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Abstract. In this paper we present the results of an investigation of the possibilities offered by three well-
known metaheuristic algorithms to solve the timetable problem, a multi-constrained, NP-hard, combinatorial
optimization problem with real-world applications. First, we present our model of the problem, including the
definition of a hierarchical structure for the objective function, and of the neighborhood search operators which we
apply to matrices representing timetables. Then we report about the outcomes of the utilization of the implemented
systems to the specific case of the generation of a school timetable. We compare the results obtained by simulated
annealing, tabu search and two versions, with and without local search, of the genetic algorithm. Our results show
that GA with local search and tabu search based on temporary problem relaxations both outperform simulated
annealing and handmade timetables.
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1. Introduction

Metaheuristic algorithms [23] constitute a class of computational paradigms useful for
function optimization, often inspired by the study of natural processes. They usually
update possible solutions, one or a whole set at a time, to find the optimal solution of a
given problem; in this sense the namingevolutionary algorithmis common in the literature.
Particularly efficient instantiation of evolutionary algorithms are represented bysimulated
annealing[21], in which the natural analogy is the annealing process for metals, bygenetic
algorithms(GA) [19], in which the natural analogy is population genetics, and bytabu
search[15, 16]. Several other algorithms of this class have already been presented, but the
three mentioned ones are those that have obtained most attention by researchers and which
have been successfully applied to a wider variety of optimization problems.

The main goal of our work is to compare these metaheuristic on hard, real-world
combinatorial optimization problem instances and thus to evaluate their relative merits.
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As a test problem we have chosen the timetable problem (TTP), that is known to be NP-
hard [12], but which has been intensively investigated given its great practical relevance
[1–5, 9, 10, 13, 14, 17, 18, 20, 28].

We will use the construction of a timetable, or schedule of classes, for an Italian high
school as a benchmark for our investigation. The ideas introduced in this paper can be
applied, of course, to the solution of other, and possibly very different, instances of the
timetable problem. The possibility of on-site testing has been the main reason for the
choice of this particular problem example. Italian high school timetables must conform
to the following directives. In a typical Italian high school, a class receives five hours of
lessons, six days a week for the five years of the high school curriculum. Teachers may
teach one or more subjects, usually in two or more classes. In addition to their eighteen-hour
teaching a week, they have other activities, as described in the paper. Also, every teacher
has the right to take one and only one day-off per week, in addition to Sundays.

The construction of the lesson timetable for an Italian high school may be decomposed
in the formulation of several interrelated timetables. This permits to cut down the size
of the problem instances to be solved to dimensions that can be effectively managed by
the algorithms that we tested. In fact, sections are always paired, with a pair of sections
sharing many teachers and resources (e.g., laboratories). Two paired sections can therefore
be processed as an “atomic unit” consisting of 10 classes, not further decomposable given
its high internal dependencies, and relatively isolated from other sections.

Given these premises, the problem is described by:

• a list ofm teachers (20–24 in our case);
• a list of p classes involved (10 for the two paired sections);
• a list ofn weekly teaching hours for each class (30);
• thecurriculumof each class, that is the list of the frequencies of the teachers working in

the class;
• some external conditions (for example, the hours during which some teachers are involved

in other sections or activities).

Notice that the values in parenthesis are typical of a pair of sections and are presented
only as an example of the size of the instances we shall be dealing with. No constraint on
problem dimension is intended here.

A formal representation of the TTP is the following. Given the 5-tuple〈T, A, H, R, f 〉
whereT is a finite set{T1, T2, . . . , Tl , . . . , Tm} of m resources (teachers),A is a set of jobs
(teaching in thep classes and other activities) to be accomplished by the teachers,H is
a finite set{H1, H2, . . . , Hj , . . . , Hn} of n time-intervals (hours),R is am× n matrix of
r i j ∈ A (a timetable) andf is a function to be minimized,f : R⇒ R; we want to compute

min f (σ,1,Ä,5)

whereσ is the number ofinfeasibilities, as defined in the following,1 is the set of didactic
costs (e.g., having the hours of the same subject clustered in a few days of the week),Ä

is a set of organizational costs (e.g., having no teacher available for possible temporary



P1: SGR

Computational Optimization and Applications KL522-03-Colorni December 9, 1997 9:18

METAHEURISTICS FOR HIGH SCHOOL TIMETABLING 277

teaching posts), and5 is a set of personal costs (e.g., having the day-off in an undesired
day of the week).

Every solution (timetable) generated by our algorithm isfeasibleif it satisfies the follow-
ing constraints:

• every teacher and every class must be present in the timetable in a predefined number of
hours;
• there may not be more than one teacher in the same class in the same hour;
• no teacher can be in two classes in the same hour;
• there can be no “uncovered hours” (that is, hours when no teacher has been assigned to

a class).

Previous research on this problem concentrated on heuristic approaches [10]. In fact,
if it were approached with standard algorithms, i.e., defining binary variablesxi jk (where,
according to the parameters previously specified,i identifies a teacher,j identifies a time-
interval andk identifies a class) the problem would be represented by 6000 variables
(i = 1, . . . ,20; j = 1, . . . ,30; k= 1, . . . ,10), hundreds of constraints and a very computa-
tionally intensive objective function, which makes it implausible to solve to optimality in
limited CPU time [2, 8, 22]. We have decided to approach it by means of evolutionary algo-
rithms, which besides generating feasible timetables, try to optimize the objective function
introduced in the next section.

The paper is structured as follows. In Section 2 we introduce the encoding we used for
solution representation and the local search procedure, which forms the basis of all heuristics
we tested. Section 3 describes in detail the objective function we minimize. Section 4
introduces the algorithms we have implemented and Section 5 contains the computational
results. Finally, we draw some conclusions in Section 6.

2. Metaheuristics and local search for the timetable problem

We now describe how we approached the problem of generating a school timetable for a
pair of sections of an Italian high school, as described in Section 1, by using three different
metaheuristic approaches. We first define an encoding of the solutions that allows the
application of an effective local search procedure, which is a fundamental component both
of tabu search and simulated annealing, and which substantially improves the performance
of the genetic algorithm.

Solution encoding

The alphabet we chose is the setA of the jobs that teachers have to perform: its elements
are the classes to be covered and other activities. We indicate:

• with the characters 1, 2, 3,. . . , 0 the ten classes where the lessons have to be taught;
• with the character D the hours at disposal for temporary teaching posts;
• with the character P the hours for the professional development;
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Figure 1. Example of a matrix representing a timetable.

• with the character S the hours during which lessons are taught in classes of sections
different from the two considered; these hours are fixed in the initialization phase by
hand or by previous runs of our algorithm and are calledfixed hours;
• with the character “ . ” the hours in which the teacher does not have to work;
• with the characters “- - - - -” the teacher’s day-off.

Our alphabet is thereforeA= {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, D, P, S, . , -}.
This alphabet allows us to represent the problem as a matrixR (an m × n matrix of

ri j ∈ A) where each row corresponds to a teacher and each column to an hour. Every
elementri j of the matrixR is a variable, whose value may vary on the subset ofA specific
to the teacher corresponding to the row containing the gene.

The problem is therefore represented by matrices similar to that proposed in figure 1 (The
same representation has also been used in [30]). To be a feasible timetable a matrix must
satisfy the constraints discussed in Section 1.

During search timetables are manipulated, possibly resulting in infeasible instances. How-
ever, special attention has been put in constraint satisfaction. The constraints are managed
as follows.

• by theneighborhood definition, so that the set of hours to be taught by each teacher,
allocated in the initialization phase, cannot be changed by the application of the operators
that identify the neighbors of a current solution;
• by the filtering algorithm, so that the infeasibilities caused by the application of the

operators are, totally or partially, eliminated by filtering;
• by theobjective function, so that selective pressure is used to penalize solutions with

infeasibilities (infeasibilities are explicitly considered in the objective function, by means
of high penalties).

It is possible to distinguish between two kinds of constraints: rows and columns.Row
constraints(related to the schedule of each single teacher) are incorporated in the operators
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in such a way that they are always satisfied;column constraints(infeasibilities due to
superimpositions or uncovered classes) are managed by means of a combination of fitness
function and filtering. Single-teacher solutions (i.e., solutions which satisfy a single teacher)
constrain each other by column constraints. Filtering must convert infeasible timetables
into feasible ones, modifying them as little as possible.

We decided to manage the infeasibilities by means of both filtering and fitness function
penalties because in this way the algorithm has a greater degree of freedom in moving
through the search space. This choice is due to the difficulty of the problem: in our appli-
cation, in fact, every teacher represents a TSP-like problem, consisting of the analysis of
the permutations of a predefined symbol set.

Local search

Local search is defined by means of a neighborhood exploring operator. The application of
this operator moves a solution to its local optimum. It works in two stages.

In the first stage we try to eliminate infeasibilities without worsening didactic and
organizational costs. This is done using a procedure taken from the filtering algorithm—see
Appendix—that identifies the causes of the infeasibilities and removes them by swaps of
hours.

The second stage is a 2-opt [8] that swaps hours and days until no better solutions are
present in the neighborhood of the current timetable. The operator thus moves a solution
to a point of the search space that is locally optimal with respect to a neighborhood defined
by every possible swap of hours and days.

Simulated annealing and tabu search are designed as modifications of this second stage
of local search, except for the improvements detailed in Section 5.

3. The hierarchical structure of the objective function

The objective function (o.f.) for our problem measures a generalized cost which represents
the gap between the timetable considered and anideal timetable, that is, a timetable which
satisfies all the different constraints and didactic, organizational and personal requirements.
Being in most cases the different objectives in partial contradiction among themselves, the
cost of feasible instances is always greater than 0. Theo.f. for a timetable matrixR is

z(R) = α · = + β1 · s1 + β2 · sÄ + β3 · s5
where

• = is the number of infeasibilities in the matrixR;
• s1 measures the rate of dissatisfaction of didactic requirements in the matrixR; it is

computed ass1 =
∑

i=1,41i · di , where the1i are weights associated to each didactic
requirement, as detailed in the following, anddi is the number of times thei th didactic
requirement is unmet in the matrixR;
• sÄ measures the rate of dissatisfaction of organizational requirements in the matrixR;

it is computed assÄ =
∑

i=1,3Äi · oi , where theÄi are weights associated to each
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didactic requirement, as detailed in the following, andoi is the number of times thei th
organizational requirement is unmet in the matrixR;
• s5 measures the rate of dissatisfaction of personal requirements in the matrixR; it is

computed ass5 =
∑

i∈T γi · ti , whereti , i = 1, . . . ,m, measures the dissatisfaction of
teacheri in the matrixR because of unmet personal desires andγi is a weight assigned
to each teacher;
• α, β1, β2, β3 are weights chosen by the user to bias the timetable towards different aspects

of theo.f.

By choosingα À β1 ≈ β2 ≈ β3, we induce ahierarchical structurein theo.f., so that
we acknowledge the different relevance of the several groups of problem objectives. In our
application, the following structure has been chosen:

level 1, feasibility conditionsσ ;
level 2, management conditions (1,Ä);
level 3, single teachers conditions (5).

At level 1we handle possible superimpositions of teachers (two or more teachers during
the same hour in the same class) and “uncovered hours” for the classes (hours when a class
is not covered by any teacher).

At level 2we consider the following requirement typologies.

1—didactic requirements

• no more than 4 teaching hours a day for each teacher (associated weight:11);
• not the same teacher every day at the last hour (associated weight:12);
• uniform distribution of the hours of the same subject over the week (associated weight:
13);
• pairs of hours for classworks, for the teachers who require them (associated weight:14);

Ä—organizational requirements

• concentration on the same day (as much as possible) for parent-teacher meeting hours
(associated weight:Ä1);
• no less than 2 teaching hours a day for each teacher (associated weight:Ä2);
• as few holes in a teacher’s schedule as possible (associated weight:Ä3).

The different1i andÄi are user-defined parameters, used to discriminate the relative
importance of the different didactic or organizational requirements.

At level 3we consider the preferences expressed by each teacher for his/her specific
timetable. Each teacher assesses his/her personal requirements, such as the day-off desired
or not having the first or the last hours, and so on. These assessments are then normalized,
so that each teacher takes part with a specific quota to the determination of the requirements
of the whole teaching staff. The number of unmet personal requirements multiplied by
the normalized weight associated to each requirement constitutes the termsti in the o.f.
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Moreover, a teacher ranking (based on criteria such as seniority, external engagements,
etc.) is induced by weightsγi .

4. The algorithms

To solve the problem, we tested three alternatives, implementing a simulated annealing,
a tabu search and a genetic algorithm. All three algorithms work on the same problem
representation, use the same objective function and local search described in Sections 2
and 3. Simulated annealing and tabu search have already been presented in the timetable
literature; specifically tabu search has already been reported to be very effective on timetable
problems [17, 18]. As our implementation differs very slightly from previous proposals, we
simply sketch these two well-known algorithms and concentrate on the genetic algorithm,
which is the most innovative of the three.

Simulated annealing

Simulated annealing (SA) is an effective single-solution randomized heuristic, based on an
algorithm originally presented in [24] and proposed as a combinatorial optimization tool
in [21]. An example of its application to TTP is presented in Abramson [1]. SA updates a
single solution at each iteration, accepting in probability also modifications that involve a
worsening of the objective function. The probability of accepting a worsening solution is
a function of an internal state variable, called temperature.

The algorithm uses a function that transforms the current temperature level into a lower
one; this is known as annealing. The annealing schedule that we have used isT(t + 1)=
αT(t)whereα(0<α<1) is a user-defined parameter, calledcooling rate. We implemented
SA essentially as described in [1], except for the use of the objective function and of the
solution neighborhood described in the previous section, therefore we refer the interested
reader to [1] for a detailed description of the algorithm.

Tabu search

Tabu search (TS) is another evolutionary heuristic that updates a single solution. It was
originally proposed in [15, 16]; specific applications to TTP are presented by Hertz and de
Werra [10, 17, 18].

The idea behind TS is to start from a random solution and successively move it to one
of its current neighbors. Each time amoveis performed, the reverse one is linked at the
beginning of a fixed-length list of inhibited moves, thetabu list. From a given solution, not
all neighbors can usually be reached. A new candidate move, in fact, brings the solution to
its best neighbor, but if the move is present in the tabu list, it is accepted only if it decreases
the objective function value below the minimal level so far achieved (aspiration level).

The algorithm we implemented includes a variable-sized tabu list: a minimal and a max-
imal length are specified and during the search, after a constant number of iterations, the
actual length is randomly changed. Again, we do not detail our state-of-the-art implemen-
tation of TS: the interested reader is referred to Glover [15, 16] or Taillard [31].
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Genetic algorithm

The GA [19] is a population-based evolutionary heuristic, where every possible solution
is represented by a specific encoding, often called anindividual. Usually the GA is ini-
tialized by a set of randomly generated feasible solutions (apopulation), but problem-
specific initializations are possible. Then, individuals are randomly mated allowing the
recombination of part of their encoding. The resulting individuals can then be mutated
with a specific mutation probability. The new population so obtained undergoes a process
of selection which probabilistically removes the worse solutions and provides the basis for
a new evolutionary cycle. The fitness of the individuals is made explicit by means of a
function, called thefitness function( f.f.), which is related to the objective function to opti-
mize. Thef.f. quantifies how good a solution is for the problem faced. In GAs individuals
are sometimes also calledchromosomes, and the positions in the chromosome (i.e., the
decision variables of the mathematical formulation of the problem) are calledgenes. The
value a gene actually takes is called an allele (orallelic value). Allelic values may vary on
a predefined set, that is calledallelic alphabet.

Let P be a population ofN chromosomes (individualsof P). Let P(0) be the initial
population, randomly generated, andP(t) the population at timet . The GA generates a
new populationP(t + 1) from the old populationP(t) applying somegeneticoperators.
The three basic genetic operators are:

— reproduction, an operator which allocates in the populationP(t + 1) an increasing
number of copies of the individuals with af.f. above the average in populationP(t);

— crossover, a genetic operator activated with a probabilitypc, independent of the specific
individuals on which it is applied; it takes as input two randomly chosen individuals
(parents) and combines them to generate two offspring;

— mutation, an operator that causes, with probabilitypm, the change of an allelic value of
a randomly chosen gene; for instance, if the alphabet were{0, 1}, an allelic value of 0
would be modified into 1 and vice versa.

Some difficulties are encountered when applying GAs to constrained combinatorial
optimization problems. The most relevant of them is that crossover and mutation oper-
ators may generate infeasible solutions.

The following corrections to this drawback have been proposed in the GA literature.

• change the representation of a solution in such a way that crossover can be applied
consistently;
• define new crossover and mutation operators [25] which generate only feasible solutions;
• apply the crossover and mutation operators and then make some kind ofgenetic re-

pair that changes the infeasible solutions to feasible ones through the use of a filtering
algorithm.

In the traveling salesman case the most successful approaches have been the introduction
of a new crossover operator and the application of genetic repair [26, 27]. The redefinition of
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Figure 2. Mapping theo.f. into thef.f.

mutation is in this case particularly straightforward: it is sufficient to exchange the position
of two cities in the string. In the TTP on the other hand, even after the redefinition of both
crossover and mutation, it has been necessary to implement genetic repair (filtering).

The objective function is the basis for the computation of thef.f., which provides the GA
with feedback from the environment. The feedback is used to direct the population towards
areas of the search space characterized by better solutions.

The need to distinguish between objective function (o.f.) and fitness function (f.f.) comes
from the necessity to define theo.f. with reference to a cost minimization problem, while
the standard GA as introduced by Holland [19] structurally solves maximization problems.
The translation fromo.f. into f.f. can be obtained by simply mapping the numeric values
of the former into those of the latter, by means of a monotonically decreasing function.
In particular, our system is based on alinear dynamic fitness scalingprocedure. At each
generation the maximum and the minimum objective function values of the individuals of
the population are computed (maxo.f. and mino.f. in figure 2): they define an interval on
theo.f.axis which is linearly mapped onto an interval of thef.f. axis, limited by two system
constantsMINFIT andMAXFIT , in such a way that mino.f. corresponds toMAXFIT and max
o.f. corresponds toMINFIT. This procedure attains two objectives: first, it minimizes the
o.f. while it maximizes thef.f.; second, it discriminates solutions belonging to populations
whose individuals have very small variations ofo.f. values, which is often the case in
the late stages of the search process when maxo.f. and mino.f. are very close to each
other.

The algorithm we used, in Pascal-like notation, is the following:

initialization {this routine creates a population of N random individuals, satisfying for
every individual a set of constraints:
— every teacher (row) is given the right amount of hours to be taught.
— some hours are set to the “fixed hour status”, which

means they cannot be moved.}
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while (NOT VERIFIED END TEST)do {the end test is on the number of iterations performed}
begin
applyreproduction;
applycrossover;
for l:= 1 to N do
begin
applymutation of order k;
applyday mutation;
if (LOCAL ON) then apply local search{LOCAL ON is a Boolean control variable}
if (num infeasibilities > MAX INFEASIBILITIES) then applyfilter

{MAX INFEASIBILITIES is a system constant}
end;

end.

We examine now the operators used by our GA and their computational complexity. This
complexity is a function of:

• the numberN of individuals composing the population,
• the activation probabilities chosen for each genetic operator,
• the computational complexity of thef.f., of the localf.f. (defined below), and of the

genetic repair (filter) algorithm.

We callFF the fitness function evaluation complexity, andGR the genetic repair (filter)
complexity (see Appendix).

We have chosen to explicitly represent the activation probabilities in the complexity for-
mulae because they are user-defined variables which can be set to zero in specific situations,
thus heavily affecting the complexity of the operator they refer to.

Reproduction. This is the classical reproduction operator that promotes individuals with
an above average value of thef.f. It gives every individual h a reproduction probability
pr (h) equal to its fitness divided by the total fitness of the population. New populations
are generated by using these reproduction probabilities in conjunction with Monte Carlo
methods.

The complexity of one application of the reproduction operator to the whole population
is thenO(FF · N), whereFF is the complexity of computing the fitness function.

Crossover. The task of this operator is that of efficiently recombining building blocks
(defined below for our case), so that, given two parents, it is possible to generate two
offspring with betterf.f. values (or at least with one of them with a significantly better
f.f. value). We call thelocal fitness function(l.f.f.) that part of the fitness function due
only to characteristics specific to each teacher. Given two individuals (timetables) of the
population,R1 andR2, the rows ofR1 are sorted in order of decreasingl.f.f., and the best
k1 rows are taken as a building block. Then, the remainingm− k1 (wherem is the number
of teachers) rows are taken fromR2 to generate the first son. The second son is obtained
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from the non-utilized rows ofR1 andR2. The value ofk1 is determined by the program on
the basis of thel.f.f. of both parents. This operator is applied in probability to each selected
pair of potential parents: the probability of its application is the system parameterpc.

The crossover operator is implemented by means of the following algorithm:

pair randomly the individuals of the population
for each pair of individuals and with probabilitypc do {pc is a control parameter}

begin

compute thel.f.f. of the rows of the two individuals;
sort by decreasing values of thel.f.f. the rows of the two individuals;
create two sons merging twice the two individuals

{the first son is generated taking the bestk1 rows from the better parent and
the remaining rows from the worse parent; the second son is generated
using the remaining unused rows from both parents};

end;

The complexity of one application of the crossover operator isO[(N · pc) · (m · LFF)],
whereLFF is the complexity of computing thel.f.f.

Mutation of order k. This operator takesk contiguous genes and swaps them with another
k contiguous non-overlapping ones belonging to the same row. Mutation of order one is a
special case of this operator. It cannot be applied when, among the genes to be mutated,
there are some special characters, like A or S (in fact, these symbols correspond to hours
which have been allocated once and for all during the initialization phase). This operator
is applied in probability to each row of each individual. The probability of its application
is the system parameterpmk (pm1 in the case of mutation of order one).

A particular kind of mutation isday mutation, which takes one day and swaps it with
another one belonging to the same row. Thei th day, in a teacher timetable, is a substring
containing genes that codify five contiguous hours, from the first to the fifth of a same day.
It is a special case of mutation of orderk= 5 and has been introduced for efficiency reasons
(with special reference to day-off allocation). It is controlled by a specific application
probability parameter,pmd.

The complexity of one application of the mutation of orderk operator to the population
is O(N · n ·m · pmk).

Filter. The filter operator takes as input an infeasible solution and returns as output a
feasible one. It is used to ensure global feasibility to a timetable and is based on the
observation that in each column (hour) of the matrix every class must be present once and
only once. If it were present twice or more times, there would be teacher superimpositions. If
it were not present, the class would be uncovered. It is based on four procedures of increasing
computational cost which are applied sequentially. The first two procedures identify swaps
of hours of one teacher that eliminate infeasibilities. The other two procedures modify the
schedules of more than one teacher.

The detailed steps comprising the filtering algorithm are reported in the Appendix.
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Table 1. Genetic operators and feasibility in the TTP case.

Operator name Global feasibility Row feasibility

Reproduction Maintained Maintained

Crossover Not maintained Maintained

Mutation of orderk Not maintained Maintained

Day mutation Not maintained Maintained

Filter Recovered Maintained

Table 1 gives the main properties of the considered genetic operators.
Row feasibility is maintained by all the operators presented, while this is not the case for

column feasibility: the goal of filtering will, therefore, be that of recovering column—hence
global—feasibility for any given timetable.

Summarizing, the operators have the following computational complexities (when
applied to a population of dimensionN):

Reproduction O(FF · N)
Crossover O(LFF · N ·m · pc)

Mutation of orderk O(N ·m · n · pmk)

Local search O(FF · N ·m · n)
Filter (Genetic Repair) O(N ·m6 · n3) {see Appendix}
Fitness functionFF O(m2 · n2)

Local fitness functionLFF O(m · n2)

5. Computational results

The program we used for our experiments was written using the C language and run on
a IBM PC 486, 33 MHz, 8 Mb RAM. The model and the program were tested by defining
the timetable for two high schools in Milan. In one of these schools the timetable was
handmade by a group of teachers, in the other one a commercial package (PC-UNTIS 3.0)
was used. To set up our application, we cooperated with the teachers who usually define
the timetable: this collaboration went from the design (for requirement definition) to the
validation phase.

Since we could use any predefined solution or population of solutions as our starting
point, we chose the previous year’s school timetables and adjusted them to meet the new
needs. This gave us a proven basis from which to begin, thereby saving computing time and
leading to improved solutions with respect to the handmade ones. The PC 486 environment
allowed on-site runs, and the carefully designed menu-based user interface allowed the users
both to directly interact with the computer in the input phase and to slightly edit the final
solution: all these features, beside increasing the effectiveness of the interaction, greatly
helped the acceptance of the package by the users.

When we applied our algorithms to the timetable used in the previous year in the school,
we were able to better arrange many lessons, so that both some didactic requirements and
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Table 2. Objective function parameters.

α = 1000 11 = 2 Ä1 = 4

β1 = 500 12 = 1 Ä2 = 1

β2 = 100 13 = 1 Ä3 = 5

β3 = 300 14 = 6 γi ∈ [0.5, 2]

several teachers’ preferences were better satisfied. In one problem instance for example,
for school year 1992/1993, the total cost of the hand-designed timetable was of 234, while
SA has been able to lower it to 164, GA to 91 and TS to 85. Note that we computed for
this problem a lower bound of 54 for the cost function, due to the presence of inconsistent
single teachers requirements and fixed hours. For example, many teachers chose Saturday
as desired day-off, which made it impossible to satisfy all of them with a feasible timetable.
Similarly, some teachers had fixed hours that did not meet their personal requirements,
which again introduced unavoidable costs.

These data, as all those reported later in this Section, were obtained with the values
for the objective function parameters listed in Table 2. The parameter values presented in
Tables 3–5 were obtained by fine-tuning each algorithm and the objective function on the
1992/1993 problem instance, letting the algorithms run several times with different settings
and discussing with the school staff the results.

Simulated annealing

We implemented SA following the indications presented by Abramson [1], using our ob-
jective function evaluator. Given the differences between the specific problems undertaken
by Abramson and by us, we had to adapt SA to work with our fitness function. In partic-
ular, we defined the neighborhood of a timetable as we did in the GA case. Also, SA was
asked to minimize not just the number of infeasibilities, but also didactic, organizational
and teachers’ requirements.

The use of this algorithm in our example problems led to timetables consistently worse
than the handmade ones: it could not even recover the initial cost level when it was let evolve
from the previous year timetable. And while SA was very efficient in recovering feasible
timetables from infeasible ones, it could not effectively optimize feasible timetables. This
was true both in the case of high and of low infeasibility costs.

We therefore modified the basic SA in two ways. First, we tested a SA withreinitial-
ization of the temperature. As soon as a timetable got frozen, that is, when the SA was
unable to improve the current timetable since no proposed swap was accepted anymore, the
temperature was set to its starting level. The annealing process could then start again from
the previously frozen timetable. The best timetable we found with this modified algorithm,
for the 1992/1993 problem instance, had a cost of 183. A graph of the 10-hours long cost
evolution for the corresponding run is presented in figure 3, where the lower line plots the
evolution of the best so far solution and the higher one the evolution of the current solution.

Alternatively, we tried to relax the problem when the timetable became frozen. We set the
infeasibility costs to 3 for a given (parametric) number of iterations after which the normal
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Table 3. SA parameters setting.

Parameter Value

Cooling rate 0.95

Max cycles without improvement 50

Problem reinitialization No

Problem relaxation Yes

No. of swaps with relaxed constraints 5

Figure 3. SA with temperature reinitialization.

cost function was applied again. This approach, coupled with a cooling rate ofα= 0.9,
yielded a timetable, for the 1992/1993 problem instance, with a cost of 164. A graph of
the cost evolution of the “best-so-far” and current solutions for the corresponding 10-hour
long run is presented in figure 4.

The SA parameters were set to the values given in Table 3. The initial temperature
level was set to a valueT0 computed as follows. Given a timetable, we generated 1000
alternative random moves and we definedT0 to be the temperature that allowed a probability
of acceptance of 0.5 over the 1000 moves. The terminating condition is based on execution
time.

Tabu search

The tabu search algorithm we used is very similar to the algorithm proposed by Hertz [18].
We implemented a variable-length tabu list and used the objective function described in
Section 3 to evaluate the cost of the timetables, as in the case of SA. The results achieved
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Figure 4. SA with temporary relaxations.

with this simple model however, were not very satisfying, so we implemented a relaxation
procedure identical to that used with SA (which is called a ‘diversification procedure’ in the
TS literature). The results so obtained were very good indeed, reliably producing timetables
with costs lower than those obtained by both SA and GA.

The complete parameters setting used for TS is reported in Table 4. The procedure used
to set them was the same as in the case of SA.

Genetic algorithm

The GA algorithm was detailed in Section 4. Here we report about the experiments carried
out to define its parameter values. We conducted a number of experiments to determine an
efficient parameter settings for GA. The control parameters tested were:

(i) probabilities: pm1, pmk and pmd of the different mutation operators,pc of crossover;
(ii) local search enabled/disabled;

Table 4. TS parameters setting.

Parameter Value

Max tabu list length 200

Min tabu list length 30

Max cycles without improvement 30

Problem reinitialization No

Problem relaxation Yes

No. of swaps with relaxed constraints 3
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Table 5. GA parameters setting.

Parameter Value

pm1 0.30

pmk (k = 3) 0.01

pmd 0.02

pc 0.80

N 15

Figure 5. Best values with and without local search.

(iii) cost of infeasibilities: it has been set to a high value (1000, one order of magni-
tude greater than weights for management conditions) or to a low value (3, to ease
explorations of infeasible regions).

Point (i) was tested considering five values for each parameter, the values were chosen
at regular intervals over a predefined range. The extreme points of the predefined range
was enlarged if the best performing value resulted to be one of the extremes. An initial
default setting was arbitrarily defined, then five runs were carried out for each tested value
combination, where each tested combination had only one parameter changed from the
default setting. Each run lasted eight hours on anIBM PC 486. In this way, we could identify
a good parameter setting, whose values are reported in Table 5. The algorithm was found
somewhat insensitive when changes ofpm1 and pc were held to within±0.2. However,
this insensitivity was not found for changes ofpmd (day mutation probability) orpmk, the
values of which should be kept very small.

Point (ii) was tested running the algorithm 10 times with local search enabled and 10 times
with local search disabled, always using the optimal parameter setting found in point (i). The
GA with local search was found to be definitely superior to its counterpart, in accordance
with the indications expressed by Mühlenbein [27]. Figure 5 presents the evolution of the
best values in the two cases for the 1992/1993 problem instance. Both runs lasted eight
hours. The difference in the number of generations is due to the computational cost of
local search. As a further test, we applied the local search operator to the best timetables
found without local search, thus carrying them to their local optima. This showed that it is
definitely worthwhile to search in the space of the local optima.

Finally, tests on point (iii) suggest that a high value for the cost of infeasibilities should
be used when local search is off, a low value used when local search is on. In the case
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in which local search is on, swaps are applied which maximally decrease the cost of the
timetable; that is, the highest-cost, unsatisfied requirements are removed first. When very
low infeasibility costs are used, local search tries first to assemble a good timetable from
the point of view of second level requirements, and only later it tries to make it feasible.
Since we have an explicit filter operator applied after local search, we observe that, on
the average, local search coupled with low infeasibility cost is much more effective than
local search coupled with high infeasibility costs. In fact, if infeasibilities had a high cost,
local search would first try to recover feasibility, even though this process leads to a great
increase of second-level costs. Subsequent local optimization, performed on feasible or
quasi-feasible timetables, cannot change these second-level costs much. A further benefit
of low infeasibility costs results from the fact that in the first iterations more infeasible
timetables survive in the population. This broadens the search region which can be reached
from the current population, thus allowing the exploration of otherwise unreachable areas.

The case of GA without local search yields opposite results. With low infeasibility costs,
filtering is always applied intensively, thus dramatically slowing down the search process.
The surviving infeasible solutions, however, are usually the best-rated ones and generate
many offspring.

As a final observation, note also that, while exploring promising zones of the search
space, the algorithm always identified feasible solutions within very few iterations; very
good solutions, however, needed many iterations to be devised.

Complete results

As mentioned in the previous sections, we tested our algorithms by devising complete
timetables for two high schools in the Milan area (whose names are “Vittorio Veneto” and
“G.B. Vico”, but which will be referred for short by S1 and S2, respectively). Each of them
had six sections (A to F), which were separately scheduled in pairs. All presented results
were obtaining by running each algorithm 10 times over each instance, each time for 8
hours on a PC 486 33 MHz.

First, we present the results for the 1992/1993 problem instance of school S1. Table 6
compares on this instance the results of eight-hour long runs of the different versions of

Table 6. Results for the 1992/1993 problem instance.

Algorithm Best Average Std. dev.

Handmade 234 234 //

GA 138 160 15

GA with local search 91 111 16

TS 184 196 13

TS with problem relaxation 85 97 12

SA 314 341 63

SA with reinitialization 183 262 57

SA with problem relaxation 164 174 25
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Figure 6. Best runs of the three algorithms.

SA, TS and GA previously introduced with the handmade timetable which was effectively
in use in that school year.

As Table 6 shows, all algorithms, in their best version, were able to consistently improve
the quality of the handmade solution. The reported results were obtained by using the
handmade solution as the starting point for each heuristic, but qualitatively comparable
results were obtained also by random initializations. All results in the following Tables
were in fact obtained by randomly initializing the solutions.

Figure 6 compares the execution traces of the minute-by-minute best solutions provided
by the best performing version of each of the three algorithms. It shows how all algorithms
were very rapid in recovering feasibility (we cut out the initial iterations values, which
started from over 10000 and would have made unintelligible the differences in the later
iterations). Both TS and SA have distinctly stepwise improvements, generally due to the
successive relaxations of the original problem. Obviously, the greatest improvements were
achieved in the first iterations, but notice how search is effective even in the latest stages.

Table 6 shows that SA was the worst of the three heuristics, while TS was the best, closely
followed by GA. This was true both in terms of best result provided and of reliability in
providing it. The same conclusions hold true for the tests on 1994/1995 problem instances
in schools S1 and S2. Tables 7 and 8 present the results on the instances of school S1. Notice
that the construction of the whole school timetable has been reduced to the solution of three
different problem instances (each one corresponding to a pair of sections), respectively
identified by AB, CD and EF. In Table 7, as in the following ones, for each algorithm we
report only the best performing version of each of the three heuristics: GA with local search
(GA-LS), SA and TS with problem relaxation (SA-PR, TS-PR), respectively.

Notice that in the EF instance GA performed better than TS, while TS was the best code
for the other problems. The averages of Table 7 are significantly worse than those of Table 6
because these problem instances were much more constrained on the use of some common
resources (laboratories).

The fixed-hours mechanism makes the execution on one pair of sections dependent on
those of previously scheduled pairs of sections. Therefore, in order to compensate the
progressively tighter constraints met on subsequent instances to define the whole school
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Table 7. Results for the 1994/1995 S1 school problem instances.

Problem instance GA-LS SA-PR TS-PR

Sections AB Best 195 258 179

Avg. 226 292 183

Std. dev. 11 21 6

Sections CD Best 240 323 207

Avg. 253 368 225

Std. dev. 11 19 18

Sections EF Best 208 304 233

Avg. 241 367 252

Std. dev. 15 90 26

Table 8. Results for the 1994/1995 S2 school problem instances.

Problem instance GA-LS TS-PR PC-UNTIS 3.0

Sections AB Best 144 111 438

Avg. 171 131 //

Std. dev. 28 24 //

Sections CD Best 173 118 503

Avg. 178 137 //

Std. dev. 6 18 //

Sections EF Best 168 111 445

Avg. 186 129 //

Std. dev. 12 22 //

timetable, in the 10 runs that were made for each algorithm and for each instance, we
scheduled each instance 4 times first, 3 times second and 3 times third. Thus, the AB,
CD and EF instances were accordingly permutated. The statistics presented in Tables 7
and 8 therefore consider also the (very limited, as testified by standard deviations) impact
of different fixed hours on the same problem instances.

Since SA-PR is obviously a dominated alternative, when we went to school S2 we
tested only GA-LS and TS-PR. However, the staff of that school already made a computer-
supported timetable generation, so we have been able to compare our final timetables also
with those provided by PC-UNTIS 3.0. Table 8 presents the results. Notice that GA-LS
and TS-PR were allowed the usual eight-hours long run, while PC-UNTIS 3.0 only took
about 2 minutes to define a timetable. However, there was no way to let it run longer, or
to make it proceed from a previously saved timetable, and different run always produce the
same result.

Again, TS-PR was consistently the best code, GA-LS the second best. Both outperformed
by far PC-UNTIS 3.0.
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6. Conclusions

In this paper we have presented a computational model and a class of algorithms and
computing programs for the timetable problem, with special reference to a real world
application (the timetable of an Italian high school). We compared a Genetic Algorithm-
based approach with various versions of Simulated Annealing and Tabu Search.

In our experiments Tabu Search has been the best performing algorithm, and the genetic
algorithm produced better timetables than simulated annealing.

However, an advantage for end-users acceptance of GAs over both SA and TS is that
GAs give the user the flexibility of choosing within a set of different timetables. This is an
important feature as the evaluation of a timetable is done by an objective function which
can miss some characterizing aspects. This, in turn, can make a timetable with a slightly
higher cost more desirable than one with a lower cost, as it often the case in real-world
applications.

The main contributions of our work are:

• an empirical comparison of fine-tuned well-known metaheuristics on real-world data
regarding high school timetabling;
• the hierarchical structuring (in our case on three levels) of theo.f., in order to allow an

easy and effective definition of the relevance of the different objectives used;
• the filtering algorithm, that is an algorithm capable of recovering from infeasibilities,

converting an infeasible solution into a feasible one.
• the definition of genetic operators that minimize generalized cost functions (which penal-

ize the possible infeasibilities of the generated solutions) and the distribution over these
operators, fitness function and filtering of the management of the infeasibilities;

We believe that this comparison can be of interest to anyone who has to solve timetable
problems, even not of the specific kind we dealt with, and that the genetic algorithm we
designed is a useful generalization of the GA and can be applied to other highly constrained
combinatorial optimization problems.

Appendix: The filtering algorithm

The steps composing the filtering algorithm (which actually are as many filters themselves)
are the following.

Step 0: for each columnh (h = 1, . . . ,n) of the matrix:

• compute the set of classes having superimpositions and put its elements in the
list over(h) together with their relative matrix coordinates;
• compute the set of uncovered classes and put its elements in the listmiss(h)

together with their relative matrix coordinates.

Step 1: until there exist pairs of classesci andcj such that:
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Figure 7. Swapping two classes.

• ci andcj are present in the same row (that is, classesci andcj have a common
teacher)
• in one of the rows where they are both present, they occupy columnsh andk,

with ci ∈ over(h), ci ∈ miss(k), cj ∈ over(k), cj ∈ miss(h)

swapci andcj .

The effect of the algorithm is shown in figure 7.

Step 2: until there exist pairs of elements, constituted by a classci and amovable gene ej
(that is, a gene that is either a character D or¨), such that:

• ci andej are present in the same row
• in one of the rows where they are both present, they occupy columnsh andk

with ci ∈ over(h), ci ∈ miss(k)

swapci andej .

The effect of the algorithm is shown in figure 8.

Step 3: until there existtransitive paths among classes, that is paths connecting classes
ci , cj , . . . , cs, ct , such that

• the classesci , cj , . . . , cs, ct are two by two in the same row
• ci ∈ over(h), ci ∈ miss(k), cj ∈ over(k), . . . , cs ∈ miss(l ), ct ∈ over(l ), ct ∈

miss(h)

swap each class with the following one belonging to the transitive path and present
in the same row.

The effect of the algorithm is shown in figure 9, where only a two-step path is considered.
Since the complexity of the algorithm grows exponentially with the path length, we set the
maximum length path to two. However, the algorithm can be generalized for handling longer
paths.



P1: SGR

Computational Optimization and Applications KL522-03-Colorni December 9, 1997 9:18

296 COLORNI, DORIGO AND MANIEZZO

Figure 8. Swapping two elements (a class and a movable gene).

Figure 9. Swapping classes in a transitive path.

Step 4: until there existtransitive paths among elements, where an element can be a class
or a movable gene in the sense defined in Step 2, behave as in Step 3 (allowing any
class to be substituted by a movable gene).

The effect of the algorithm is shown in figure 10.
The computational complexities of the steps are the following. Step 0:O(m · n)

Step 1:O(m3 · n2)

Step 2:O(m3 · n2)

Step 3:O(m6 · n3)

Step 4:O(m6 · n3)

Steps 3 and 4 imply a search in the set of links among superimposed and uncovered
classes; it has a complexity that grows exponentially with the length of the path. For
this reason we have (parametrically) limited the length of the path to two: the remaining
infeasibilities (very few, as was found experimentally) are left to the penalty/reproduction
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Figure 10. Swapping elements in a transitive path.

mechanism. With such a restriction the complexity of the procedure is polynomial, in our
casem6 · n3.

We propose, as an example, an outline of the computation of the complexity for Step 1.
In this case, we have to find all the columns where an element is missing in one and
superimposed in the other and vice-versa. Therefore, for each columnh (complexityn),
for each elementci ∈ over(h) (complexity at mostm) and for each elementcj ∈ miss(h)
(complexity at mostm) we have to identify another columnk (complexityn) havingci ∈
miss(k), cj ∈ over(k) (complexitym+m). The complexity is thusn ·m ·m · n · 2 ·m =
2 · n2 ·m3, that isO(m3 · n2).

Observation 1.Note thatm is a large overestimate of the length of the over and miss lists,
which in the real cases have usually lengths 0, 1 or 2. Therefore, the factor maximally
affecting the computational speed of the filter operator is the power ofn.

Observation 2.Steps 1 and 2 are special cases respectively of Steps 3 and 4. They have
been introduced for efficiency reasons, and could have been obtained from Steps 3 or 4
setting the path length to one.
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