icrop ing and
North-Holland

programming 34 (1292) 147152

147

USING TRANSPUTERS TO INCREASE SPEED AND FLEXIBILITY OF
GENETICS-BASED MACHINE LEARNING SYSTEMS

Marco Dorigo

" Pll’ohtecmcodlMﬂano Dj

nto di Elettronica

da Vinci 32 - 20133 Milano - kaly
E-mail: dorigo@ipmel2.elet.polimi.it
Tel. +39-2-2399-3622
Fax. +39-2-2399-3411

ABSTRACT

We impl d a distributed

learnin; i ion ona

network. The

for machi g
system can be used by a researcher to build modular and efficient leaming systems. The algorithms composing
the basic structure of the implementation are the genetic algorithm, the bucket bngwe algpmhm and the inferen-
tial engine. We present a parallel version of these algorithms and call it low-1 d to the
standard sequential version of the same algorithms, low-level par.\llchsm gives us an increase in pcrformancc To

provide the leaming system designer with a higher level of flexibility than

tems, we also impl d high-level paralleli:
learning systems. In this way a ,‘ !

with
rk can be all

one mapped on a single (possibly low-level pam]]ei) K

subsets of the d o dxffcrcm
lem can be d posed in many simpler problems, each
system.
p on Genetics-based machine leaming

KEYWORDS Parallel genctic algorithms Impk

i. INTRODUCTION

A major goal of artificial intelligence research is to give
computers learning capabilities. A first step to solve this
very difficult goal could be to implement systems with
adaptive capabilities, i.e. systems that change their be-
haviour according to the environmental situation in which
they operate. The problems raxscd by the dcsxgn of such

systems are faccd by in

G learning is a recent app h to
learning probl and the comprehension of this

model is, as it b with neural ks, largely de-

pendent on simulations. The present understanding indi-
cates that even the solution of simnple learning problems re-
quires the use of large sets of rules, and suggests that real
world application will be possible only exploiting the
power of parallel computers.

We have th d a parallel distributed system
that can be used as a tool to build geneucs-bascd machine
learning - GBM A paraliel i mof a

GBML system on the Connection Machine has been pro-
posed by Robertson [1]. That work demonstrates the
power of such a solution, but still retains, we think, a basic
ion: as the C Machine is a SIMD architec-

ture the resulting implementation is only a more powerful
but still classic GBML system. To implement our system
we have used a transpuier net that, because of its MIIVD ar-
permits the p of many Il ly ac-

tive control flows operanng on different data sets. “This ar-
chitectural orgamzﬂuon allowed us to distinguish between
low- and high-level forms of p ism in a way
that directly maps on the hardware architecture.

2. GENETICS-BASED MACHINE LEARNING
SYSTEMS

GBML systems are a class of adaptive systems that have

recently raised the interest of the artificial imelligence .om-

munity. They are composed of:

. A performancc sysiem, which conlams the system

asasetof p rules,

and the inferential cngme that allows many rules to fire
concurrently.

* A rule discovery system that scarch for ncw rules when-
ever changes in the environment require the system to

ada
-~ A n;plté evaluation system, whose task is to rate rules ac-
cording to their usefulness.
The system as a whole i is with the
it senses envi hang gh i i mes-
sages, acts on it th h actions and i or

punishments as feedback for performed actions. We give
now a brief description of the three systems.

(Environment)
| T,

Fig.1 - A typical GBML system

148 M. Darigo

2.1 The performance system

The main blocks composing the performance system are
{see Fig.2):

= aset of rules, called classifiers, with a condiction—ac-
tion format

* amessage list of dimension k+e, used to collect mes-
sages sent from classifiers and from the environment to
other classifiers, where k is the number of positions for
internal messages, 1.e. messages sent by classifiers, and
€ is the number of positions for environmental mes-
sages, i.e. messages coming from external environment

= an input and an output interface with the environment
(detectors and effectors) to receive/send messages
from/to the environment

= apattern-maiching and a conflict-resolution subsystem
that identify which rules are active in each cycle and
which of them will fire

The performance system algorithm is:

0 « Initialize the system (create a random set of rules).

1 » Read environmental messages and append them to the

message list.
2 = Setto status active cach classifier which has both con-
ditions hed by on the list and

then clear the message list.
f number of active rules < k (with k dimension of the
message list),
then append their messages to the message list;
else call the conflict resolution module, which takes
as input the m competing rules and returns the k.
rules that have the right to post their message;
then append the messages of the k winning rules
to the message list.
Set the status of all classifiers w nor-active.
Repeat from step 1.

w
.

V'S
.

Sciof Classifiors MessageList

cond eand? T mess |- [mibmcss-1]

5-C |
| S o

Fig2 - The performance system

~zegmeo-eesm

The conflict resolution module requires, to work properly,
some knowledge about the usefulness of competing rules;
only using this information it can decide which rules 1o fire

tion on the environment a payoff is ganerated whose value
is dependent on how good the performed action was with
tespect to the system goal. This reward is then transmitted
backward to internal classifiers that caused the external
classifier to fire. The backward transmission mechanism
causes the classifiers strength to change in time and to re-
flect their importance for the system performance (with re-
spect to the system goal).

Because of space constraints the bucket brigade algorithm
will be presented only in the paralle] version.

2.3 The Genetic Algorithm

Genetic algerithms are a class of stochastic algorithms
which has been successfully used both as an optimization
device and ar a rule-discovery mechanism [2], [3]. They
work modifying a population - set - of solutions (in GEML
a solution is a classifier) 10 a given problem. Solutions are
properly codified and a function, called fitness function, is
defined to relate solutions to performance (the value re-
turned by this function is a measure of the solution guality).
In genetics-based machine learming the fimess of a classifier
is given by its usefulness as measured by the apportion- .
ment of credit algorithm.

As it uses classifiers strength as a measurs of fitness, the
genetic algorithm can ve usefully applied to ihe set of clas-
sifiers only when the bucket brigade algorithm has reached
steady-state, i.e. when a rule strength accurately reflects its
usefulness. Therefore, it is applied very seldom, usually
every 1000+10000 bucket brigade steps. In the following
we report the steps of a single GA call.

0 o Take the set of classifiers as initial population P,

1.1 » Rank individuals of P in decreasing fitness order us-
ing the strength associated to every classifier as a
measure of fitness.

1.2 » Choose 2k individuals to be replaced among low
ranked - useless - ones.

1.3 « Choose 2k individuals to be replicated among high
ranked - useful - ones.

2.1 » Mate the individuals selected at step 1.3, so to get k
pairs of useful rules.

2.2 » Apply the crossover operator 1o each of the k pairs.

2.3 » Apply the mutation operator to each of the 2k indi-
viduals resulting from step 2.2,

3 Replace with the new generated 2k individuals the

2k useless individuals chosen at step 1.2.

3. HOW TO APPLY PARALLELISM?

Let's now underline the ch: istics of GBML sy
that make their parallelization easy. We said that the activa-
tion of rules is, at each cycle, based on the set of messages

- and which action to choose ir case of proposed i -
tent actions (e.g. "go right” and "go left"). It is the neces-
sity of this information that justifies the introduction of the
apportionment of credit algorithm, whose task is to rate
rules according to their perceived usefulness.

2.2 The rule evaluation system

The main task of the rule evaluation algorithm is to classify
rules by their uscfulness. The most known and used aigo-
rithm is the Bucket Brigade algorithm. In words, it works
as follows: a time varving real value called strength is asso-
ciated to every classifier C. A1 time zero each classifier has

the same gth. When an 1} causes an ac-

camp g the list. It is then a common situation
to have many classifiers simul usly activated: th

there is intrinsic concurrency among the rules. This
{strong) possibility of parallel activation has the effect to re-
quire a large computing power for the matching and com-
petition steps; nonetheless it is clear that these computations
can be distributed to a group of processing units, working
in parallel. Each processor can take care of matching the
-lements of the message list with a restricted subset of
t lussifiers.

To be more explicit, let us reconsider the performance al-
gorithm. We can think of it as being executed by four dis-
tinct processes (see Fig.3), each one taking care of different
operations:

-based i i 149

Using P for

* DTprocess (DeTector process): mpm interface, con-
verting ch in the envirc state into mes-
sages to be appended to the message list (ML).

. EFprocess (EFfector process): output mlerface, con-

vemng classifier into 1 actions.

. MLproces (MessageLlst process): central manager
for of g g the ge list; tasks of this
PTOCESS arc:

- 10 append to ML messages coming from DTprocess
or to send 10 EFprocess messages to interpreted as
actions;

- to send ML to CFprocess;

- to choose which rules should be replicated or dis-

- to apply crossover, mutation or other genetic opera-
1015,

» CFprocess (ClassiFiers pmcess) classxﬁer‘popula-
tion this process n ML,
with the condition part of the various cla..sxﬁcrs, 1t also
updates the strength of each rule distributing payments
and rewards.

Environment

(DTprocess) Messsge (EFprocess)

Fig 3 - Concurrent processes in a standard GBML system

Classiflers LCS

If we consider the activities of

Step 2.1 (mating rules for
asit ires 4 ce!
number of pairs involved is usually sroall and cemmncncy
seems (0 be unnecessary. Step 2.2 (applying crossover op-
erator) can be parallelized, even if many communications
are required.

Step 23 (applymg mntauon operator) and Step 5

are typical

ex-
amples of Iowl data processing, extremely suited to concur-
rent distribution.

(ENVIRONMENT)
] A
f v —)
DT | ML EF
| Eroce&sl FOCESS TOCESS
CF
process.1

a4y

Fig4 - The parallel version of a GBML system

4. THE EXPRESS COMMUNICATION SYSTEM

To implement our c system we have used Express [6], a soft-
ware tool written in 3L parallel C [7] and running on trans-

puters, that offers facilitics related to data exchange, pro-
cesses allocation, load batancing, ctc.

The typical read/write funcnons have in the Express com-

ion systen: the following form:

a

production, we see that they can be executed on each classi-
fier independently. So, it is natural to split CFprocess
into an array of sub-processes CFprocess./,
CFprocess.2, ... , CFpracess.n, each one taking care
of a fraction (1/n) of the classifier set (CF). The higher
goes n, the more intensive is the concurrency. When n is
equal to the cardinality of CF, each CFprocess.i manages
a single classifier: this is the typical Connection Machine
version of a concurrent GBML systen. In our transputer-
based implementation we allocated about 100-500 rules to
each processor [4] The set of CFprocesses can be orga-
nizedinah such as, for le, a ree
(see Fig.4) or a toroidal grid. The chosen structure deeply
influences the distribution of computational loads [5].
Similar remarks hold for the parallelization of the genetic
algorithms. We saw in a preceding section how the genetic
algorithm works when used in the GBML context. About
that algorithm we remark the following aspects:

Step 1 (ranking individuals of P by their fime% [Slep 1.1}

and choosi

which individuals are to be d [Step
I 2] and which are to be rephcaled [Step 1 3]) may be seen
as a competition, which can be th d over

exread(address_of _receiving_buffer,message_size, iden-
tifier_of_source_ SOT, message._iag)
eanle(address of_buffer_to_send, message_size, iden-
tifier_of_d :_tag)
The message._| tag: field associates a numerical fag 1o cach
for each
of data, both for simple (integer, float, double) or struc-
tured (arrays, structurcs) data. This way it is possible to
think of a wo p asofa
simple pair of statements: a call to mn(e(A_pnmco!) on
the sender, and a corresponding call to
exread(A_protocol) on the receiver.

5. LOW-LEVEL PARALLELIZATION

On the basis of what we said in previons sections, sup-
ported by a performance analysis on different models of
parall GBML [5], we decided to i

our system as a centrally-driven, distributed algorithm, In
this way we see the whole system as distributed over a net
d of one leader (MLprocess) and an array of slaves

the processor network by a "hierarchical gathering and
broadcasting” mechanism similar to the one we used for
propagating ML to the array of CFprocess.i's.

(CFpmccss i). To optimize the CPU usage, we allocated
on the node hosting MLprocess also one of the elements of
the CFprocess.i array. This way, while waiting for its net

150 M. Dorigo

of "slaves" to give their answers, the MLprocess node can
process itself a pas: of the classifiers population. The paral-
Iel GBML system is then composed of two different pro-
grams, Root and Net, interfaced with a third program
Hgst, implementing environment and I/O processes
(DTpracess and EFprocess). Consider the case in which
we have m+1 processors: then the Reot program is down-
loaded to one processor while the Net program is allocated
to each of the remaining m nodes. Each node, be it running
a Root or a Net program, takes care of a fraction of the
global classifiers population. The set of “slave™ processes
may be organized in an arbitrary fashion, regardless of the
derlying hard hi Of course, the greater the
comrespondence between the software hierarchy and the
wansputer physical swucture, the more efficient the commu-
nication system will be. An example: with an underlying
pipeline of 9 wransputers (Fig.5.1), our system allows the
distribution of a learning system both on a binary tree hier-
archy (Fig.5.2), and on a double-branch structure
(Fig.5.3). But the former results in longer, non-hardware
paths for hroadcasting data from the Root 1o each Net
program and backward. These paths have a strong influ-
ence upon the execution time, as the paralletized leamning
system works by distributing data over the processors net
and by gathering results from it, along the same paths. In
fact, ail the data structures are distributed through the net in
a hierarchical way, each node communicating only with
nodes of immediately higher and/or lower level (if any).
This means, for example (see Fig.5.4), that node 77 will re-
ceive data from nade X (when broadcasting from the Rogt
node) and node Z (when gathering data towards the Root
node). And, obviously, node Y will send data towards
node Z (when broadcasting) and towards node X (when
gathering).
The basic cycle of the Hast program is:
0. G an initia} envi state.
1 « Code the environmental messages into proper mes-
sages (DTprotocol).
2 - Send these messages to the leader process, i.e. the
Root node: exwrite(DTprotocol).
3 +» Receive from the Root node the answer, directed to
the effectors, by TEp 1 (To Effector p 1):
exread(TEproiocol).
Decode the messages into environmental actions.
Competition step: decide which action is to be per-
formed on the envi ing among (feasil
suggested actions.
6 « Perform the selected action and receive the reward (or
punishment).
7 + Send 1o the Root node the environmental reward
through FEprotecol (From Effector protocatl):
exwrite(FEprotocel).
8 « If EndTest = True then Stop else Gote Step 1.

.o

P

The basic cycle of the Root program is:

0 « Gesnerate an initial populatien. Set time t=0.

i » Receive in environmental message from the Host
node: exread(DTprotocel).

and put it into 2 Message List structure (MLprotocol).

2 » Distribute MLy 1 ds the neighbouring Net
nodes (if any): exwrite(MLprotocol).

3 + Operate the matching phase.

4 « Set up an intemal competition among bidding classi-
fiers, resulting in a list of winning rules (WhMprotocol:
Winning Messages protocol); other lists of bidding
classifiers may come from connected Nez nodes by

calls to: exread(WMpraiocel),

and are then set into competition with the local list; the
result of this merging operation is a final list of classi-
fiers that will append their messages on the new mes-
sage list to be used in cycle t+1.

5 = Choose which messages are directed to the effectors,
build a structure TEprotocol out of them, and sead it to
the Hast node: exwrite(TEprotocol).

6 » Receive a reward or a puni from the
ment, via a communication with the Host node,

exread(FEprotocol)
and put this data into the MLprotocol.

7 = Receive an environmental message from the Host
node: exread(DTprotocol)
and add it to the Message List structure (MLprotocol).

8 - Distribuie MLprotocol towards the neighbouring Net
nodes (if any): exwrite(MLprotocal).

9 « Update the values of strength of the classifiers allo-
cated to this node, using the data contained into the
MLprotocol structure.

10 « If EndTest = True then Stop else t=t+1 and Goto Step

3.

The basic cycle of the Net program is:

0 » Generate an initial population. Set fime t=90.

1 « Receive the Message List structure, either directly from
the Root node, or from an upper level Net node:

exread(MLprotocol).

2 « Distribute MLprotocol towards the neighbouring Net
nodes (if any) of a lower level:

exwrite(MLprotocol).

3 « Operate the matching phase.

4 « Internal competition among bidding classifiers, result-
ing in a list of winoing rules (WMprotocol: Winning
Messages protocol); other lists of bidding classifiers
may come from connected Net nodes of a lower level:

exread(WMprotocel)
and are set into competition with the local list; the re-
sult of this merging operation is a list of classifiers sent
either directly to the Root node, or to upper level Net
nodes: exwrite(WMprotocol).

5 * Receive the Message List structure, either directly from
the Root node, or from an upper level Net node:

exread(MLprotocol).

6 « Distribute MLpratocol 1owards the neighbouring
Net nodes (if any) of a lower level:

exwrite(MLprotocol),

7 « Update the values of strength of the classifiers allo-
cated to this node, using the data contained into the
MLprotocol structure.

8- gr EndTest = True then Stop ¢lse t=t+1 and Goto Step

The parallel genetic algorithm, not reported here because of

space constraints (see [4]), is organized in the same way.

We insert it into the basic cycle after the EndTest step (step

10 in Root and step 8 in Net), i.e. before beginning any

change in the population fitness, The genetic algorithm is

distributed on m+1 processes, as in the performance algo-
rithm case. We therefore built the implementation of the

parallel GA by means of two programs, a "leader” and a

“slave", which have been inserted inside Root and Net.

Alsp in this case, we organized the Net “slaves” hierarchi-

cally, obtaining a "flow” of GApraofoco! data structures

similar to the one we used for WMprotocol in the basic
cycle: that is, we broadcast and gather data from the Root
node 1o the Net nodes and back.

Using for

[ox
gl gl [g Fl Dl g o1

Fig 5.1 - Pipeline of rransputers: hardware structure

Net

Fig.5.2 - A parallel learning system with binary-mree
Sstructure

Host

Net Net

Fig5 4 - Broadcasting and gathering data in the paraliel
system

6. HIGH-LEVEL PARALLELIZATION

We have shown how to parallelize a single GBML system,
in order to obtain speed i ‘Whar
we did was only to build a pamllel version of the GBML
system, with no significant difference with the sequential
model, except for average execution times.

This approach shows i us weakncss wben a GBML system
is applied to multi-goal problems - as kily scems to be
the case in most of real problk To solve multi-obj
tasks is hard because they don't have explicit mechanisms
10 handle different sets of rules (where each set is dedicated
to the solution of a different goal). For these reason, a low-
level paratlelized GBML system, though faster and capabic
ofmanagmg largcr sets mes, seems still unable to be of

use.

P arise in a low-
level p ized system: 1 GBML system on
larger p) ks makes the load
grow fast, obtaining less and Iess in compuung speni

ddin, twothe
and less effective, tending to an asym

pmncal' Timit.
A better way to deal with complex problemns could be o
code them as a set of easier subproblems, each one to be
solved by a smaller GBML system.
Th we have partitioned the p
subsets, each havmg its own size and topolog, vcg
set is allocatcd a single GBML system. d:smbu
low-1 the number of nodes
used by each single system is greater than one (scc Fig.6).

Host

Lcsa Lﬂa

Fig.6 - Example of high-level concurrency among three
parallel cooperating learning systems

Each of these systems leamns to solve a specific subgoal,
depending on the inputs it receives: each leammg system
perceives the external envi by its own
while the output interface is obviously common to all
GBML systems, thus mqumng some type of interaction
among systems proposing ac
We give an example of the kmd of ﬂexlbl.hty provided by
high-level parailelism in system {8].
Consider t1c following lea.mlng lask a simple autonomous
robot has 0 learn to trace a light source and at the same
time should leam tc avoid heat sources; we can give the
first task to the leaming system LS and the sccond task to
the learning system LS2. Moreover, as thcse tasks are
simple p of amore e ion task (to
avoid dangerous objects while tracing the light source), we
can use a third learning system LS3 that has as its goal the
Jination of these activities (i.e. how to behave in con-

152 M. Darigo

flicting sttuations, ¢.g. when the light source goes too near
1o a heat source for the system to continue to follow it
without being injured).

We are now ready to present the aigorithm for concurrent
GBML systems, noting that the flow of data among differ-
ent learning systems is restricted to communications among
Root nodes and the Host node: each GBML system can
be distributed over a transputer subnet, with a low-level
parallelization as described in the previous section; but from

al i

7. CONCLUSIONS

In this paper we have presented a paralle] architecture im-
plementing a general purpose genetics-based machine
leaming system, By low-level parallelism we have en-
hanced the computational speed, by high-level parallelism
the system overall flexibility.

We are using it with the following results:

. [L‘he time re:quircd to design a GRML system has dropped

the point of view of the high level paralleli
system - LS - will operate in the same way, be its Root
rode processing data on its own, or with a subnet of under-
Iying Nes slaves. The resulting system then works as fol-
lows:
1+ each LS; receives from the environment its own input
messages: exread (DTprotocol_i).
2+ by processing them each LS; deduces an action 1o be
performed in the environment (usually a different one
for each L$j).
proposed actions, with their associated bids, are com-
municated to the Host node:
exwrite (TEprotocol_i).
4= the Host node takes care of informing the coordinator
(LS3 in the example) about the data received at step 3;
this is done by sending a new type of protocol to the
LS implementing the coordinator:
exwrite (DTprotocol_Coordinator).
5+ the coc decides a Iting action, which is
communicated to the Host node by sending protocols
of data from the Root node of the coordinating LS
{L.S3) to the Host node itself which receives them by
acallio: exread (TEprotocol_Coordinator).
6+ the action is performed by means of the output inter-
face and rewards are given to the Root nodes:
exwrite (FEpratocol_Coordinator)
exwrite (FEprotocol_i).
7+ If EndTest = True then Stop else t=t+1 and Goto Step

ta
N

1.

Building a of (if y parallelized)
LSs requires then only three type of modules: Host
(Environment, Input/Output interfaces, simulators and con-
nections between coordinaror and workers), Root
(MLprocess/GApreocess), and Net (CFprocess.i).
These units can be arbitrarily connected to obtain the de-
sired network.

* the computational power of each module can be defined
by the machine learning researcher according to the task
complexity.

REFERENCES

{1] Robertson,G.G., "Parallel Implementation of Genetic
Algorithms in a Classifier System"”, Proceedings of the
Second Intemational Conference on Genetic Algo-
rithms, July 28-31 1987, Lawrence Erlbaum,

(2] Holland,L.H., "Adaptation in natural and artificial sys-
tems", Ann Arbor: The University of Michigan Press,
1975.

[3] Goldberg,D.E. "Genetic Algorithms in Search, Opti-
mization & Machine Learning".Addison-Wesley, 1989.

[4] Dorigo,M., Sirtori,E., "A Parallel Distributed Environ-
ment for Genetics-based Machine Learning", Technical
Report No. 91-015, Politecnico di Milano, Italy.

[5] Camilli,A., Di Meglio,R., "Classifiers systems in

massively parallel architectures”, Master thesis,

University of Pisa - Italy, 1990,

Express 3.0 User's Guide, ParaSoft Corporation,

2500 Foothill Blvd., Pasadena, CA 91107, 1990.

[7] 3L Parallel C User's Guide, 3L Ltd, 1988.

{8] Dorigo,M., Schnepf,U. "Organisation of Robot
Behaviour Through Genetic Learning Processes”, 1o
appear in the proceedings of the Fifth IEEE
International Conference on Advanced Rabatics - June
20-22, 1991 - Pisa - ltaly.

[6]

