LEARNING TO CONTROL AN AUTONOMOUS RGBOT
BY DISTRIBUTED GENETIC ALGORITHMS.

Marco Colombetti
Progetto di Intelligenza Artificiale e Robotica
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
colombet@ipmel2.elet.polimi.it

Abstract

Machine learning shows promise as a method for
developing autonomous robots. In this paper, we report
the results of a few experiments carried out both in
simulated environments and with a real moving robot.
A parallel implementation of a learning classifier
system, ALECSYS, is used to shape an agent to perform
Animal-type tasks, like chasing a prey or escaping a
predator, In particular, we concentrate on the role of
innate architecture for scaling up the size of learnable
tasks. We show how a relatively complex behavior
pattern can be learncd as the composition of basic
behaviors, A coordination behavior controls the
interactions between the basic behaviors,

1. Introduction

Machine leaming and autonomous robotics are becoming
more and more tightly coupled. People from the machine
leaming community find the autonomous robot problem - or
its version known as the Animat problem (Wilson, 1987) - a
challenging issue to test new algorithms and methodologies.
On the other hand, many researchers in "traditional Al”
robot planning believe that leamning is going to be necessary
to program robots, and aiso scientists like Brooks (1991b,
1992), who proposed an engineering approach to robot
building, recognize the importance of iearning 1o give robots
adaptive capabilities.

Our long term research goal is the design of autonomous
systems with teaming capacities. Even if many different
machine learning schemes are known today, learning
complex robot control programs is still a very difficult task.
In Dorigo & Schnepf (1993), we proposed the use of a
straightforward engineering approach to reduce the
complexity of learning tasks: we designed modules dedi-
cated (o the solution of very simple learning problems; cach
module had access to a limited amount of sensorial
information and learned to propose actions according 1o its
local goals. Such organization can be viewed as a possible
implementation of a theoretical mode! of behavior
organization like the one proposed by Tinbergen (1966); or,
it can be regarded as a mere engineering approach aiming at

Marco Dorigo
International Computer Science Institute
1947 Center Street
Suite 600
Berkeley, California 94704-1105
USA
dorigo@icsi.berkeley.edu

the construction of complex learning systems by an
appropriate composition of simpler modules, as proposed in
Colombetti & Dorigo (1992).

In order to have a flexible tool to build such learning
systems, we designed and implemented ALECSYS, a
distributed learning classifier system (for a technical
description see Dorigo, 1992¢). ALECSYS is designed 1o
permit machine learning rescarchers to carry out
experiments in rather complex domains, building hier-
archies of classifier systems (C8s). In our approach, each of
the leaming modules is a CS working on a rule base
acquired by interaction with the environment, The learning
algorithms, based on genetic rule-discovery, allow the rule
base to improve incrementally, guided by feedback received
as a result of interaction with the environment.

In fact, we are using ALECSYS to devise new ways of
using the leaming classifier system, proposed by Holland &
Reitman (1978), as a framework for "shaping” an agent to
survive in a given environment. Some experiments using
ALECSYS to build a simple hierarchical learning sysiem
were presented in Dorigo & Sirtori (1991) and in Dorigo &
Schnepf (1993). Further results in that direction can be
found in Colombetti & Dorigo (1992). In this paper we are
interested in the application of ALECSYS to controlling the
AutonoMouse, an autonomous mouse-shaped robot.

The paper is organized as follows. Section 2 briefly
illustrates related work, both in autonomous robotics and in
reinforcement learning, In Section 3 we sketch our approach
to building adaptive systems, In Section 4 we illustrate the
experimental setting in a simulated environment and report
results obtained by the leamming agent. Section 5 is devoted
to the discussion of results obtained by a real robot in a
simpler, but reai, environment, Finally, in Section 6 we
draw some conclusions and indicate the future directions of
our research,

2. Related work

Recently, much work has been carried out in reinforcement
learning. Reinforcement learning is a kind of machine
learning in which ail the feedback information the learning
system receives is in the form of positive or negative
numbers, respectively called rewards and punishments. This

306 Marce Colombetti and Mavco Dorigo

means that only a minimat amount of domain knowledge is
given to the system !, Reinforcement learning is gencrally
unsupervised, i.e. new examples are created by the
explorative activity of the learning agent, and are not chosen
a priori by a teacher, Nevertheless, a teacher is somelimes
used, either o give rewards, or to help through the
presentation of a feasible (or optimal) sotution (see for
example reinforcement learning with teaching in Lin, 1991,
1992).

Reinforcement learning has been studied in different
algorithmic frameworks. Notably, we have connectionist
reinforcement leaming {c.g., Barto, Sutton & Anderson,
1983; Williams, 1992); classifier systems reinforcement
learning (e.g., Holland & Reitman, 1978; Robertson &
Riolo, 1988; Booker, 1988; Dorigo, 1992b); temporal
differences reinforcement learning and related algorithms,
like the adaptive critic heuristics (Sutton, 1984) and Q-
learning (Watkins, 1989, 1992). Often, adaptive critic
heuristics and Q-learning are implemented by means of a
connectionist system (e.g., Lin, 1992).

Most of the applications used to illustrate and compare
the proposed algorithms are taken from the realm of
autonomous robotics. A few of them deal with real robolts,
most with simulated ones. In many cases, the application
problem is a subset of the Animat problem, that is the issue
of realizing an artificial system able to adapt and survive in
a natural environment.

In our work we define a number of basic and
coordination behavioral modules, we combine them in a
hierarchical architecture, and then we make the system learn
basic behavioral patterns and coordination policies. To
guide the leamning process, we use a shaping procedure,
which is reminiscent of the procedures used by laboratory
psychologists to shape experimental subjects. We use
reinforcement (o shape basic behaviors first, and then the
coordination behavior.

Many researchers have advocated some kind of
architecture (see for example Brooks's subsumption, 1991a}.
Some of them do not rely on learning {Brooks), others use
learning only for basic behaviors (Mahadevan & Conneli,
1992: Mahadevan, 1992). Still other researchers (see for
exampie Lin's application of Q-learmning, Lin, 1992) do not
face the problem of task factorization, and leam by some
"flat” system - that is, systems with no explicitly built-in
architecture. At the authors' knowledge, our project is the
only one using learning to coordinate learned behavioral
modules, and also the only one exploiting classifier systems
to shape real robots.

1 It is impossible to provide no knowledge at all about the
problem domain. The learning system designer has at least to
define the interface with the environment, which is itself
determined by the problem siructure, It is also the case thal, in
systems like ours, a certain amount of information is put into
the learning system architecture. This means that we solve the
problem of the system architecture, that in nature was solved by
evolution.

3. Qur framework

In our learning system there are basically two learning
enlities: basie behaviors and coordination behaviors. They
are implemented and composed to build a hierarchical
architecture using ALECSYS. ALECSYS, introduced in
Dorigo & Sirtori (1991) and in Dorigo (1992c), is a tool that
allows one to distribute classifier systems on a net of
ransputers. Through ALECSYS, a transputer net can host
many CSs, and each CS can in turn be distributed on a
subnet of the transputer net.

In our work we have been influenced by Wilson's
Animat problem, This accounts for our interest in behavioral
patterns that are the artificial counterparts of basic natural
responses, like feeding and escaping from predators. Our
experiments are therefore to be seen as possible solutions W
fragments of the Animat problem. Moreover, we are also
interested in applying to real robots the results obiained with
simulated Animats. Although we believe that experiments
should be carried out in the real world to be truly significant,
such experiments are in general costly and time-consuming;
therefore, we use simulations to preselect a small number of
potentially relevant experiments to be performed with the
real robot. _

One of the hypotheses we explore is that relatively
complex behavioral patterns can be built bottom-up from a
set of simple responses. In this paper we consider three
kinds of basic responses:

- the approaching behavior, i, approaching an {aimost)
steady object with given features; in the natural world,
this response is a fundamental component of feeding and
sexual behavior;

- the chasing behavior, i.e. following and irying to catch a
moving object with given features; as the preceding
approaching behavior, this response is imponant for
feeding and reproduction;

- the escaping behavior, i.e. moving as far as possible from
an object with given features; the object can be viewed as
a predator.

Other kinds of behaviors have been the subject of
previous work (Dorigo & Sirtori, 1991; Dorigo, 1992a), in
particular:

- the mimetic behavior, i.e. entering a weli-defined
physical state which is a function of a feature of the
environment; this is inspired by the natural behavior of a
chameleon, changing its color according to the color of
the environment;

- the avoidance behavior, i.e. avoiding physical contact
with an object of a given kind; this can be seen as the
artificial counterpart of a behavioral pattern which atiows
an organisms o avoid hurting objects.

More complex behavioral patterns can be built from
these simple responses in many different ways. So far, we
have studied the following building mechanisms
{composition rules):

Robot Learning by Distributed Genetic Algorithms 307

Independent sum: two or more independent responses are
produced at the same time; for example, an agent may
assume a mimetic color while chasing a prey.

- Combination: two or more homogeneous responses are

combined into a resulting behavior; consider the
movement of an agent which is following a prey and
trying to avoid an obstacle at the same time.
Suppression: a response suppresses a competing one; for
example, the agent may give up chasing a prey in order
to escape from a predator (suppression is similar to
subsumption, as studied by Brooks, 1991a, and by
Mahadevan & Connell,:1992).

- Sequence: a behavioral pattern is built as a sequence of
simpler responses; for example, fetching an object
involves reaching the object, grasping it, and coming
back (sequences have been extensively studied by Singh,
1992a,b).

In general, more than one mechanism can be at work.
Consider an agent trying to avoid steady hurting objects
while chasing a moving prey and being ready to escape if a
predator is perceived. In this case, the chasing behavior will
be combined with obstacle avoidance; at times, the escaping
behavior will suppress the chasing behavior (but still
combine with obstacle avoidance!),

4. Experiments in the simulated environment

Given the framework of Section 3, a number of different
experiments can be carried out. Some experiments regarding
the learnability of basic behaviors and of coordination
behaviors have been discussed in Dorigo & Sirtori (1991),
in Dorigo & Schnepf (1993), and in Colombetti & Dorigo
(1992). In this paper, we start to investigate the scalability of
our approach, when the whole behavior increases in
complexity. Below we report on the following experiment.

Consider an agent who should learn the following
behavior:

If there is a predator
then Escape
else if hungry
then Feed
else Chase the moving object

In the previously cited papers we showed that the correct
behavior can be easily learned by a hierarchical structure in
which basic modules learn basic behavioral pattemns and
coordination modules learn the coordination policy.
Reinforcement is given to the learning system by a program
that implements the above described behavior (for example,
there is a positive reward if the Animat moves in such a way
that causes its distance from a predator o increase, etc.). In
Figure 1 we report an example of the input-output interface
for the chasing behavior? (CS-Chase). The input pattern, i.e.
a message the learning system receives from its sensors,
gives a coarse code of the chased object position. (The
Animat has four on/off eyes, one on each side of its square

2 (CS-Feed and CS-Escape have a very similar structure.

shape. Each eye is set to 1 when the object is seen, to 0
when it is not seen.) The output pattern is made up of two
components; the first one is a proposed action (in which
dircclion to move, and whether to move or not; it is sent o
the effectors), while the second one is a message sent (o the
coordinator, (o let it know that CS-Chase was proposing an
action.

The architecture we used to combine the three behaviors
is sketched in Figure 2. This is only one of a set of possible
choices which are described in detail in Colombetti &
Dorigo (1992). Essentially we have three basic CSs, whose
task is to learn the basic behavioral responses. We also have
a coordinator CS, whose task is to learn to coordinate basic
CSs. Basic modules send to the coordinator a bit string (in
this application a single bit) whose meaning is learned. This
means that, when the system has learned, each basic module
will set the bit sent to the coordinator to a particular value
when it wants to do something. For example, CS-Escape
could learn to set the bit to 1 whenever it sees a predator.
CS-coordinator then learns some kind of composition rule,
which gives different weights to the actions proposed by
basic CSs. In our example the composition rule learned is
suppression, meaning that only one out of the three basic
behaviors has the right to control the learning system
effectors.

input pattern

BT

Y

CS-Chase
Jr [0 110]
"7—-|
(100711}

position of chased

output pattern object
a) b)
1 O 01 “ to the
7_‘i \ coordinator
direction move /
of motion do_not_move
c)

Figure 1. a) Example of input-output interface for the CS§-
Chase behavior;
b) Example of input message;

¢) Example of output message,

308 Marco Colambetti and Marco Dorigd

Coordination
action

Composition

CS-Coordinator
Rule

Action

S

CsS) Cs
Chase| {Feed | |Escape
I 1 —

Basic actions proposed

Figure 2. Example of hierarchical architecture for a three behaviors
learning task,

We now make the problem more difficult by composing the
coordination learning problem with a discrimination learn-
ing problem. In Dorigo (1992a), we showed that CSs can be
used to discriminate between input patterns. They can be
used for example to discriminate between similar objects, to
learn which of them are food and which are not. In this new
experiment we let the learning agent perceive many differ-
ent objects for each class; besides learning to do the right
thing, the agent must also feam 10 choose which, among the
different objects in a class, is the relevant one. We label
each class of objects with names that remind the role they
play in our example: possibly-dangerous-animals, food-like-
objects and possibly-interesting-moving-objects. The behav-
ior to be lcarned becomes:

If there is a predator in possibly-dangerous-
animals
then Escape
alsa ifthere is food in food-like-objects
than Feed
alsa Chase a particular object in
possibly-interesting-moving-
obiects

The two simulated environments in which our Animat lives
are sketched in Figure 3. In the next section we present
some results obtained with our system in both the coordina-
tion task and in the coordination task with discrimination.
Experiments were run in both environments. The resulting
performance of experiments run in the environments of
Figures 3a and 3b are reported respectively in Figures 4a
and 4b. Performance is measured as the ratio of the number
of correct responses to the total number of responses pro-
duced from the beginning of the simulation. Clearly the per-
formance is always < 1. In both experiments we shaped the
robot in three phases. In the first phase, we shaped the basic
behaviors; in the second phase, we froze the basic behaviors
(i.e., we deactivated the leamning algorithms), and started to
shape the coordination behavior3. Finally, in the last phase

3 Inwis experiment the coordination module is also called switch
because its task is to choose one of the basic behaviors.

we let all the system free to go on learning. Results show
that the first phase was more difficult in the case of the envi-
ronment of Figure 3b. This is clearly due to the discrimina-
tion task, which made the search space much larger.
Nevertheless, if we give enough time (o the system to learn
the basic behaviors, the following phases lead to comparable
overall performance.

@)
Chased-object

a) .
‘ Predator

Simulated
robot

Figure 3. a) Simulation environments: One object in each

class (no discrimination is necessary).
<Je

ot R co4

4 o

Simulated ° co3
robot 9 co?

@
©

O

Figure 3. b) Simulation environments: Four objects in each
class (discrimination becomes necessary).

Performance

Global .
,-”‘f

Number of cycles
(thousands)

10 20 30 40 S0 60 70 80

Switch

0.6 ¥

Figure 4. a) Performance of the typical experiment with envi-
ronment of Figure 3a. Between cycles 0 and 33,000 basic be-
haviors were shaped; between 33,000 and 49,000 basic behav-
iors were frozen and the coordinator (switch) was shaped;
after cycle 49,000 the system was free to go on leaming,

Robol“Learning by Distributed Genetic Algorithms 309

Performance
lr

| Esca
095t /'&
Chase !
0.9 T

»

S“”Ch%«_,\mw ..Global
¥ e L e

Number of cycles
(thousands)

e e

40 80 120 160 200 240 280

Figure 4. b) Performance of the typical experiment with envi-
ronment of Figure 3b. Between cycles 0 and 120,000 basic behav-
iors were shaped; between 120,000 and 152,000 basic behaviors
were frozen and the coordinator (switch) was shaped; after cycle
152,000 the system was free to go on learning.

5. Some experiments with the real robot

As it is often the case, experiments with the real robot are
not so sophisticated as the ones in the simulated
environment. This is mainly due to scheduling constraints:
we had first to evaluate simulations results, and then to
apply the best performing algorithms to the real robots (we
call our robot AutonoMouse, due to its autonomous nature
and mouse size). So, up to now, experiments with the
AutonoMouse have been run only for a single behavior
environment. The task we chose for our experiments is the
light chasing task. The AutonoMouse can perceive a light
source and should learn (o approach (or follow) it. Light is
sensed by means of two on/off eyes which are positioned on
the front of the AutonoMouse (see Figure 5). Each eye
senses the light within a cone of about 60 degrees. There can
therefore be situations in which the light is on, but the
AutonoMouse must turn to see it. In this and in the
following experiments the performance was evaluated
through light intensity, detected by a central light sensor
positioned on the robot. This sensor could discriminate 256
levels of light intensity. Inherent uncertainty associated with
sensors is not modeled.

In the graphs of Figures 6 and 7 we also plot the average
reward over intervals of 20 cycles, multiplied by 25 to ease
visual comparison. Figure 6 shows the result of the light ap-
proaching experiment. The drop in performance at cycle 225
is due to a sudden change in light position caused by the
experimenter moving the light far away from the robot, The
big difference in the number of cycles required to reach the
light in this experiment and that required to rich a high
performance in the experiments of Figure 4 is casily
explained if you think that the correct behavior is more
frequent than the wrong one as soon as performance is
higher than 50%. The AutonoMouse starts therefore to
approach the light source much before it has reached a high
frequency of correct moves. In this and in the following
experiments, 100 cycles were run in about 60 seconds.

Figure 5. The AutonoMouse

Figure 7 shows the result of the same experiment alter
we inverted the AutonoMouse's eyes. (We made "hardware
surgery” on the robot, connecting the previous right eye
input to the left eye and vice versa.) Also in this experiment
the light was moved away as soon as it was reached by the
AutonoMouse (at cycle 150). The results of the experiments
are qualitatively similar and show that the AutonoMouse
was capable of adapting to the new situation with inverted
eyes.

The comparison between the graphs of Figures 6 and 7
brings in the problem of the instrument to use to compare
performance. In fact, as an experiment depends on variables
like the randomly generated initial knowledge-base of the
robot, the stochastic processes guiding the learning
algorithms and, most important, the dynamics of the real
environment, it cannot be exactly replicated. This means
that, even if we make repetitive experiments with the same
initial knowledge base and with equal pseudo-random
sequences of numbers for the stochastic algorithms, still we
would get different results, So, we are forced to give
qualitative assessments of the results obtained, especially
when comparing different runs. Most of the time, it turns out
that it is very easy for a human observer to judge the quality
of the results of an experiment through videorecordings;
however, it is much more difficult to translate this qualita-
tive assessment into numbers (or graphs). For the same
reasons explained before, it is not interesting or not even
possible to present “average graphs", i.e. graphs of results
averaged on a number of experiments. All our graphs are
relative to a single run. Different runs generated
qualitatively similar graphs.

310 Marco Colombetti and Marco Dorigo

_ Light intensity or
25 times the avernge reward Light inteasisy

258
200
150
100 !
50 { | Number
[of cycles
0 4y —t — i
so 100 ds¢ 200t0 2fo 00 350
-50 1 i
1! ry
-100 |I |
‘I |
-350 . \‘\Avmy
-200 f reward
-250

Figure 6. The robot learns to approach a stationary light source,

Light intensity or
25 times the average reward

Light intensity

250
200
150
100
50
0
-50

-100
-150
-200
$250

Figure 7. The robot learns to approach a stationary light source
using inverted eyes.

In Figure 8 we show the result of an experiment in which
one eye {the left one) of the AutonoMouse was
disconnected. Again, the AutonoMouse was capable of
reaching the light source, although with a somewhat
degraded performance: it took 300 cycles to reach the light
instead of the 150-200 of previous experiments. The drop in
performance observed at cycle 135 is due 1o the fact that the
AutonoMouse lost sight of the light and turned right until it
saw the light source again,

Figure 9 shows the results of the last experiment of this
paper. Here the task was to leam to follow a moving light
source. In this experiment we faced a major dilemma; the
reward function cannot use distance (or light intensity)
changes to decide whether or not to give a reward. In fact,
there are situations in which the AutonoMouse goes towards
the light source, but at the same time the light source moves
in the same direction. If the light source speed is higher than
the AutonoMouse's, then the distance increases although the
AutonoMouse made the right move. A possible solution is
to let the AutonoMouse leamn to approach a stationary light,
then to freeze the rule set (i.e., stop the leaming algorithm)

and use it 1o follow the light. With this procedure one should
be aware that, after learning has been stopped, the
AutonoMouse can use only rules developed during the
learning phase; this must therefore be as complete as
possible. To ensure complete leamning we need 10 give the
AutonoMouse the opportunity to lear the right behavior in
every possible environmental situation (in our case, every
possible relative position of the light source).

Light

inuﬂsity

A Light
240 L intensity

200 4
160 4
120 4
80 L

40 4 Number
of cycles
43 5 3 N —__
50 100 150 200 250 300

Figure 8. The robot learns o approach a stationary light source
using only one eye (blind robot).

Light

inke RNty

230 o

200 4 '

150 4

100 4

50 4
Numder

of cyden
0 t + * t t + t y + ¥ -
50 1000 1500 2100 2500
< e - g >
i Learning Leaming ¢ Training Lzaming
ison is sopped iron b i1 stopped

Figure 9, The robot learns to follow a moving light source.

In Figure 9 we report the results of the following
experiment, At first the AutonoMouse is left free to move
and to learn the approaching behavior. After 600 cycles we
stop the learning algorithm, start to move the light source
and let the AutonoMouse follow it. It appears that during the
first leaming phase the AutonoMouse did not leam all the
relevant rules (in particular: it did not leam to turn right
when the light was seen by the right eye) and therefore the
resulting performance was not satisfactory. At cycle 1300
we therefore started the learning algorithm again and

Robot Learning by Distributed Geunetic Algorithms 311

performed a new training phase from cycle 1700 10 2200.
During this training phase we presented the lamp to the
AutonoMouse on one side, and waited until the
AulonoMouse started to do the right thing. This procedure
was repeated many times, presenting the light aliemately in
front, on the right, on the left and behind, until direct
observation told us that ALECSYS had learned (i.e., the
AutonoMouse was following the light). After this training
phase, learning was stopped again (at cycie 2200) and the
light source was steadily moved. Figure 9 shows that this
time the observed behavior was much better (performance is
far from maximum, however, because the light source is
moving and the AutonoMouse therefore never reaches it).

6. Conclusions

In this paper we repert a few results of an experimental
activily in robot learning, carried out with the ALECSYS
system int both the real and simulated worlds. The main goal
of our research is 10 develop an autonomous robot through
learning; in particular, we are interested in the use of
learning classifier systems endowed with a hierarchical
architecture.,

Reinforcement learning appears to be suitable for
shaping robots, Its main virtue is that the trainer need not
present examples of correct behavior, and can rely on the
robot's own exploration activity. As soon as the learning
task becomes nontrivial, unfortunately, known learning
algorithms tend to become slow and cumbersome,
Naturally, we can hope to discover more powerful
algorithms in the future; but many past experiences, like the
ones of traditional Arificial Intelligence, warn us that magic
algorithm may well not exist. In our opinion, the key issue
for scaling up learning applications is "innate" architecture,
that is the built-in structure of the learning agent.

Another problem with reinforcement learning is that the
feedback information that guides leamning is strongly local.
This means that many behaviors are difficult to describe in
terms of rewards and punishments, Take for example the
light-foliowing behavior, intuitively defined as "keep as
close as possible to the moving light". In fact, such a
description implicitly refers to a global property of the
robot’s behavior, which could be made expicit, for example,
as the mean-squared distance of the robot from the light
over a generic interval of time, However, 10 be translated
into a program (hat gives rewards and punishments, the
description of the desired behavior has to be transformed
into & local criterion, for example: "reward the robot if it
gets closer to the light, punish it if it gets farther”. But this
translation does not completely capture the original
« description,

We have a similar problem when we try 10 measure the
robot's performance. Clearly, to provide sensible results
such a measure must be strictly coupled with the reward
program: the responses that are positively rewarded must
count as good performance, and the ones that are punished
must count as bad performance. However, it has constantly
been clear to us during experiments that there is more in the
robot’s behavior than what can be plotted in a graph. In other

words, there are qualitative aspects emerging from the
robot's behavior, that are not described by performance
graphs.

It appears that we need to set up the conceptual
apparatus and the technical terminology of a new discipline,
that might well be dubbed ethology of the artificial, in order
to describe the qualitative aspects of emerging behavior of
artificial agents. Such a discipline would be concerned with
the classification and description of different kinds of
behavior and environments, with the design of experimental
protocols, and with the choice of reliable criteria for
evaluating performance.

Acknowledgements

This research was supported in part by a grant from CNR -
Progetto finalizzato sistemi informatici e calcolo parallelo -
Sottoprogetto 2 - Tema: Processori dedicati and from CNR -
Progeuto finalizzato robotica - Sottoobiettivo 2 - Tema:
ALPI

References

Barto, A. G., R. S. Sutton & C. W. Anderson, 1983,
Neuronlike elements that can solve difficult learning
control prablems. JEEE Transactions on Systems, Man
and Cybernetics, 13, 834-846.

Booker, L., 1988, Classifier Systems that Learn Internal
World Models. Machine Leamning, 3, 2-3, 161-192,

Brooks, R. A., 1991a. Intelligence without representation.
Artificial Intelligence, 47, 1-3, 139-159,

Brooks, R. A., 1991b. Antificial Life and Real Robols,
Proceedings of the Ist European Conference on
Artificial Life (ECAL), Elsevier Publisher, Paris,
France.

Brooks, R, A., 1992. Antificial life outside the computer,
Presented at Artificial Life 11, Santa Fe, NM.,

Colombetti, M., & M. Dorigo, 1992. Robot Shaping:
Developing Situated Agents through Learning,
Technical Report 92-040, International Computer
Science Institute, Berkeley, CA.

Dorigo, M., 1992a. Optimization, learning and natural
algorithms, Ph.D. Thesis, Politecnico di Milano,
Milano, Tialy.

Dorigo, M., 1992b. ALECSYS and the AutonoMouse:
Leaming to control a real robot by distributed classifier
systems. Technical Report 92-011, Dipantimento di
Elettronica e Informazione, Politecnico di Milano,
Milano, Italy.

Dorigo, M., 1992¢. Using Transputers to Increase Speed and
Flexibility of Genetics-based Machine Learning
Systems. Microprocessing and Microprogramming
Journal, 34, 147-152.

Dorigo, M., & U. Schnepf, 1993. Genetics-based machine
learning and behavior-based robotics: A New
Synthesis. /EEE Transactions on Systems, Man, and
Cybernetics, 23, 1.

Dorigo, M., & E. Sirtori, 1991, ALECSYS: A parallel
laboratory for leamning Classifier systems, Proceedings

312 Marco Colombetti and Marco Dorigo

of Fourth International Conference on Genelic
Algorithms, Morgan Kaufmann, San Diego, CA.

Holland, J. H., & J. §. Reitman, 1978. Cognitive systems
based on adaptive algorithms, In D.A. Waterman & F.
Hayes-Roth (Eds.), Pattern-directed inference systems.
Academic Press, New York.

Lin, L-J., 1991. Programming robots using reinforcement
learning and teaching. Proceedings of the Ninth
National Conference on Artificial Intelligence, AAAI-
91, 781-786.

Lin, L-J., 1992. Self-improving reactive agents based on
reinforcement learning, planning and teaching.
Machine Learning, 8, 3, 293-322.

Mahadevan, S., 1992. Enhancing transfer in reinforcement
learning by building stochastic models of robots
actions. To appear in the Proceedings of the Ninth
Conference on Machine Learning , Aberdeen,
Scotland.

Mahadevan, S., & J. Connell, 1992. Automatic
programming of behavior-based robots using
reinforcement learning, Artificial Intelligence, 58, 2.

Robertson, G.G., & R. L. Riolo, 1988. A tale of two
classifier systems. Machine Learning, 3, 2-3, 139-160.

Singh, S., 1992a. Transfer of learning by composing
solutions of elemental sequential tasks. Machine
Learning, 8, 3/4, 323-339,

Singh §., 1992b. Reinforcement leaming with a hierarchy of
abstract models. Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAI-92, 202-
207,

Sutton, R.S., 1984. Temporal credit assignment in
reinforcement leaming. Ph.D. dissertation, Dep. of
computer and information science, University of
Massachusetts, Amherst, MA.

Tinbergen, N., 1966. The Study of Instincts. Oxford
University Press, 1966.

Walkins, C. J. C. H., 1989. Learning with delayed rewards.
Ph.D. dissertation, Psychology Department, University
of Cambridge, England.

Walkins, C. J. C. H., & P. Dayan, 1992, Technical Note: Q-
leaming. Machine Learning, 8, 3-4, 279-292,

Williams, R. J., 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning,
Machine Learning, 8, 3-4,229-256.

Wilson, S., 1987. Classifier systems and the Animat
problem. Machine Learning, 2,3, 199-228,

FROM ANIMALS TO ANIMATS 2

Proceedings of the Second International Conference
on Simulation of Adaptive Behavior

edited by Jean-Arcady Meyer, Herbert L. Roitblat, and Stewart W. Wilson

@incollection{ColDor1992:sab,

Address = {Cambridge, MA},

Author = {M. Colombetti and M. Dorigo},

Booktitle = {From Animals to Animats 2:
Proceedings of the Second International Conference on
Simulation of Adaptive Behavior},

Editor = {J. A. Meyer and H. L. Roitblat and S. W. Wilson},

Pages = {305--312},

Publisher = {MIT Press},

Title = {Learning to Control an Autonomous Robot by Distributed Genetic Algorithms},
Year = {1992}

}

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England

Associate editor
Typewritten Text
@incollection{ColDor1992:sab,
	Address = {Cambridge, MA},
	Author = {M. Colombetti and M. Dorigo},
	Booktitle = {From Animals to Animats 2:
			Proceedings of the Second International Conference on
			Simulation of Adaptive Behavior},
	Editor = {J. A. Meyer and H. L. Roitblat and S. W. Wilson},
	Pages = {305--312},
	Publisher = {MIT Press},
	Title = {Learning to Control an Autonomous Robot by Distributed Genetic Algorithms},
	Year = {1992}
	}

Associate editor
Typewritten Text

Associate editor
Typewritten Text

Associate editor
Typewritten Text

