often complementary, optimization capabilities. For 
example, while population-based metaheuristics are typically 
better at exploring the search space and quickly identifying some 
of the most promising regions, single-solution metaheuristics 
tend to be more effective at improving existing solutions. Thus, 
it is common to combine these two types of metaheuristics to 
produce metaheuristic implementations that are better equipped 
to perform robust optimization. Two methods of doing so are 
component-based hybrids, in which a population-based meta-
heuristic includes a single-solution metaheuristic as an addi-
tional component in its procedure, and algorithm-sequential 
hybrids, in which two metaheuristics are executed one after the 
other, with the output of one metaheuristic becoming the input 
of the next in the sequence [41,42].

Although most metaheuristics share the same high-level 
characteristics (i.e., they are iterative, are randomized, and have 
a user-defined termination criterion, as mentioned above), they 
can differ in numerous aspects, including the specific mecha-
nisms used to sample the search space, the way they organize 
the search process, and the mechanisms they use to control 
the exploration–exploitation trade-off. In several cases, these 
aspects are implemented in the metaheuristics by taking inspi-
ration from natural, social, or human-made processes. The 
metaheuristics that have been created using the “inspiration-
based” approach are commonly referred to as metaphor-based 
metaheuristics [43].

Indeed, the approach of looking for inspiration from other 
fields of knowledge was important for designing some of the 
best-performing metaheuristics. As early as the 1970s, the use 
of naturally occurring optimization processes—such as evolu-
tion by natural selection, which inspired evolutionary com-
putation [8,9]—to formulate new optimization algorithms 
became appealing to researchers in the areas of computer 
science and engineering. However, it was in the 1980s and 
early 1990s that the approach of looking for inspiration in 
other fields of knowledge began to be vigorously explored in 
the field of optimization and became a major driver of its 
development. Notably, during these decades, thermodynamic 
principles were used to develop simulated annealing [16,36], 
the foraging behavior of some ant species was used to develop 
ant colony optimization [44–46], and the dynamics and social 
interactions of bird flocks were used to develop particle swarm 
optimization [20–22].

Owing to their success, these metaphor-based metaheuristics 
are among the most extensively studied and well-understood 
techniques in the optimization literature. The reason for their 
success is not their source of inspiration; rather, it is that they 
introduced novel and useful algorithmic concepts that could be 
conveniently used for optimization. However, some members 
of the metaheuristics research community nevertheless continue 
to propose “novel” metaphor-based metaheuristics whose only 
novelty is in the chosen metaphor and terminology.

Manual Design of Metaheuristics

General issues with metaheuristic manual design
Historically, new metaheuristics, and metaheuristic implemen-
tations with improved performance, were created by manual 
design—that is, algorithm designers manually devised or modi-
fied designs according to their knowledge (empirical, theoreti-
cal, or intuitive) and expertise [35,47].
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Although manual design has been useful for implementing 
high-performance metaheuristics, it is becoming less efficient. 
Indeed, the design of a high-performance implementation of a 
metaheuristic requires both choosing among large sets of pos-
sible metaheuristic components and fine-tuning the values of 
their parameters, and it is unrealistic to expect developers who 
rely on their own knowledge and expertise to perform these tasks 
efficiently. Human algorithm designers are biased by their previ-
ous experience and limited in the number of designs they can 
attempt; thus, the design process is time-consuming and error-
prone. In practice, the main disadvantage of manual design is 
that it limits the flexibility with which new metaheuristic designs 
can be explored and the generality of the developed metaheuris-
tics. In addition, the manual design process is directed by subjec-
tive choices, which may make it difficult for the design process 
to be understood a posteriori.

This flexibility limitation is caused by the fact that metaheuris-
tics have been traditionally conceived as monolithic blocks; 
that is, they have a predefined rigid structure. This rigid struc-
ture constrains the options for modifying the behavior of the 
metaheuristic: The designer can either adjust the parameter 
values of the metaheuristic or redefine its components [48]. 
However, the existence of high-performance hybrid metaheuris-
tic implementations [41,42,49,50] highlights the importance 
of metaheuristic designs that go beyond the bounds of the 
original monolithic block. However, creating hybrid designs 
manually is difficult.

The generality limitation is caused by the fact that, in most 
cases, the initial development of a metaheuristic is performed 
with some application in mind; the performance of the devel-
oped metaheuristic therefore tends to be very good for the spe-
cific problem or problem class for which the metaheuristic was 
developed, but less good for other problems or problem classes. 
In general, the performance of a metaheuristic tends to drop 
considerably when it is applied to a problem that has different 
characteristics from those for which it was originally developed 
or when the optimization scenario has specific constraints that 
were not considered in the initial metaheuristic design, such as 
being allowed to run only for a limited time or being unable to 
use problem-related information (e.g., black-box scenarios or 
ill-defined real-life problems) [51,52]. In such cases, a new imple-
mentation of the metaheuristic must be designed for the new 
problem in order to obtain good results.

However, the process of manually adjusting a metaheuristic 
so as to propose a new metaheuristic implementation is laborious 
and has several potential pitfalls. First, as mentioned above, the 
designer of the new metaheuristic implementation may start by 
trying to enhance the behavior of the metaheuristic by using 
different parameter values or by modifying one or more of the 
metaheuristic components in the implementation that, according 
to his/her knowledge and expertise, may hinder the performance 
of the metaheuristic. If this process, which depends solely on the 
ability of the human designer, does not produce the desired out-
come, the only option may be to design and implement a new 
metaheuristic from scratch. The latter task, however, is even more 
challenging than the former because the algorithm designer must 
now create a better design, once again guided only by his/her 
knowledge and previous experience.

Finally, manual design makes the design of a metaheuristic 
a subjective process in which the rationale behind some design 
decisions remains hidden in the mind of the human designer, 
and what is learned by the designer is therefore not shared with 

the rest of the research community. In practice, manual design 
involves finding a good algorithm design in a large set of options 
through trial and error. To reduce the number of options, algo-
rithm designers eliminate designs that, based on their knowl-
edge, they believe would not work for the problem at hand. 
Designs that are experimentally tested but do not produce good 
results are often discarded rather than reported in technical 
papers. Knowing more about which designs have been deemed 
unsuitable for testing and which designs have already proven 
unsuccessful would help guide the creation of new designs.

The “novel” metaphor-based metaheuristic problem
For better or for worse, manual design has been guided by 
optimization processes observed in natural systems. Although 
taking inspiration from nature was successful in the early days 
of metaphor-based metaheuristics, when innovative and well-
performing metaheuristics such as evolutionary computation, 
ant colony optimization, simulated annealing, and particle 
swarm optimization were proposed, this is no longer the case. 
Instead, it has become commonplace to find papers proposing 
“novel” metaheuristics, in which the use of the metaphors does 
not provide a clear mapping between a natural behavior and 
the implemented optimization process.

In the last few decades, hundreds of metaphors from the 
most diverse set of natural, artificial, and even supernatural 
behaviors have been used to develop “novel” metaphor-based 
metaheuristics. In most cases, these metaheuristics are based 
on simplistic mathematical models that vaguely match the 
behaviors that inspired them and are presented using elaborate 
metaphoric descriptions that make them difficult to understand 
(some examples are provided below). Recently, some of the 
most widespread “novel” metaphor-based metaheuristics have 
been subjected to rigorous analyses, which have provided com-
pelling evidence that, rather than being novel, they are either 
copies or minor variations of well-established metaheuristics 
and that their only novelty is in the use of new metaphors and 
terminology [25–27,29–34].

In particular, three main problems have been identified in 
papers proposing “novel” metaphor-based metaheuristics [53]. 
First, they introduce useless metaphors that lack a scientific basis—
e.g., zombies, reincarnation, and intelligent water drops—and use 
new terminology that makes it difficult to understand the ideas 
being proposed. Second, they lack meaningful novelty, as typically 
the ideas proposed are already known. Third, they use poor experi-
mental validation and comparison practices, such as comparing 
“novel” metaheuristics run on recent computers against old algo-
rithms run on old computers, and they use benchmark testbeds 
that contain biases that can be exploited by the “novel” metaheuris-
tics, thus favoring their performance. An example of such unfair 
comparison was provided in [54], in which it was experimentally 
demonstrated that the “novel” slime mold, butterfly, and Harris 
hawks metaheuristics, among others, make use of center-bias 
operators that increase their efficiency when the testbed includes 
problems that have the optimal solution located in the center of 
the search space.

The negative consequences of the “novel” metaphor-based 
metaheuristics trend extend well beyond the existence of a few 
algorithms that were inspired by far-fetched behaviors and 
presented in papers with methodological issues. Hundreds of 
“novel” metaphor-based metaheuristics have been published 
in the literature [55] as a result of this trend, which is grounded 
in unscientific practices. The trend persists largely because 
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manual design is still the primary method of creating meta-
heuristics. In the remainder of this subsection, we explain why 
“novel” metaphor-based metaheuristics are problematic, list 
some of their negative consequences, and outline the efforts 
that have been made to address the problem.

The metaphor rush
Since the mid-2000s, the field of optimization has witnessed a 
rush to find “interesting” behaviors, mostly examples of natural 
and social phenomena, that can be used to devise “novel” meta-
heuristics. In the numerous papers proposing this kind of meta-
heuristic, the authors use the following sequence of steps: (a) 
They start by claiming to have found a new behavior that has 
applications in optimization, (b) they present why, in their opin-
ion, the behavior is interesting, and provide an extensive list of 
other “novel” metaheuristics based on “interesting” behaviors, 
(c) they describe their proposed metaheuristic using the termi-
nology of the behavior instead of the terminology that is typi-
cally used in optimization, and (d) they compare the “novel” 
metaheuristic with other optimization techniques, often ones 
that are old and whose performance is much worse than the 
state of the art.

Like other authors, such as [56], we avoid citing publications 
that propose faulty metaphor-based metaheuristics. The reader 
is invited to visit the Evolutionary Computation Bestiary [55] 
for a list of the metaheuristics discussed here or to search for 
specific metaheuristics on Google Scholar using their names 
(which are given in italics in the text). As a concrete example, 
we consider the grey wolf optimizer. According to its authors, 
this metaheuristic is inspired by “the way grey wolves organize 
for hunting,” following a “strict social hierarchy.” To describe 
the metaheuristic, the authors introduce a new terminology in 
which candidate solutions are referred to as “wolves,” the three 
best solutions in the “pack” (i.e., the set of candidate solutions) 
are referred to as the “alpha,” “beta,” and “delta” wolves, and the 
optimum of the problem is the “prey” the wolves are hunting. 
As shown in [30,32], the grey wolf optimizer metaheuristic is 
based on the idea of computing, at each iteration, the centroid 
of a hypertriangle whose vertices are the positions of the three 
best solutions (i.e., “alpha,” “beta,” and “delta”). Then, the com-
puted centroid is used to bias the movement of the remaining 
solutions (i.e., the “pack”). The grey wolf optimizer metaheuris-
tic was evaluated on a set of 29 continuous functions, all with 
low dimensionality and/or with the optimum at the center of 
the search space, as well as on some classic engineering design 
problems. When it was compared with PSO, differential evolu-
tion (DE) [57], and covariance matrix adaptation evolution 
strategies (CMA-ESs) [54], it was found to have similar perfor-
mance. This similarity in performance is not surprising, con-
sidering that the “novel” grey wolf optimizer metaheuristic was 
later shown to be a variant of PSO [30,32].

Another example of a popular “novel” metaphor-based meta-
heuristic is cuckoo search, which is described using the meta-
phor of the “cuckoo’s parasitic behavior.” In this metaheuristic, 
initial solutions are referred to as “cuckoos,” while solutions that 
have been perturbed are referred to as “eggs.” The cuckoo search 
metaheuristic is based on the idea that some “cuckoos” lay “eggs” 
in the “nests” of other birds (which are random points in the 
search space) and only some of these “eggs” will still exist in the 
next iteration. The authors of cuckoo search compared their 
metaheuristic against a genetic algorithm and the first version 
of PSO. The comparison was performed using 13 continuous 

functions that all had an optimum solution at the center of the 
search space. Because the authors did not provide any informa-
tion about the dimensionality of the functions, it was initially 
difficult to evaluate the quality of their results. However, cuckoo 
search turned out to be an evolutionary strategy that uses the 
recombination mechanism of DE [31] and therefore does not 
advance the state of the art.

Consequences of the metaphor rush
Approximately 500 papers proposing “novel” metaphor-based 
metaheuristics have been published [33,58]. The authors of many 
of these papers claimed to be proposing a novel technique inspired 
by some sort of “intelligent” behavior or even that they opened up 
a new avenue of research. See for example “PostDoc: The Human 
Optimization,” by Satish Gajawada. Notwithstanding increasing 
awareness of the problems that these “novel” metaheuristics are 
causing in the field, some members of the metaheuristics com-
munity continue to actively propose more metaheuristics of 
this kind.

One of the main problems caused by the publication of papers 
proposing “novel” metaheuristics has been the fragmentation of 
the literature into dozens of barely distinguishable niches [53,56]. 
A direct consequence of this fragmentation is a confusing litera-
ture, in which the same ideas and concepts are repeatedly rein-
troduced using different terminologies derived from the use of 
new metaphors. This, in turn, makes the comparison of meta-
heuristics increasingly challenging. For example, it is difficult to 
compare the optimization capabilities of “grey wolves hunting” 
with those of “cuckoos laying eggs.” Moreover, when one analyzes 
the mathematical models proposed for these metaheuristics, 
they turn out to be either copies or minor variations of optimiza-
tion techniques published many years previously.

The publication of hundreds of “novel” metaphor-based meta-
heuristics has created the impression that every simplistic math-
ematical model based on an “interesting” behavior deserves to be 
added to the metaheuristics literature. Although it is the respon-
sibility of scientific venues to ensure that their output is of sci-
entific value, articles with methodological flaws and a lack of 
scientific rationale are being peer-reviewed and published despite 
their inability to contribute meaningfully to the field. Consider, 
for example, the following excerpt from the intelligent water drops 
paper: “In nature, we often see water drops moving in rivers, lakes 
and seas … We also know that the water drops have no visible 
eyes to be able to find the destination (lake or river).” See [28,29] 
for a rigorous analysis of this metaheuristic.

Finally, “novel” metaphor-based heuristics damage the repu-
tation of the field, as documented by Sörensen [43] and paro-
died in “A Spectral Approach to Ghost Detection,” by Maturana 
and Fouhey. In particular, they damage the fields of swarm 
intelligence and evolutionary computation, which are used to 
justify the use of metaphors. The truth is that, although meta-
phors can guide the design of successful metaheuristics, they 
do so rarely.

Efforts to mitigate the metaphor rush
Efforts to stop the spread of “novel” metaphor-based metaheuris-
tics mainly consist of raising awareness of how they negatively 
affect the field. One of the earliest efforts was “A Rigorous Analysis 
of the Harmony Search Algorithm” by Dennis Weyland [25], 
which showed, by means of a component-by-component com-
parison, that harmony search is an evolutionary algorithm. The 
paper also identified systemic problems that allowed harmony 
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search to become popular despite its lack of novelty. Another 
notable example is “Metaheuristics—The Metaphor Exposed” by 
Sörensen [43], the first paper clearly attempting to call attention 
to the “metaphor problem” in the field of metaheuristics.

Although these papers barely resonated outside the commu-
nity that was already aware of the problem, they encouraged 
other researchers to act and propose possible solutions. Most of 
these efforts can be categorized as follows: (a) critical analysis 
of metaphor-based metaheuristics; (b) modeling frameworks, 
taxonomies, and metaphor-free descriptions; and (c) editorial 
policies.

In category (a), we find efforts to clarify whether there is any 
real novelty in “novel” metaheuristics and to obtain insights into 
the reasons the authors used a particular metaphor. Component-
based analyses, similar to that of Weyland [25], have been conducted 
for the following “novel” metaheuristics: biogeography-based 
optimization [59], black hole optimization [27], intelligent water 
drops [28,29], the grey wolf optimizer, the moth-flame optimiza-
tion algorithm, whale optimization, the firefly algorithm, the bat 
algorithm, the antlion optimizer [30,32], and cuckoo search [31]. 
The conclusions of these analyses are clear: There is no novelty 
in any of these “novel” metaheuristics. In a critical study with a 
slightly different focus, Melvin et al. [60] demonstrated that the 
gravitational search algorithm fails as a metaphor because it is 
based on a mathematical model that is inconsistent with Newtonian 
gravity. The failure of the gravitational search algorithm shows that 
using new metaphors without a sound motivation to do so may 
result in ineffective metaheuristics.

Category (b) includes taxonomies and modeling frameworks 
that group metaheuristics based on patterns in their design 
[26,33,34,61–64]. The goal of these efforts is to provide the meta-
heuristics community with a tool that can identify the compo-
nents that make up a “novel” metaheuristic and, consequently, 
reveal whether it is actually novel. The main challenge is to incor-
porate a sufficiently large number of components. While the first 
steps in this direction have been taken, this is a huge endeavor.

Also in category (b), we find papers that examine the way 
metaphor-based metaheuristics work and their relationship to 
other metaheuristics. Examples include papers by Lones [65,66], 
which describe some of the “novel” metaphor-based metaheuris-
tics using metaphor-free terminology. In addition, an increasing 
number of papers aim to quantify the problem by compiling lists 
of metaphor-based metaheuristics and/or analyzing their per-
formance [54,55,58,67,68].

Finally, category (c) contains editorial policies that explicitly 
forbid the submission of papers proposing metaphor-based 
metaheuristics unless the authors can provide compelling evi-
dence that the use of the metaphor contributes to the advance-
ment of the state of the art. Some journals that have established 
this type of policy are 4OR [69], Journal of Heuristics [70], Swarm 
Intelligence [71], ACM Transactions on Evolutionary Learning and 
Optimization [72], and Engineering Applications of Artificial 
Intelligence [73]. Establishing editorial policies is undoubtedly 
one of the most effective mechanisms for stopping the publica-
tion of metaphor-based metaheuristics; however, this approach 
remains the exception rather than the rule.

Automatic Design of Metaheuristics
As the need to solve increasingly complex problems more effi-
ciently has grown, so has the need for better and more efficient 
problem-solving methods. This has motivated researchers to 

search for alternative design approaches that are not subject to 
the disadvantages of manual design. One of the main goals of 
this research has been to reduce the heavy reliance on human 
algorithm designers that makes the design process biased, time-
consuming, and error-prone. Automatic algorithm design meth-
ods are a powerful alternative to manual design. These methods 
eliminate the need for human involvement by exploiting recent 
advances in automatic algorithm configuration methods.

The automatic design of metaheuristic implementations is a 
relatively new paradigm in which the creation of a metaheuristic 
implementation is handled as an optimization problem that 
consists of finding a combination of metaheuristic components 
and parameter settings that will perform well when applied to 
the optimization problem considered. To achieve this, automatic 
design methods for metaheuristic implementations rely on two 
main components: a design space—that is, the set of all possible 
metaheuristic designs that can be obtained by combining meta-
heuristic components and parameters settings, and an auto-
matic configuration tool (ACT)—that is, a tool that allows the 
exploration of the design space of the metaheuristic. In recent 
years, several metaheuristic software frameworks (MSFs) have 
been proposed that facilitate the automatic design of high-
performance metaheuristic implementations.

In the metaheuristics literature, methods that target the design 
of metaheuristic implementations as an optimization problem are 
sometimes referred to as hyper-heuristics. A modern definition 
of the term hyper-heuristic is as follows: “a search method or learn-
ing mechanism for selecting or generating heuristics to solve com-
putational search problems” [74]. However, the initial research on 
hyper-heuristics was not focused on the automatic design of meta-
heuristic implementations but rather on the selection of a suitable 
implementation from a portfolio of preexisting metaheuristic 
implementations, the so-called “heuristics for choosing heuristics” 
for combinatorial optimization problems. Currently, the automatic 
design of metaheuristics is approached by hyper-heuristics in the 
same way as automatic design methods, that is, by defining a meta-
heuristic design space and using an optimization algorithm to 
explore it and find a suitable design. In fact, in the vast majority 
of cases, the only difference between automatic design methods 
and hyper-heuristics is that hyper-heuristics explore the design 
space using genetic programming [75,76].

Metaheuristic design space: Component-based view
The first step in defining a metaheuristic design space is to 
derive a component-based view of the considered metaheuris-
tic. To do so, the algorithm designer first identifies ways in 
which the components of a metaheuristic can be implemented 
(e.g., by studying the different implementations of the meta-
heuristic that have been proposed in the literature) and then 
groups them based on their functionality. The components 
obtained in this manner define the metaheuristic design space 
and are combined using an ACT (as explained in the next sec-
tion). The ACT considers these components, which can be 
numerical, categorical, and subordinate, as parameters to be 
optimized. Numerical parameters whose values are either real 
numbers or integers are classical parameters—e.g., the muta-
tion rate in EC, the evaporation rate in ACO, or particle inertia 
in PSO. Categorical parameters are alternatives for the func-
tionality of a particular component—e.g., the recombination 
operator in EC, the solution construction rule in ACO, or 
population topology in PSO. Finally, subordinate parameters 
are those that are only necessary for particular values of other 

D
ow

nloaded from
 https://spj.science.org at U

niversite L
ibre de B

ruxelles on D
ecem

ber 21, 2023

https://doi.org/10.34133/icomputing.0048


Camacho-Villalón et al. 2023 | https://doi.org/10.34133/icomputing.0048 6

parameters—e.g., in ACO, if the MAX − MIN Ant System phero-
mone update rule is selected, then the subordinate parameters 
controlling the lower and upper bounds of the pheromone should 
also be selected. These parameters together form the parameter 
configuration space C, which is used by the configuration tool, 
as explained in the next section.

Automatic configuration tools
ACTs were initially developed to automatically select parameter 
values in parameterized software to maximize the performance of 
the software [77,78]. However, more general-purpose ACTs that 
allow the selection of the algorithm components of the implemen-
tation have been proposed. The use of ACTs has increased over 
the last decade, not only because they generate high-performance 
algorithms that are tailored for a specific problem but also because 
of increases in the availability of inexpensive computing power, as 
they can be computationally expensive. The working mechanisms 
of ACTs are diverse, ranging from experimental design techniques 
to surrogate model-based approaches. The specific mechanisms 
implemented in an ACT determine how computationally intensive 
it is, the types of parameters it can handle, and the types of post-
configuration analyses that can be conducted.

The general workflow followed by ACTs is depicted in Fig. 1. 
Given a parameter configuration space C, an iterative process is 
performed in which the metaheuristic M being configured is 
executed with different parameter configurations c on the set of 
test instances I until a given computational budget b is fully used. 
The approaches that have been investigated to develop ACTs to 
date can be categorized as follows.

Experimental design techniques
These are based on the use of statistical techniques to evaluate 
aspects such as the statistical significance of performance dif-
ferences; an example of these techniques is CALIBRA [79].

Heuristic search techniques
These consist, as their name suggests, of the application of 
metaheuristics to handle configuration tasks. Examples include 
ParamILS [80], which implements an iterated local search in 
the parameter configuration space, and the work presented in 
[81], in which CMA-ES [82] is used for a configuration task of 
numerical parameters.

Surrogate model-based techniques
These aim to predict the shape of the configuration landscape 
based on previous executions of the algorithm, with the goal 
of avoiding the waste of executions on unpromising regions. 
The best-known technique of this type is the sequential model-
based algorithm configuration (SMAC) [83].

Iterated racing approaches
These are based on the idea of performing sequential statisti-
cal testing using the Friedman test and its related post-tests 
to create a sampling model that can be refined by iteratively 
“racing” candidate configurations and discarding those that 
perform poorly. Various racing algorithms are implemented 
in the irace package [47].

Although ACTs differ mostly in the way they approach auto-
matic configuration problems and in their generality, there are 
also practical differences that may be important for users. For 
example, when used out-of-the-box, iterated racing approaches, 
such as irace, can impose a higher computational overhead dur-
ing the configuration process compared to surrogate model-
based approaches, such as SMAC, thus making the latter more 
suitable for configuration scenarios with expensive objective 
functions. However, irace, SMAC, and other actively maintained 
ACTs now allow changes to be made to their sampling models 
to reduce computation time in expensive configuration scenarios 
or to perform a more intensive search if computation time is 
abundant. Another important difference between ACTs is the 
use of early termination mechanisms for poorly performing con-
figurations, which is also called capping or adaptive capping 
[47,80]. These mechanisms help make more efficient use of the 
available computation time and are particularly useful for opti-
mization problems involving time-related objective functions. 
Finally, a common feature of ACTs is that they provide data that 
can be used for conducting post-configuration analyses, such as 
parameter importance [84,85] and ablation analysis [86].

Metaheuristic Software Frameworks

An MSF is a parameterized software tool that implements the 
design space of a metaheuristic. To automatically generate a meta-
heuristic implementation, an MSF is used in combination with an 

Fig. 1. General workflow followed by an automatic configuration tool (ACT) used to configure a metaheuristic.
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ACT, which, as explained in the previous section, iteratively exe-
cutes the MSF with different configurations. The ACT evaluates 
the performance of each MSF configuration (i.e., metaheuristic 
implementation) on a set of problem instances until a configura-
tion for the MSF is found that satisfies the needs of the user.

It is important to differentiate between automatic configura-
tion and automatic design. The former refers to fine-tuning the 
parameter values of an already defined metaheuristic design, 
whereas the latter refers to composing new metaheuristic designs 
by recombining their components in new ways in addition to 
fine-tuning their parameter values. Moreover, automatic con-
figuration and automatic design have different goals. The goal of 
automatic configuration is to find a high-performance parameter 
setting for the considered metaheuristic without changing the 
components of its implementation. In contrast, the goal of auto-
matic design is typically to explore combinations of components 
and parameter settings that have never been considered.

MSFs proposed in the early days, with few exceptions (such 
as ParadisEO [87,88], which we discuss below), only enabled 
the use of ACTs to perform automatic configuration tasks. If 
users were interested in performing automatic design tasks 
using these MSFs, they had to make major adaptations to the 
code of the MSF to extend its metaheuristic design space with 
new components and rules for combining them. In the worst-
case scenario, a complete reimplementation of the MSF was 
necessary. Over time, the approach to designing MSFs has 
changed appreciably. In contrast to their earlier counterparts, 
most modern MSFs strive for a flexible, modular design that 
allows users to apply them to solve different types of problems 
and easily extend them with new metaheuristic components 
and rules for combining them.

The general approach to combining flexible, modular MSFs 
with ACTs to instantiate ad hoc metaheuristic implementations 
for specific problems or problem instance distributions is illus-
trated in Fig. 2. The goal of this approach is to enable the auto-
matic solution of new problems by allowing the configuration 
tool to find an effective metaheuristic implementation. Therefore, 
human involvement is necessary only in cases in which one 
wishes to add new metaheuristic components to the MSF; more-
over, this task is typically straightforward, owing to the modular 
design of the MSF.

The main challenge in creating MSFs is the definition of the 
rules that control the manner in which metaheuristic components 

can be combined. There are two main methods to achieve this: 
algorithm templates and grammar-based programming. Using 
an algorithm template (or top-down design) consists in creating 
a parameterized algorithm template in which metaheuristic com-
ponents are represented as possible alternatives in a typically fixed 
algorithmic procedure. In contrast, in grammar-based program-
ming (or bottom-up design), the correct combination of compo-
nents is checked against a grammar, that is, a set of “production 
rules” that are applied repeatedly. The main difference between 
the two approaches is that algorithm templates can be much easier 
to define than grammars but provide limited flexibility in the 
implementation of metaheuristics (such as component recur-
sion), whereas grammar-based programming can be conceptually 
more difficult but allows the creation of designs that are much 
more complex [89].

As shown in Table, several MSFs proposed in the literature 
enable the automatic design of metaheuristics. The table shows 
the main types of metaheuristic components included in each 
software framework and the types of problems it can be used 
to address. Note that the last four MSFs in the table are of a 
more general nature because they include components from 
more than one metaheuristic, and that the list in the table is 
not exhaustive. Indeed, in a recently published paper [90], some 
current contributors and maintainers of ParadisEO identified 
47 other MSFs that are available online. However, many are 
closed-source, unmaintained, and/or not aimed at designing 
new metaheuristic implementations (i.e., they only enable the 
use of automatic configuration and therefore only optimize the 
values of numerical parameters).

In the following, we present a more detailed discussion of the 
last four MSFs listed in Table, namely, ParadisEO, HeuristicLab, 
jMetal, and EMILI, which are some of the most comprehensive 
and actively maintained MSFs. After describing the general aspects 
of each MSF, we provide references to works that explore both 
technical and conceptual aspects of their use in the context of 
automatic design.

ParadisEO
ParadisEO [87,88,90] is a well-known MSF whose initial devel-
opment dates back to the early 2000s. This MSF includes four 
main modules that allow users to compose metaheuristic designs: 
evolving objects for population-based metaheuristics, moving 
objects for local search algorithms, estimation of distribution objects 

Fig. 2. General approach for combining modular MSFs and ACTs.
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for estimation of distribution algorithms, and multiobjective 
evolving objects for multiobjective optimization. Some of the 
key features of ParadisEO are as follows: (a) It has a high runtime 
speed (as it is implemented in C++), (b) it integrates a state-of-
the-art benchmarking and profiling tool called IOHprofiler [91] 
that simplifies the process of comparing and evaluating imple-
mentations against a benchmark, and (c) it has an active com-
munity of maintainers. ParadisEO has been applied to solve 
optimization problems for more than two decades. However, in 
its early days, it was manually configured and its use in the con-
text of automatic design is something that has only recently been 
investigated. In [92], the authors studied 19 genetic algorithms 
for the W-model problem that were automatically generated 
using ParadisEO and irace. They found that the implementations 
automatically generated by irace were able to outperform all 
manually created baseline algorithms and that the fast computa-
tions that ParadisEO is able to provide allow large design spaces 
to be handled in short wall-clock times.

HeuristicLab
HeuristicLab [93] is an optimization software system developed 
in the early 2000s that incorporates an MSF. In its current version 
(version 3.3, released in 2010), the MSF of HeuristicLab has 
modules for instantiating many different machine learning (ML) 
algorithms (e.g., neural networks, random forests, and support 
vector machines) and metaheuristic algorithms (e.g., genetic 
programming, evolutionary computation, particle swarm opti-
mization, and simulated annealing). In addition to providing an 
MSF, HeuristicLab also has a number of useful features: (a) It 
uses a meta-model that allows the representation of arbitrary 
optimization algorithms, (b) it allows the manipulation and defi-
nition of metaheuristic designs via a graphical user interface, (c) 
it provides easy access to problems that can be used for bench-
marking purposes, and (d) it provides interactive charts for the 

analysis of results. Note that while ParadisEO and EMILI 
(described below) are implemented in C++, HeuristicLab is 
implemented in C# and is therefore slower. Except for one paper 
addressing the algorithm selection problem [94], we could not 
find any work specifically targeting the automatic design of meta-
heuristics using HeuristicLab.

jMetal
jMetal [95], which was developed in 2009, is an optimization 
software system implemented in Java that incorporates an MSF 
and has other useful features. jMetal focuses on multi-objective 
optimization; therefore, it allows the instantiation of many state-
of-the-art metaheuristics specialized for multi-objective optimi-
zation, such as NSGA-II [96], GDE3 [97], and IBEA [98]. In its 
current version, jMetal also includes components from several 
single-objective algorithms, such as DE, particle swarm optimi-
zation, and CMA-ES. The main features of jMetal are as follows: 
(a) It provides a simple graphical user interface that allows the 
parameters of the metaheuristic implementation to be set; (b) it 
provides access to five popular testbeds that can be used for 
benchmarking purposes (e.g., ZDT [99], DTLZ [100], and WFG 
[101]); (c) it provides some of the most widely used quality indi-
cators in multi-objective optimization, namely, hypervolume 
[102], spread [96], generational distance [103], inverted genera-
tional distance [103], and epsilon [104]; and (d) it offers support 
for performing experimental studies, including the automatic 
generation of LaTeX tables, statistical pairwise comparison using 
the Wilcoxon test, and R boxplots. Examples of the use of jMetal 
to automatically create metaheuristic implementations include 
[105] and [106].

EMILI
EMILI [107], which was initially developed in 2015, is an MSF 
that implements metaheuristic- and problem-specific components 

Table. List of representative MSFs for the automatic design of metaheuristic implementations

Metaheuristic Name of the MSF Type of problem Number of objectives Year Reference

Ant colony optimization ACO-TSP-QAP Discrete Single objective 2017 [133]

Ant colony optimization MOACO Discrete Multiobjective 2012 [134]

Ant colony optimization UACOR Continuous Single objective 2014 [135]

Artificial bee colony ABC-X Continuous Single objective 2017 [136]

Evolutionary computation ModCMA–ES Continuous Single objective 2021 [137]

Evolutionary computation DEAP Discrete/continuous Single/multiobjective 2012 [138]

Evolutionary computation AutoMOEA Discrete/continuous Multiobjective 2015 [48]

Hybrid of particle swarm optimization and 
differential evolution

PSO–DE Continuous Single objective 2020 [139]

Particle swarm optimization PSO-X Continuous Single objective 2021 [140]

Particle swarm optimization MOPSO Continuous Multiobjective 2022 [106]

Randomized local search SATenstein Discrete Single objective 2009 [141,142]

Multiple metaheuristics ParadisEO Discrete/continuous Single/multiobjective 2002 [87,88,90]

Multiple metaheuristics HeuristicLab Discrete/continuous Single/multiobjective 2005 [93]

Multiple metaheuristics jMetal Discrete/continuous Single/multiobjective 2010 [95]

Multiple metaheuristics EMILI Discrete/continuous Single objective 2019 [107]
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for stochastic local search algorithms. In its current version, EMILI 
is mostly used for single-solution metaheuristics (e.g., iterated 
local search, tabu search, and simulated annealing); however, its 
design makes it easily extensible to population-based metaheuris-
tics. The distinguishing characteristic of EMILI is its architecture, 
which uses a grammatical representation to validate possible com-
binations of algorithm components. The components that make 
up the metaheuristic implementation and the order in which they 
will be executed are checked against a grammar and then encoded 
as a character string so that only valid combinations are produced. 
Then, EMILI translates the character string into a parametric form 
that can be executed by an ACT. Other important features of 
EMILI are as follows: (a) It implements a strict separation between 
algorithm- and problem-related components, and (b) it can con-
sider algorithms as recursive metaheuristic components. So far, 
the two most relevant works using EMILI to automatically create 
metaheuristic designs and implementations are [107], which is 
focused on hybrid stochastic local search algorithms for permuta-
tion flowshop problems, and [108], which is focused on simulated 
annealing for the quadratic assignment and permutation flowshop 
problems.

Discussion
In their 2017 contribution to the Handbook of Metaheuristics, “A 
history of metaheuristics” [109], Kenneth Sörensen, Marc Sevaux, 
and Fred Glover predicted that the next transition in the develop-
ment of metaheuristics would be toward a scientific period. 
Although it seems counterintuitive to predict a scientific period 
in a scientific field, they did so because of past research that 
is extremely unscientific. Most of this unscientific research is 
related to the “novel” metaphor-based metaheuristics discussed 
in “Manual Design of Metaheuristics.” This trend persists because 
a large community is actively “researching” these kinds of algo-
rithms. Moreover, a number of papers have been published, which 
present “novel” metaheuristics in a positive light, ignoring well-
founded criticisms and/or taking such criticisms out of context. 
See, e.g., “An exhaustive review of the metaheuristic algorithms 
for search and optimization: Taxonomy, applications, and open 
challenges,” by Rajwar, Deep, and Das.

We strongly believe that once the metaheuristics community 
examines the trend of “novel” metaphor-based metaheuristics and 
related research scientifically, papers proposing “novel” meta-
heuristics will be withdrawn from journals and conferences and 
the trend will vanish, leaving only a cautionary tale. A good reason 
to call for a more scientific view is to attempt to unify an increasing 
body of research that is at risk of becoming fragmented. Adopting 
a scientific view as the baseline for a field that is still expanding is 
the best way to prevent the (re)appearance of detrimental trends 
in which personal beliefs can override rational thinking.

One of the most recent attempts to steer the metaheuris-
tics community in a more scientific direction has been the 
“Metaheuristics in the Large” community project [110]. In this 
project, several prominent researchers presented their long-term 
vision for the field, which consists of three main conceptual 
underpinnings: (a) extensible and reusable framework templates� 
—i.e., modern MSFs, as described above; (b) white-box problem 
descriptions—i.e., the use of analytic information to guide meta-
heuristic selection/construction in an informed manner; and (c) 
remotely accessible frameworks, components, and problems—
i.e., the creation of service-oriented architectures that enable the 
widespread reuse of data and programs.

Another attempt to refocus the field is a recent open letter titled 
“Metaphor based metaheuristics, a call for action: The elephant 
in the room” [53], which brought together approximately 100 
researchers who want to stop the publication of “novel” metaphor-
based metaheuristics by adopting concrete actions, such as calling 
for scientific journals to establish clear editorial policies concern-
ing how to manage articles presenting this type of metaheuristics. 
This open letter has been one of the most compelling efforts con-
ducted so far to increase awareness of the problem of “novel” 
metaphor-based metaheuristics.

Although these documents have already helped steer the field 
in a healthier direction, much remains to be done. In particular, 
it seems that more effort is required to bring the metaheuristics 
community together to address issues that have remained unre-
solved for years. We propose three methods for removing unsci-
entific approaches from the field of metaheuristics: (a) increasing 
the amount of research that is either experimentally or theoreti-
cally driven, (b) improving the way metaheuristics are bench-
marked, and (c) changing the current mainstream approach to 
creating metaheuristics.

Rethinking the focus of the research
Metaheuristics research is an applied science that deals with the 
design and application of optimization algorithms that work well 
regardless of the complexity of the considered problems. As such, 
the field has always had a strong bias toward application-oriented 
research and has extensively used “competitive testing” to make 
claims about algorithm performance [111]. Competitive test-
ing measures and compares the performance of the compared 
algorithms for a given set of problem instances and for a given 
performance measure [112] but does not explain differences in 
performance. Therefore, to advance the field and increase our 
knowledge of why some techniques work well on some problems 
and not on others, it is key to reduce the asymmetry between 
the amount of research that is application-oriented and that 
which is experimentally or theory-driven.

Studying the interplay between the computational models 
underlying a metaheuristic and its performance on different 
problem classes is important not only from a research perspec-
tive but also from a practical perspective. Experimental and 
theoretical analyses allow us to, for example, (a) understand how 
extensible the ideas involved in a metaheuristic are and, there-
fore, to know how they can be used to address other problems; 
(b) guide the development of new metaheuristic components 
that can further improve performance or solve known issues; 
and (c) define guidelines for creating metaheuristic implementa-
tions, i.e., useful indications of the ways in which metaheuristic 
components can be combined so that new designs can be created 
and tested more easily.

In the last few years, this area seems to have seen improvement, 
as application-oriented papers that introduce new optimization 
algorithms motivated by empirical evidence or theoretical findings 
are now much more frequent. However, important challenges 
still need to be overcome regarding the way research is con-
ducted in this field, starting with the methodological practices 
that we use to draw conclusions from experimental studies.

Rethinking the way we benchmark metaheuristics
Carl Sagan popularized the phrase “extraordinary claims require 
extraordinary evidence” [113]. In the field of metaheuristics, there 
is great variety in the way evidence (i.e., data) is collected and 
used to draw conclusions about metaheuristic performance—a 
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process commonly referred to as benchmarking [112]. At one 
end of the spectrum, there are articles about “novel” metaphor-
based algorithms that not only make extraordinary claims but 
also are textbook examples of poor scientific practice (see the dis-
cussion in “The ‘novel’ metaphor-based metaheuristic problem”). 
At the other end of the spectrum, there are researchers creating 
new tools to evaluate metaheuristic performance [114] and inves-
tigating new methodologies to compare metaheuristics using 
modern techniques such as deep statistical analysis [115].

In general, although state-of-the-art methodologies and tools 
for evaluating optimization algorithms are available in the litera-
ture [115–118], they are not always used to evaluate metaheuris-
tic performance. For example, it is still common to observe 
structurally biased metaheuristics that are evaluated on biased 
test sets [54] and flawed experimental methodologies that present 
unfair comparisons, do not guarantee reproducibility, and neglect 
important performance metrics [111,119–123]. To address these 
issues, higher scientific standards would need to be implemented 
and systematically enforced by the outlets in which the literature 
on metaheuristics is published.

Recently, several researchers have proposed a set of guide-
lines and best practices to address poor benchmarking practices 
[112]. Among these guidelines and best practices are the fol-
lowing: (a) clearly specifying the goal of the benchmark study 
and designing it accordingly; (b) using benchmarks that are 
comprehensive in terms of the size, difficulty, and diversity of 
the problems; (c) using manual or automatic techniques to con-
figure the parameters of the metaheuristic implementation; (d) 
using sound statistical methodologies to decide which experi-
ments should be conducted, how many times each experiment 
should be repeated, which data should be gathered, and how it 
should be processed, analyzed, interpreted, and presented; and 
(e) avoiding generalizing the results without sufficient evidence 
or without defining clear bounds within which such generaliza-
tion applies.

In addition to these guidelines and best practices, the authors 
identified several opportunities and open issues in the research 
on metaheuristic benchmarking. For example, the effort to create/
update testbeds on a regular basis to reflect the complexity 
found in ever-changing realistic scenarios is underestimated. 
Moreover, there is a need to simultaneously measure different 
performance metrics (e.g., anytime behavior versus fixed bud-
get, constraint violation costs, and robustness) to provide a bet-
ter picture of the behavior of a metaheuristic when considering 
different objectives. Further, there is a need to implement sound 
data management practices that allow the storage, sharing, and 
reuse of data from benchmark studies.

It is impossible to overstate the importance of research focused 
on improving the way metaheuristics are compared and evalu-
ated. However, the widespread implementation of sound bench-
marking practices has proven relatively challenging for a field that 
is experimental in nature and has focused mostly on testing meta-
heuristics as if they were horses in a race for most of its history. 
Indeed, despite efforts devoted to improving experimental prac-
tices [111,119–122], good practices have not yet become widely 
adopted, particularly in venues where “novel” metaphor-based 
metaheuristics are regularly published.

Rethinking the way we create metaheuristics
Based on the discussion in this article, we believe that the 
research community should move from manual to automatic 
design as the main method of creating metaheuristics. Doing 

so would require a focus on the creation of flexible, automati-
cally configurable MSFs that can be extended with new meta-
heuristic components so that other researchers/practitioners 
can use them in different contexts. The long-term goal of this 
approach is to automate the process of creating metaheuristics 
so that when a new problem arises, an effective metaheuristic 
implementation can be automatically created in a timely and 
unbiased manner. In this article, we discussed the main aspects 
of the automatic design approach; readers interested in learning 
more about how to use it, both conceptually and in practice, 
can refer to [35,124,125], which complement the references 
given in the “Metaheuristic Software Frameworks” section.

In addition to automatic design, several research trends have 
emerged, which explore methods of integrating ML into meta-
heuristics [126–129] and of using data science tools to analyze 
their performance [86,130,131]. The literature has identified dif-
ferent levels of ML integration [127,129], such as problem-level 
integration—where ML can aid in modeling aspects of the opti-
mization problem (e.g., the objective function and constraints) 
and in performing fitness landscape analysis, algorithm-level 
integration—where ML is used to select a suitable algorithm from 
an algorithm portfolio, and component-level integration—where 
ML is used to automate the task of selecting and fine-tuning the 
algorithm components that perform best for a particular prob-
lem. Data analytics tools [e.g., functional analysis of variance 
(ANOVA) [130], forward selection [131], and ablation [86]] have 
been used to obtain knowledge about algorithm performance 
from the data collected during the design process.

The productive synergy created between ML, data science, 
and metaheuristics has resulted not only in new ways to design 
and implement increasingly effective algorithms but also in 
new ways to study these techniques and understand why spe-
cific designs perform well, whereas others do not. Although in 
the literature is already available a vast diversity of metaheuris-
tic techniques and mechanisms for creating new designs, many 
opportunities remain. For example, we consider it particularly 
promising to devote effort to (a) creating modeling frameworks 
that allow better characterization of metaheuristics [34]; (b) 
developing advanced methods of benchmarking metaheuris-
tics, such as the creation of readily accessible statistical tools 
[114,115]; and (c) extending the existing ecosystem of MSFs 
and investigating ways to increase the re-usability of their com-
ponents [132].

Conclusions
Over the last few decades, metaheuristics have been the method 
of choice for finding approximate solutions to difficult optimiza-
tion problems. However, although they have allowed important 
advances in the optimization field, the majority of metaheuris-
tics are created in the same way as in the early days—that is, they 
are the result of a time-consuming, error-prone process in which 
a human designer manually creates the components to be used 
in the metaheuristic implementation. Although this method of 
creating metaheuristics has been successful in the past, it is now 
time to move toward a new method of creating metaheuristics 
that avoids the pitfalls of manual design. In this article, we exam-
ined an alternative approach, called automatic design, in detail.

The automatic design of metaheuristics is based on the use 
of a component-based view to define a metaheuristic design 
space and the application of ACTs to explore different designs 
until a design that satisfies the needs of the user is found. 
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Research on the automatic design of metaheuristics has already 
led to several MSFs that enable the use of ACTs to efficiently 
design high-performance implementations.

We also discussed the problematic trend of “novel” meta-
heuristics based on a wide variety of metaphors, which exists 
in part due to the prevalence of manual design as the primary 
method for creating metaheuristics. To illustrate why metaphor-
based metaheuristics are problematic, we chose two examples 
of highly-cited “novel” metaheuristics from among many in the 
literature and showed how they turned out to lack any novelty 
and are therefore only a source of confusion and reiteration of 
known ideas.

Finally, we discussed three fundamental research directions 
that can contribute to further advances in the field of meta-
heuristics: (a) focus on experimentally or theoretically driven 
research rather than purely application-driven research and 
competitive testing, (b) use state-of-the-art benchmarking 
practices to evaluate metaheuristics, and (c) use modern tools 
and mechanisms to automatically create high-performance 
metaheuristic implementations.

In this paper, we focused particularly on the last of the three 
fundamental aspects, which argues for changing the way meta-
heuristic implementations are created. The area of automatic 
design is growing rapidly, and it seems only a matter of time 
before modern automatic design methods become widespread 
and replace manual design as the mainstream approach to 
designing new metaheuristics. We believe that this will help to 
put a definitive end to the trend of “novel” metaphor-based meta-
heuristics and will have a positive, long-lasting effect on the way 
we see, understand, and apply these optimization algorithms.
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A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide
set of optimization problems for which exact/analytical approaches are either limited or impractical. In other words, a
metaheuristic can be considered a general algorithmic framework that can be easily adapted to different optimization
problems. In this article, we discuss the two main approaches used to create new metaheuristics: manual design, which
is based on the designer’s “intuition” and often involves looking for inspiration in other fields of knowledge, and automatic
design, which seeks to reduce human involvement in the design process by harnessing recent advances in automatic
algorithm configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-based
metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years, this trend has been
strongly criticized due to the uselessness of new metaphors in devising truly novel algorithms and the confusion such
metaheuristics have created in the literature. We then present automatic design as a powerful alternative to manual
design that has the potential to render the “novel” metaphor-based metaheuristics trend obsolete. Finally, we examine
several fundamental aspects of the field of metaheuristics and offer suggestions for improving them.
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