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Abstract. In this article we investigate the feasibility of using learning classifier systems as a tool for building 
adaptive control systems for real robots. Their use on real robots imposes efficiency eonstraints which are addressed 
by three main tools: parallelism, distributed architecture, and training. Parallelismis useful to speed up computation 
and to increase the flexibility of the learning system design. Distributed architecture helps in making it possible to 
deeompose the overall task into a set of simpler learning tasks. Finally, training provides guidance to the system 
while learning, shortening the number of cycles required to learn. These tools and the issues they raise are first 
studied in simulation, and theu the experience gained with simulations is used to implement the learning system 
on the real robot. Results have shown that with this approach it is possible to let the AutonoMouse, a small real 
robot, learn to approach a light source under a number of different noise and lesion conditions. 
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1. Introduct ion 

The main goal of  the research presented in this article is to investigate the feasibility of using 
learning classifier systems as a tool for building adaptive control systems for real robots. 
This is achieved by first experimenting with a variety of design solutions in a simulated 
world, and then using the best solutions found to implement the learning system for the 
real robot. 

The main focus of the article is on the investigation of  design solutions which make 
the learning system a rapid learner. We identified three tools which could help us in this 
direction: parallelism, a distributed architecture, and training. 

To develop our system we started from Holland's  learning classifier system (CS) (Booker, 
Goldberg & Holland, 1989; Holland, 1975). The first step to make it more efficient was 
the design of  the Improved Classifier System (ICS). ICS is a CS enhanced by automatic 
activation of  the genetic algorithm (GA) when the bucket brigade has reached a steady 
stare, by the introduction of mutespec ,  a new genetic operator whose task is to eliminate 
over general classifiers, and by a mechanism to dynamically change at run time the set of 
classifiers which are used by the performance system, so that those classifiers which caused 
a bad performance of the system are no longer used (see Section 3.1 and, for more details, 
Dorigo, 1993). Although improvements in performance were achieved, still they were not 
enough for our goals. We turned therefore to a parallel version of ICS, which was made 
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laster by means of low-level parallelism involving distribution of the ICS over a set of 
transputers. Moreover, through what we call high-level parallelism, it is possible to define 
many concurrent ICSs, each one with a specific behavior. The resulting system was called 
ALECSYS and is described in Section 3.2 (see also Dorigo & Sirtori, 1991b). ALECSYS has 
been used as a tool to build learning controllers composed of many cooperating modules. 

The investigation of what kind of structure to give to the learning system was made 
easier by the use of ALECSYS, which permitted the direct implementation oB a distributed 
architecture of the different behavior decomposition solutions we decided to investigate. In 
this article we propose as a good solution to behavior decomposition a hierarchical archi- 
tecture in which a set of learning classifier systems cooperate in the solution of a learning 
problem. This architecture has some basis on ethology grounds and has been described in 
detail in (Dorigo & Schnepf, 1993). An architecture built using ALECSYS is composed 
of a (hierarchically structured) set of cooperating modules, each one implementing either 
a simple behavior pattern or a coordination activity. In this respect our work is related 
to that of Brooks (1990). A major difference is that Brooks' behaviors are designed and 
not learned. Also closely related is the work of Mahadevan and Connell (1992), which 
uses a subsumption architecture (Brooks, 1991a) whose components are learning systems 
instead of being finite state machines, like in Brook's approach. A main difference is 
that they use Q-learning with statistical clustering instead of classifier systems; moreover, 
their coordination mechanisms (that is, inhibitions among behaviors) is designed, while in 
ALECSYS coordination is accomplished by a particular learning module (see also Dorigo 
& Colombetti, 1994a, for more details on architectures and coordination). Lin (1993a) 
also proposed a hierarchical architecture which resembles the one proposed here, but he 
uses Q-learning instead of classifier systems. Another approach loosely related to the 
one presented in this article was proposed by Brooks in (Brooks, 1991b). His work is on 
automatic translation of genetically evolved high-level programs into robot executable pro- 
grams, while we are developing programs directly at the robot language level. He suggests 
that a major difficulty in using artificial life techniques lies in the transferring of programs 
evolved in simulated environments to actual robots. On the contrary, we believe that one 
of simulation's main tasks is as a tool to acquire knowledge about how to build learning 
systems. 

The last issue discussed in the article is the training problem. The use of a trainer I can 
make the learning process rauch quicker, particularly so in the first phases of learning 
when the robot's moves are chosen mostly random. The use of a trainer brings in the 
following issues, which we investigate experimentally: (i) whether or not to use punishment 
in training a single classifier system; (ii) which shaping procedure should be used, that is, 
how should reinforcements be distributed among the modules comprising a (hierarchical) 
learning system, and finally (iii) the role that different kinds of data used by the trainer to 
evaluate the real robot moves have on the development of a robust system. 

The article is organized as follows. In Section 2 we discuss related work. In Section 3 
are presented ICS and ALECSYS. Section 4 introduces the experimental setting we used 
for simulations. We defined and developed the simulation environment and a simulated 
AutonoMouse in order to avoid spending a lot of time in doing real world experiments. 
Experience gained with this system was later used to implement the learning system for the 
real AutonoMouse. The results obtained in simulations with different kinds of architectures 
and shaping policies are presented in Section 5. In Section 6 we show how the methodology 
developed for simulated robots can be smoothly transferred to the real robot. Hefe we 
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describe the real AutonoMouse's capabilities and report experimental results. In Section 7 
we draw some conclusions and present some tboughts about future work. 

The reader should note the distinction we make between the terms "ALECSYS" and 
ùAutonoMouse 2'' (real or simulated): We refer to the physical body of the learning system 
as AutonoMouse and to its brain as ALECSYS. The distinction is most striking when 
reporting experiments with the real AutonoMouse, because at that point ALECSYS must be 
able to model not only external environment regularities, but also inaccuracies with which 
the AutonoMouse senses the world or performs actions (noise and lesions). 

2. Related Work 

The research presented in this article belongs to the reinforcement learning research field. 
Holland's classifier system (Holland & Reitmann, 1978; Booker, Goldberg & Holland, 
1989), Sutton's Dyna architectures (Sutton, 1990), Watkin's Q-learning (1989), and the 
connectionist approach (e.g., Barto, Sutton & Anderson, 1983; Williams, 1992) are some 
among the most used techniques applied by researchers to solve reinforcement learning 
problems. These techniques often overlap, with cross-fertilization between the different 
approaches. For example neural nets have been used by Lin (1992) in connection with 
Dyna architectures, while Compiani and others (Compiani, Montanari, Serra & Valastro, 
1989) have shown a structural correspondence between neural nets and classifier systems. 
A recent result (Dorigo & Bersini, 1994) is a construction which shows Q-learning being 
the same as a simplified version of a CS. 

From the learning classifier system side, ALECSYS has been inspired by Booker (1988), 
Holland and Reitman (1978), Wilson (1987), and Zhou (1990). All these authors have faced, 
at different levels of depth, the problem of building a knowledge base appropriate to solve 
the "Animat" problem, i.e. the problem, posed by Wilson (1987), of designing an artificial 
animal with learning capabilities sufficient to let it adapt to its environment and meet the 
goal of survival. 

The research presented in this article is related to Wilson's as far as general background 
ideas are concerned. It addresses some of the problems Wilson considered to be of great 
importance to the development of working Animats: how to control the growth in com- 
plexity faced by a learning classifier system that has to solve real world problems, how to 
coordinate behavioral modules, and how to use classifier systems organized in a hierarchical 
structure. 

We consider the GOFER system, developed by Booker (Booker, 1988), to be the father 
of ALECSYS; in GOFER are investigated many of the open problems we are also interested 
in. A major difference is that in GOFER the distinction between sets of rules implementing 
different behaviors is not made as explicit as in our system. ALECSYS uses an explicit 
hierarchical architecture composed of many cooperating CSs and different behavior patterns 
are implemented as different learning systems, while this is not the case in GOFER. This 
makes ALECSYS a very flexible system which has allowed the solution of some of the 
problems Booker reported (e.g., competition between classifiers that realize completely 
different behaviors, extinction of behavioral sequences not relevant in a particular situation, 
insufficient distinction between coordination messages and action rules). 

Zhou (Zhou, 1990) investigated the Animat problem using CSs. In particular, he was 
concerned with the problem of how to accumulate experience in a way that can be easily 
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retrieved when needed to solve previously solved problems. Up to now, we have not inserted 
any memory management mechanism similar to those proposed in Zhou's work. 

SAMUEL, the system developed by Grefenstette (Grefenstette, Ramsey & Schultz, 1990; 
Grefenstette, 1991) addresses the problem of learning decision rules for a sequential task. 
A major difference is that he uses symbolic condition-action rules, while ALECSYS uses 
low-level bit strings. Also, in (Grefenstette, Ramsey & Schultz, 1990) the authors seem to 
be mostly interested in studying the effects that sensor noise has on the learning process. 
Their results suggest that a good policy would be to use noisy sensors during the learning 
phase unless it is certain that the sensors will not be noisy in the target environment. We 
approach the problem from a different point of view (see experiments presented in Section 
6). In fact, instead of trying to develop in simulation rules robust enough to be used also 
with the real robot, we use simulations only to speed up the general tuning of ALECSYS 
software. Rules to be used in the real environment are developed during experiments in 
the real environment. We also stress the importance of some aspects of the reinforcement 
program, like the kind of data which it uses to judge the learning system performance, in 
realizing a robust system. 

3. ALECSYS: A Parallel Learning Classifier System 

ALECSYS is the main subject of this section. We first briefly describe ICS (Improved Clas- 
sifier System), a version of the sequential classifier system (CS) in which we introduced 
many innovations. These innovations proved very useful in increasing the CS efficiency, 
but inadequate for out needs. We therefore implemented a parallel version of ICS, called 
ALECSYS, whose goal was to both increase ICS speed, and to allow the design and imple- 
mentation of many concurrent cooperating ICSs. ALECSYS is described in the second part 
of this section. 

3.1. Description of lCS 

ICS is an improved version of the typical Holland learning classifier system (Booker, 
Goldberg & Holland, 1989). The tbllowing major innovations have been introduced (for a 
detailed description and experimental evaluation of these changes to the classical CS, see 
Dorigo, 1993). 

Calling the Genetic Algorithm when a Steady State is Reached. In classic implementations 
of CSs, the genetic algorithm (i.e., reproduction, crossover and mutation) is called every N 
cycles with N a constant whose optimal value is experimentally determined. 

A drawback of this approach is that experiments to find N are necessary, and that, even 
if using the optimal value of N, the genetic algorithm will not be called, in general, at the 
exact moment when rule strength accurately reflects rule utility. This happens because the 
optimal value of N changes in time, as it depends on the environment dynamics and on the 
stochastic processes embedded in the learning algorithms. If the genetic algorithm (GA) 
is called too soon, it uses inaccurate information; if it is called long after a steady state 
was reached, there is a loss of computing time (from the GA point of view, the time spent 
after the steady stare has been reached is useless). A better solution is to call the genetic 
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algorithm when the bucket brigade (Holland, 1980) has reached a steady state. In this way 
the genetic algorithm is called exactly when the strength of every classifier correctly reflects 
its usefulness to the system. The problem is how to correctly evaluate the attainment of 
a steady state. We have introduced a variable Ecs(t), called energy of the CS at time t, 
defined as the sum of the strength of all classifiers. A CS is said to be at a steady state when, 
Ecs(t)  6 [EMin, Emax] Vt 6 [t, t - k], where EMi n = min{Ecs(t), t E [t - k, t - 2k]}, 
Emax = max{Ecs(t), t c [t - k, t - 2k]}, and k is a parameter. In this way are excluded 
both cases in which Ecs(t)  is increasing or decreasing, and situations in which Ecs(t) is 
still oscillating too rauch. Experiments have shown that the value of k is very robust; in the 
experiments presented in this article it was set to 50, but no substantial differences were 
found for values of k in the range between 20 and 100. 

The Mutespec Operator. Mutespec, a new operator, is used to reduce variance in the 
reinforcement received by default rules 3. Mutespec takes a classifier, randomly chooses a 
"don't  care" (#) symbol in one of the conditions, and generates two classifiers in which the 
selected "don't  care" symbol is replaced by a 0 and a 1, respectively (the parent classifier 
remains in the population). The mutespec operator is applied to overly general rules that fire 
in conflicting situations, causing actions that sometimes are useful and sometimes are not. 
To identify these rules, a measure of each rule's strength variance is taken. The mutespec 
operator is applied to the rule with the highest variance, provided that its variance is at least 
K times the average variance of classifiers in the population (a good value is K = 1.25, 
determined experimentally). 

DynamicalIy Changing the Number of Used Classifiers. In ICS the number of used rules 
dynamically changes at runtime (i.e., the classifier set cardinality shrinks as the bucket 
brigade finds out that some rules are useless or dangerous). The rationale for reducing the 
number of used rules is that when a rule strength drops to very low values its probability of 
winning the competition is very low and, in the case that it wins the competition, it is very 
likely to propose a useless action. As the time spent matching rules against messages in 
the message list is proportional to the classifier set cardinality, cutting down the number of 
matching rules results in the ICS performing a greater number of cycles (a cycle goes from 
one sensing action to the next one) than a standard CS in the same time period. This causes 
a quicker convergence to a steady state. The genetic algorithm can be called with higher 
frequency and therefore a greater number of rules can be tested. Experiments presented in 
(Dorigo, 1993) for a light following task have shown that the average time for a cycle using 
the dynamical change of the number of activatable classifiers is about 50% of the average 
time (expressed in seconds) for a standard CS cycle. Moreover, the proposed method causes 
both the number of cycles required to reach a pre-fixed performance level to diminish, and 
the maximum performance achieved in a fixed number of cycles to increase. 

3.2. ALECSYS Architecture 

ALECSYS is a tool for experimentation with parallel ICSs, designed to obtain a powerful 
enhancement of the possibilities of CSs. Orte of the main problems faced by CSs trying to 
solve real problems is the presence of heavy limitations to the number of rules which can 
be employed, due to the linear increase of the basic cycle complexity with the classifier set 
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cardinality. With a personal computer, for instance, in order to have acceptable elaboration 
times, only small populations, e.g. sets of 100-500 classifiers, can be used. One possible 
solution to increase the amount of processed information without slowing down the basic 
elaboration cycle comes from the use of new parallel architectures, such as the Connection 
Machine or the transputer. A parallel implementaUon of the CS on the Connection Machine 
has been proposed by Robertson (1987). That work has demonstrated the power of such a 
solution, but still retained, in our opinion, a basic limit. As the Connection Machine is a 
SIMD (Flynn, 1972) architecture, the most natural design for the parallel version of the CS 
is based on the "data parallel" modality, i.e., a single fiow of control applied to many data. 
Therefore, the resulting implementation is a more powerful, but still a classic, learning 
classifier system. 

As out main goal was to give our system features such as modularity, flexibility and 
scalability, we implemented ALECSYS on a transputer system 4. In fact, because of its MIMD 
architecture, the use of a transputer system permits both the presence of many simultane- 
ously active flows of control operating on different data sets, and a gradual growth of the 
learning system without major problems. We organized ALECSYS in such a way as to have 
both SIMD-like and MIMD-like forms of parallelism concurrently working in the system. 
The first was called low-level parallelism and the second high-levelparallelism. Low-level 
parallelism operates within the structure of a single ICS and its role is to increase the speed 
of the ICS. With high-level parallelism allowing various ICSs to work together, the complete 
learning task can be decomposed into simpler learning tasks running in parallel. 

3.2.1. Low-level Parallelism: A Solution to Speed Problems. In the following is de- 
scribed the micro-structure of ALECSYS, that is the way parallelism was used to enbance 
the performance of the ICS model. The ICS, like Holland's CS, can be depicted as a set of 
three interacting systems (see Fig. 1): the performance system, the rule-discovery system 
(genetic algorithm), and the credit apportionment system (bucket brigade algorithm). In 
order to simplify the presentation of the low-level parallelization algorithms, the various 
systems are discussed separately. First we show how the CS performance and credit appor- 
tionment systems were parallelized, and then we will make similar considerations regarding 
the genetic algorithm. 

Figure 1. Functional organization of ICS. 
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Concurrent processes in ICS. 

The Performance and Credit Apportionment Systems. A basic execution cycle of the se- 
quential CS can be looked at as the result of the interaction between two data structures: 
the list of messages, ML, and the set of classifiers, CE Therefore, we decompose a basic 
execution cycle into two concurrent processes, MLprocess and CFprocess, that interface 
to input process DTprocess (DeTector) and output process EFprocess (EFfector), as shown 
in Fig. 2. 

The processes communicate by explicit synchronization, with the following sequence of 
steps. 

1. MLprocess receives messages from DTprocess and places them in the message list ML. 
2. MLprocess sends ML to CFprocess. 
3. CFprocess "matches" ML and CF, calculating bids for each triggered rule. 
4. CFprocess sends MLprocess the list of triggered rules. 
5. MLprocess erases the old message list and makes an auction among triggered rules; the 

winners, selected with respect to their bid, are allowed to post their õwn messages, thus 
composing a new message list ML. 

6. MLprocess sends ML to EFprocess. 
7. EFprocess chooses the action to apply and, if necessary, discards conflicting messages 

from ML; EFprõcess receives reinforcements and is then able to calculate the rein- 
forcements owed to each message in ML; this list of reinforcements is sent back to 
MLprocess, together with the remaining ML. 

8. MLprocess sends the set of messages and reinforcements to CFprocess. 
9. CFprocess modifies the strengths of CF elements, paying bids, assigning reinforcements 

and collecting taxes. 
0. While not stopped, go back to step 1. 

Steps 3 and 4 (matching and message-production) can be executed on each classifier inde- 
pendently. So we split CFprocess into an array ofconcurrent subprocesses {CFprocess. 1 . . . .  
CFprocess.i . . . . .  CFprocess.n}, each one taking care of 1/n of CE The higher n goes, the 
more intensive the concurrency is. In out transputer-based implementation, we allocated 
about 100-500 rules to each processor (this range was experimentally determined as the 
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Figure 3. A parallel version of the ICS. In this example CFprocess of Fig. 2 is split into six concurrent processes 
CFprocess. 1 .... , CFprocess.6. 

most efficient, see (Dorigo, 1992)). CFprocesses can be organized in hierarchical struc- 
tures, such as a tree (see Fig. 3) or a toroidal grid. (It should be noted that the structure 
actually chosen deeply influences the distribution of computational loads and therefore, the 
computational efficiency of the overall system, see Camilli, et al., 1990.) 

Many other steps can be parallelized. We propagate the message list ML from MLprocess 
to i-th CFprocess and back, obtaining concurrent processing of credit assignment on each 
CFprocess.i. (The auction among triggered rules is subject to a hierarchical distribution 
mechanism, and the same hierarchical approach is applied to reinforcement distribution.) 
Further details on the implementation can be found in (Dorigo, 1992). 

The Rule Discovery System. We now illustrate briefly out parallel implementation of the 
GA. A first process, named GAprocess, can be assigned the duty to select from among CF 
elements those individuals that are to be either replicated or discarded. It will be up to the 
(split) CFprocess, after receiving GAprocess decisions, to apply genetic operators, each 
single CFprocess.i focusing upon its own fraction of CF population (see Fig. 4). 

MLprocess stays idle during GA operations, as it could affect CF strengths, upon which 
genetic selection is based; likewise GAprocess is "dormant" when MLprocess works. 

A typical genetic algorithm works as follows. 

1. Within CF two sets of rules are selected, orte composed of rules to be replicated (parents 
classifiers), the other of those to be replaced (offspring positions). 

2. Parents are mated two by two; 
3. A genetic crossover operator is applied to each couple created at step 2, thus generating 

a new pair of rules (offspring). 
4. Offspring undergo a stochastie mutation operator. 
5. Offspring generated at steps 3 and 4 replace rules chosen at step 1 (offspring positions). 
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Figure 4. The same type ofarchitecture used for the credit apportionment and performance systems parallelization 
is employed to parallelize the genetic algorithm. 

Considering our parallel implementation, step 1 may be seen as an auction, which can 
be distributed over the processor network by a "hierarchical gathering and broadcasting" 
mechanism, similar to the one we used to propagate the message list. Step 2 (mating of 
rules) is not easy to parallelize, as it requires a central management unit. Luckily, in CS 
applications of the GA the number of pairs is usually low and concurrency seems to be 
unnecessary (at least for moderately sized populations). Step 3 is the hardest to parallelize 
because of the many communications it requires, both between MLprocess and the array of 
split CFprocesses and among CFprocesses themselves. Step 4 is a typical example of local 
data processing, extremely suited to concurrent distribution. 

The parallel GA is: 

1. Each CFprocess.i selects, within its own subset of CF, m rules to replicate and m to 
replace (note: m is a system parameter). 

2, Each CFprocess.i sends GAprocess some data about each selected classifier, enabling 
GAprocess to set up a hierarchical auction based on strength values; this process results 
in selecting 2m individuals within the overall CF population. 

3. GAprocess sends the following data to each CFprocess.i containing aparent classifier: 

identifier of the patent itself 
identifiers of the two offspring 
CrossOver Point (COP) 

at the same time GAprocess sends to the CFprocess.i containing a position for any 
offspring the following data: 

identifier of the offspring 
identifiers of the two patents 
COR 

4 All the CFprocesses that have parents in their own fraction of CF send a copy of the 
parent rule to the CFprocess.i that has the corresponding offspring position; this process 
will apply crossover and mutation operators and will overwrite rules to be replaced with 
newly generated rules. 
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isl~l ~s~ Is3~ 
Figure 5. Example of concurrent use of high-level and low-level parallelism: using ALECSYS the learning 
system designer divides a problem into three CSs (high-level parallelization) and maps each CS onto a subnet of 
transputer nodes (low-level parallelization). 

3.2.2. High-level ParaIlelism: A Solution to Behavioral Complexity Problems. In the 
preceding section we presented a method for parallelizing a single CS, with the goal of 
obtaining improvements in computing speed. This approach shows its weakness when a CS 
is applied to problems with multiple goals, which seems to be true of most real problems. We 
propose to assign the solution of the different goals to different CSs. This approach requires 
the introduction of a stronger form of parallelism, which we call high-level parallelism. 

Moreover, scalability problems arise in a low-level parallelized CS; adding a node to 
the transputer network implementing the CS makes the communication load grow faster 
than the computationäl power, obtaining a less than linear speedup. Therefore, adding 
processors to an existing network is decreasingty effective. As already said, a better way 
to deal with complex problems could be to code them as a set of easier subproblems, each 
one committed to a CS. In ALECSYS the processor network is partitioned into subsets, each 
having its own size and topology. To each subset is allocated a single CS, which can be 
parallelized at a low level (see Fig. 5). Each of these CSs learns to solve a specific subgoal, 
according to the inputs it receives. Since ALECSYS is not provided with any automated way 
to come up with an optimal or even a good decomposition of a task into subtasks, this work 
is left to the learning system designer, who should try to identify independent basic tasks 
and coordination tasks and then assign them to different CSs. The design approach to task 
decomposition is common to most of the current research on autonomous system (see for 
example, Lin (1993a; 1993b), and Mahadevan & Connell (1992)), but goes beyond the 
scope of this article (for a discussion of this issue see, Dorigo & Colombetti, 1994a, and 
Colombetti & Dorigo, 1994). 

4. The Experimental Setting 

In this work the role of simulation is quite different from other systems such as Grefenstette's 
SAMUEL system. Rather than using simulation to learn robot control programs, we use them 
to test the design ofrobot control systems capable of learning. Once we come up with a good 
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Figure 6. Experimental setting (simulation): the simulated AutonoMouse sees and likes to play (that is, to 
follow) with a light source. It can also hear the noise of an approaching predator, in which case it runs to its lair. 

system tested in simulated environments, we transfer the knowledge we, as researchers, have 
acquired to the design of  learning systems which control real robots. 

The experiments described in this article concern a particular instance of  the Animat 
problem (Wilson, 1987). As our goal is to develop an efficient learning system for real 
world experiments, as opposed to develop robot controllers in simulation and then to use 
them with real robots, we run simulations in environments which a rea  very coarse model 
of real target environments. 

The following sections describe the objects in the simulation environment, the target 
behaviors, the simulated AutonoMouse, the learning architectures built using ALI~CSYS, the 
details of  the representation used, and finally the reinforcement program. 

4.1. The Simulation Environment 

Simulations were run placing the simulated AutonoMouse in a two dimensional environment 
where there were some objects that it could perceive. The objects are as follows, 

• A moving light source. The light moves at a speed which is set to be equal to the 
maximum speed of the simulated AutonoMouse. The light moves along a straight line 
and bounces against walls (the initial position of the light is random). 

• A predator which appears periodically and can only be heard. 
• The AutonoMouse's  lair. The lair occupies the upper right angle of the environment (see 

Fig. 6). 

4.2. Target Behavior 

The goal of  the learning system is to have the simulated AutonoMouse learn the following 
behavior patterns. 

. Playing behavior. The simulated AutonoMouse likes to follow the moving light source. 
(Imagine the light source to be something the simulated AutonoMouse likes to play with.) 
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• Hiding behavior. The simulated AutonoMouse occasionally hears the sound of a preda- 
tor. Its main goal then becomes to reach the lair as soon as possible and to stay there 
until the predator goes away. 

• Global  behavior. A major problem for the learning system is not only to learn single 
behaviors, but also to learn to coordinate them. As we will see, this can be accomplished 
in different ways. 

If the learning process is successful the resulting global behavior should be as follows. 

The simulated AutonoMouse plays with (follows) the light source. When it hap- 
pens to hear a predator 5, it suddenly gives up playing, runs to the lair and stays 
there until the predator goes away. 

4.3. The Simulated AutonoMouse 

The simulated AutonoMouse has limited capabilities that should allow it to learn some 
simple behavior patterns. 

Sensory Capabilities of the AutonoMouse. The simulated AutonoMouse has two eyes. 
Each eye covers a visual angle of 180 ° and the two eyes have a 90 ° overlap in the Au- 
tonoMouse forward move direction, The eyes partition therefore the environment in four 
non overlapping regions (see Fig. 6). AutonoMouse eyes can sense the position of the light 
source and of the lair (we say the AutonoMouse can see the light and the lair); they can also 
detect the difference between a close light and a distant light (the same is true for the lair). 
The distinction between close andfar was necessary because the AutonoMouse should learn 
two different responses within the hiding behavior: when the lair is rar, approach it; when the 
lair is close (that is the AutonoMouse is into the lair) do not move. The distinction between 
close andfar was not necessary for the playing behavior, but was maintained for uniformity. 
The AutonoMouse can also sense the presence of a predator (we say it can hear the preda- 
tor), but cannot see it. As the sensory capabilities of the AutonoMouse make the perceived 
environment partitioned into four regions, with each region divided between a close region 
and a rar region, three bits are enough to identify the light or the lair relative position. 
The AutonoMouse receives therefore seven bits of information from sensors: two bits to 
identify light position, two bits to identify lair position, one bit for light distance (close/far), 
one bit for lair distance (close/far), and one bit to signal the presence of the predator. 

Motor Capabilities of the AutonoMouse. The AutonoMouse has a right and a left motor 
and it can give the following movement commands to each of them: stay still, move one 
step backward, move one step forward, and move two steps forward. The maximum speed 
of the AutonoMouse, that is two steps per cycle, was set to be the same as the speed of  the 
moving light (it was found that setting a higher speed, e.g. four steps per cycle, made the 
task much easier, while a lower speed made it impossible). 

At every cycle, the AutonoMouse decides whether to move or not. As there are four 
possible actions for each motor, a move action can be described by four bits. The messages 
ALECSYS sends to the AutonoMouse motors are six hits long, the two additional bits being 
used to identify the messages as motor messages. The structure of a message sent to motors 
is shown in Fig. 7. 
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Figure 7. Structure of a message going to motors. 

The two bits going to each motor have the following meaning: 

00 - o n e  step backward, 
01 - stay still; 
10 - o n e  step forward, 
11 - two steps forward. 

4.4. The Learning Architectures: Monolithic and Hierarchical 

In the experiments presented in the next section a distinction is made between a monolithic 
architecture (Fig. 8) and a switch (hierarchical) architecture (Fig. 9). In the monolithic ar- 
chitecture the learning system is implemented as a single low-level parallel classifier system 
(on three transputers), called CS-global. In the switch architecture the learning system is 
implemented as a set of three classifier systems organized in a hierarchy (see Fig. 9); two 
classifier systems learn the basic behaviors (playing and hiding), while one learns to switch 
between the two basic behaviors. To implement the switch architecture we took advantage 
of the high-level parallelism facility of  ALECSYS; we used one transputer for the playing 
behavior, one transputer for the hiding behavior, and one transputer to learn to switch. 

4.5. Representation 

In ALECSYS classifiers are rules with two condition parts and one action part. Conditions 
are connected by an AND operator; a classifier enters the activation state if and only if it 
has both conditions matched by at least a message. Conditions are strings on {0, 1, #}k, 
and actions are strings on {0, l }k. The value of  k is set to be the same as the length of  the 
longest between sensor and motor messages. 

In our experiments the length of  motor messages is always six bits, while the length of 
sensor messages depends on the type of architecture chosen. 

When using the monolithic architecture, sensor messages are composed of nine bits, 
seven hits being sensory information and two bits for the tag, which identifies the message 
as being a sensor message 6. (Therefore a classifier will be 3 × 9 = 27 bits long.) 

In the case of  the switch architecture sensory information is split to create two messages, 
a five bit message for the playing behavioral module (two bits for light position, one bit 
for light distance, and two bits as a tag), and a six bit message for the hiding behavioral 
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Figure 9. The switch architecture. The problem is decomposed into three subproblems; a different CS learns to 
solve each subproblem. 

module (two bits for light position, one bit for lair distance, one bit for the predator presence 
message, and two bits as a tag). 

When using a switch architecture it is also necessary to define the format of the interface 
messages among basic CSs and CS-switch. At every cycle each basic CS sends, besides 
the message directed to motors ifit is the case, a one-bit message to CS-switch. This one-bit 
message is intended to signal to CS-switch the intention to propose an action. A message 
composed by all the bits coming from basic CSs (a two bit message in our experiment: one 
bit from CS-play and one bit from CS-hide) goes as input to CS-switch. Hence CS-switch 
selects one of the basic CSs, which is then allowed to send its action to the AutonoMouse 
motors. The value and the meaning of the bit sent from the basic CSs to CS-switch is not 
predefined, but is learned by the system. 

In Fig. 10 is shown the format of a message from sensory input in the monolithic archi- 
tecture; in Fig. 11 the format of a message from sensory input to basic CSs in the switch 
architecture. 

Consider for example Fig. 1 lb, which shows the format of the sensor message going to 
CS-hide. The message has six bits. Bits orte and two are tags. They indicate whether the 
message comes from the environment or was generated by a classifier at the preceding time 
step (in which case they distinguish between a message that caused an action and one which 
did not). Bits three and four indicate lair position using the following encoding 

0 0  - no lair, 
0 1  - lair on the right, 
1 0  - lair on the left, 
11 - lair ahead. 
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Figure 11. Structure of a message from sensory input in the case of switch architecture, a) Message going to 
CS-play. b) Message going to CS-hide. 

Bit five indicates lair distance; it is set to one if the lair is far away and to zero if the 
lair is very close. Bit six is set to 1 if the AutonoMouse hears the sound produced by an 
approaching predator, to zero otherwise. 

4.6. The Reinforcement Program 

In our experiments a trainer observes the learning agent actions and provides reinforce- 
ments after each action. In the experiments presented in Section 5 the trainer is imple- 
mented as a reinforcement program (RP). When implementing a RP a few interesting 
issues arise. The first issue we studied is whether the RP should provide only rewards 
(only rewards policy) or also punishments (rewards and punishments poIicy). An exper- 
iment in which only the playing behavior was considered, reported in Section 5.2, has 
shown that the use of  punishments increases the learning performance. In the experiment 
the reinforcement program is called RP-play. RP-play gives the AutonoMouse a reward 
if it moves so that its distance from the light source does not increase. On the contrary, 
if the distance from the light source increases it punishes ALECSYS in case it uses the re- 
wards and punishments policy, or it gives a null reinforcement if it uses the only rewards 
policy. 

A second issue we studied is how the RP should be structured to make the best use of the 
architecture. We ran experiments to compare the monolithic and the switch architecture. In 
the monolithic architecture the RP is composed of the RP-play and the RP-hide procedures. 
RP-play is used to reinforce the AutonoMouse when the predator is not present, and is the 
same as in the previous experiment. RP-hide, which is used when the predator is present, 
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rewards the AutonoMouse when it makes a move which diminishes the distance from the 
lair, i f the  lair is far; or when it stays still, i f the lair is close. Although the RP for the switch 
architecture is the same as that for the monolithic architecture, there is a major difference 
in that a decision must be taken about how to shape the learning system. Experiments were 
run with the following two shaping policies. 

• Holistic Shaping. In holistic shaping the whole learning system is considered as a 
black box. The actual behavior of  a single classifier systems is not used to evaluate 
how to distribute reinforcements; when the system receives a reinforcement, it is given 
to all of  the three CSs comprising the switch architecture. This can make the learn- 
ing task difficult because there can be ambiguous situations in which the trainer can- 
not give the correct reinforcement to the component CSs. Examples of ambiguous 
situations are: a correct action is the result of two wrong messages (e.g., CS-switch 
chooses to give control to the wrong basic CS, which in turn proposes a normally 
wrong move that in that context happens to be correct) or a CS gets a punishment 
because of a mistake another CS made. Nevertheless, this method of distributing re- 
inforcements is an interesting one because it does not require access to all the inter- 
nal modules of the system and is rauch more plausible from an "ethological" point 
of view. (After all, you do not teach children to walk by rewarding single muscle 
contractions !). 

• Modular  Shaping. In modutar shaping first the basic CSs are trained, then they are 
frozen (that is, basic CSs are no longer learning, but only performing) and CS-switch 
is trained. Training of basic CSs is done in a separate session (it can be done in par- 
allel): RP-play is used to train the CS-play, and RP-hide to train CS-hide. After 
the two basic CSs have reached a good performance level, they are frozen and CS- 
switch is turned on. CS-switch is reinforced by the complete RE as in the monolithic 
architecture. 

5. Learning Complex Interacting Behaviors 

The central issue investigated in this section is the role that the architectural choice and the 
reinforcement program play in making a learning system an efficient learner. All experiments 
were run with the simulated AutonoMouse and using ALECSYS. 

In the first experiment, the issue was whether the use of punishments is a good thing or 
not; we also tested the optimal length for the message list, a parameter which can greatly 
influence the performance of the learning system. This experiment was tun on the playing 
task, and only the low-level parallelism capacity of ALECSYS was used. 

In the second set of experiments we explored some issues which arise when the sys- 
tem is required to learn more complex behaviors. In particular, we compared different 
architectural solutions and shaping policies. These experiments were run using as test-bed 
the global task: playing and hiding. The logical structure of the learning system con- 
sisted, in this case, of the two basic behaviors plus coordination of the basic behaviors. 
(Coordination can be made explicit, as in the switch architecture, or implicit, as in the 
monolithic architecture.) This logical structure, which can be mapped onto ALECSYS in 
a few different ways, was tested using both the monolithic architecture and the switch ar- 
chitecture. In the case of the switch architecture we also compared holistic and modular 
shaping. 
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Table 1. Comparisons between the use of the only rewards training policy and the use of the rewards and 

punishrnents training policy. Results obtained in the test session (1,000 cycles run after 1,000 cycles oflearning). 
Averages on twenty runs. 

ML = 1 ML = 2 ML = 4 ML = 8 

Rewards and Average 0.904 0.883 0.883 0.851 
punishments Std. dev. 0.021 0.023 0.026 0.026 

Only Average 0.744 0.729 0.726 0.682 
rewards Std. dev. 0.022 0.028 0.027 0.025 

5.1. Experimental Methodology 

In all the experiments in the simulated worlds, we used the following performance measure: 
p = Number of rewarded moves < 1. Each experiment was composed of a learning phase and of 

Total number of moves -- 
a test session. The test session was run after the end of the learning phase; during the test 
session the learning algorithm was switched oft. The index P, measured considering only 
the moves done in the test session, was used to compute the performance achieved by the 
system after learning. (For basic behaviors P is computed only for the moves in which they 
were active; instead, we compute the global performance as the ratio of globally correct 
moves to total moves during the whole test session, where at every cycle a globally correct 
move is a move correct with respect to the current goal.) 

We report tables with averages and standard deviations for each experiment (each ex- 
periment was repeated twenty times). When the performances of different architectural or 
shaping policies were compared we executed the Kruskal-Wallis (non parametric ANOVA) 
test. When this test indicated a significant difference, the performances were then pairwise 
compared through Mann-Whitney tests. 

5.2. The Role of Punishments and of lnternal Messages 

In this experiment only the two light sensors were active; the structure of messages coming 
from the sensors was the one reported in Fig. 1 la. Messages going to motors had the format 
of Fig. 7. 

We tried to give an answer to these questions: 

« Is it better to use only positive reward or is punishment also useful? 
• Are internal messages useful? 

Regarding the first point, results have shown, see Table 1, that the use of rewards and 
punishments is advantageous over using only rewards for any number of internal messages 
used. Mann-Whitney tests showed that the differences observed between the first and the 
second row of Table 1 are highly significant for every message list (ML) length teste& 

Results have also shown that, for the given task, a one-message ML is the best. Learning 
curves for the rewards and punishments policy are shown in Fig. 12, and results obtained 
in test session are reported in Table 1. As shown in Table 2, the differences in average 
performance when changing the ML length are significant (except when moving from 
ML = 2 to ML ----- 4), and significativity tends to increase with the difference in the number 
of internal messages used. (The Kruskal-Wallis test was also performed and resulted to be 
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Figure 12. Learning to follow a light source (the playing behavior). A comparison of different ML lengths, 
using the rewards and punishments training policy. Averages on twenty runs. 

Table 2. Significance levels obtained using the Mann-Whitney test on the data of Table 1 regarding rewards and 
punishments. 

ML= 1 ML=2 ML=4 

ML = 8 <10 -5 <10 -3 <10 -3 
ML = 4 0.017 0.465 
ML = 2 0.003 

highly significant, p < 10-4). This result is what we expected, given that the considered 
behavior is a stimulus-response one, which does not require the use ofinternal messages. On 
the contrary, it is easy to understand that internal messages can slow down the convergence 
of the classifiers strength to good values. 

It is also interesting to note that, using rewards and punishments and M L =  1, the system 
achieves a good performance level (about 0.8) after only about 200 cycles (see Fig. 12). 
(100 cycles done in about 60 seconds with 300 rules on 3 transputers.) This makes it feasible 
to use ALECSYS to control the real robot in real-time. 

5.3. Choice o f  an Architecture and o f  a Shaping Policy 

The number of computing cycles a learning classifier system requires to learn to solve a given 
task is a function of  the length of its rules, which in turn depends on the complexity of the 
task. A straightforward way to reduce this complexity, which was used in the experiments 
reported in the following, is to split the task into many simpler learning tasks. Whenever 
this can be done, the learning system performance should improve. This is what is tested 
by the experiments presented in this section, where we compare the monolithic and the 
switch architectures, which were described in Section 4.4. Also, as discussed in Section 
4.6, the use of a distributed behavioral architecture calls for the choice of a shaping policy; 
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we ran experiments with both holistic and modular shaping. Given the results of the 
previous experiment, we use rewards and punishments and a short rnessage list (ML= 1). 
Experiments were designed as follows. 

• Experiment A. We compared the monolithic architecture and the switch architecture 
with holistic shaping (holistic-switch hereafter). Differences in performance between 
these two architectures, if any, are due only to the different architectural organization. 
Each experiment was run for 15,000 learning cycles, and was followed by a 1,000 cycles 
test session. 

• Experiment B. We ran two experiments using the switch architecture with rnodular 
shaping (modular-switch). In experiment B 1 we gave the rnodular-switch architecture 
roughly the same amount of computing resources as in Experiment A, so to allow a fair 
cornparison. The experiment was organized as follows: 5,000 cycles to train the playing 
behavioral module, 5,000 cycles to train the hiding behavioral module, and 5,000 cycles 
to train the behavior coordination module (for ease of reference we call the architecture of 
this experiment modular-switch-long). It is irnportant to note that, although the nurnber 
of learning cycles is the same as in Experiment A, the actual time (in seconds) required 
is shorter since the two basic behaviors can be trained in parallel. Each learning phase 
was followed by a 1,000 cycles test session. 
In the second experiment (B2) we tried to find out what was the minimal amount of 
resources to give to the rnodular-switch architecture to let it reach the same perforrnance 
level as the best performing of the two architectures used in Experiment A. In this 
experiment we ran 2,000 cycles to train the playing behavioral rnodule, 2,000 cycles to 
train the hiding behavioral module, and 2,000 cycles to train the behavior coordination 
module; we will refer to this architecture as to the rnodular-switch-short. Again, each 
learning phase was followed by a 1,000 cycles test session. 

Results regarding the test session are reported in Table 3. The best performing architec- 
ture was the modular-switch. It was both the best performing given approximately the sarne 
amount of resources during learning, and was able to achieve the sarne performance of the 
holistic-switch architecture using rnuch less computing time. These results can be explained 
by the fact that in the switch architecture each single CS, having shorter classifiers, has a 
srnaller search space7; therefore, the overall learning task is easier. The worst perform- 
ing resulted to be the monolithic architecture. These results are consistent with previously 
obtained results in similar, although different, Animat environments (see Dorigo & Colom- 
betti, 1994a). The significance of the differences in mean performances across architectures 
was tested using the Kruskal-Wallis test, which resulted to be highly significant (p < 1 0 - 4 ) .  

Tables 4, 5, and 6 report the significance levels of the Mann-Whitney tests, which also 
resulted to be highly significant for all the pairs of architectures compared, except for the 

Table 3. Comparison across architectures during the test session. Averages computed on twenty runs. 

Monolithic Holistic-switch Modular-switch Modular-switch 
architecture architecture architecture (short) architecture (long) 

Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. 

Playing 0.830 0.169 0.941 0.053 0.942 0.034 0.980 0.015 
Hiding 0.744 0.228 0.919 0.085 0.920 0.077 0.978 0.022 
Global 0.784 0.121 0.933 0.073 0.931 0.085 0.984 0.022 
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Table 4. Mann-Whitney tests on the playing behavioral module. Comparison across architectures. 

Monol. Hol.-sw. Mod.-sw 

arch. arch. arch.(short) 

Mod-switch 
arch. (long) <10 -6 <10 -5 

Mod-switch 
arch. (short) <10 -3 0.850 

Hol.-switch 
Architecture < 10 -3 

<10 -5 

DORIGO 

Table 5. Mann-Whitney tests on the hiding behavioral module. Comparison across architectures. 

Monol. Hol.-sw. Mod.-sw. 

arch. arch. arch. (short) 

Mod.-switch 
arch. (long) <10 .6 <10 .5 

Mod.-switch 
arch. (short) < 10 .4 0.787 

Hol.-switch 
architecture < 10 .4 

<10 -3 

Table 6. Mann-Whitney tests on the global behavior. Comparison across architectures. 

Monol. Hol.-sw. Mod.-sw. 
arch. arch. arch.(short) 

Mod.-switch 
arch. (long) <10 -7 <10 .5 

Mod.-switch 
arch. (short) < 10 -5 0.245 

Hol.-switch 
architecture < 10 .4 

<10 -4 

comparison modular-switch-short versus the holistic-switch, since the first was designed 
to have approximately the same final performance as the second. As it can be observed in 
Table 3, the performance of the hiding behavioral module tended to be slightly lower than 
that of the playing behavioral module in all the architectures. Although this could be easily 
explained with the fact that the search space for the hiding behavioral module is slightly 
bigger than in the case of the playing behavioral module (messages are one bit longer, due 
to the presence of the extra predator bit), the Mann-Whitney test has shown that for all the 
architectures the difference is not significant. 

6. Experiments with the Real AutonoMouse 

In this section we deal with some issues which arise when moving from simulated to 
real robots. Often the role of simulation is that of building a coarse control system for a 
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Figure 13. A functional schematic of the AutonoMouse. 

simulated robot, to be refined by learning on the real robot. This is not the approach taken 
in this article, where simulation is considered to be a useful tool to speed up the designer's 
understanding of the learning processes (given that simulation experiments are much less 
time consuming than real robot experiments). Once a working learning system is obtained 
in simulation, the experience gained by the designer can be transferred to the design of a 
learning system for the real robot. Still, when moving from simulated to real robots new 
issues arise. Sensor noise can appear, motors can work imprecisely, and in general there can 
be differences of any sort between the designed and the real function of the robot. These 
problems can be studied from many different points of view. In this article we focus on 
the role of the trainer (reinforcement program); that is, we study how different trainers can 
influence the robustness to noise and to lesions in the real AutonoMouse. 

Results obtained with simulations presented in the preceding section suggested using 
rewards and punishments (we experimentally found that a good value for reinforcements 
was: rewards = + 10, punishments = - 15) to train the AutonoMouse, setting the message 
list length to ML = 1, and using 300 classifiers on a three-transputer configuration. In all 
the experiments presented in this section we used the monolithic architecture. 

6.1. AutonoMouse Hardware 

Figure 13 shows a functional schematic of the AutonoMouse, while Fig. 14 presents a 
photograph of the real robot. Its sensory capabilities are provided by four directional eyes, 
and one microphone, as shown in Fig. 13. The AutonoMouse moves by activating two 
motors, one for the left wheel and one for the right. The available commands for engines are 
move one step backward, stay still, move one step forward, move two steps forward. From 
combinations of these basic commands arise forms of movements like advance, retreat, 
rotate, rotate while advancing and so on (there are 16 different composite movements). 
The directional eyes sense a light source when it is in either (or both) eyes' field of view. 
In order to change this field of view the AutonoMouse must rotate as the eyes cannot do 
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Figure 14. The AutonoMouse. 
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Format ofsensor messages in the real AutonoMouse. The AutonoMouse uses only the two frontal eyes. 

so independently; they are fixed with respect to the robot. The sensor value of each eye is 
either on or oft, depending on the relation of the light intensity to a threshold. 

The AutonoMouse is also provided with two eyes that can sense light within a halfspace, 
which are used solely by the trainer using the reward-the-result policy. These central eyes 
evaluate the absolute increase or decrease in light intensity (they discriminate between 
256 levels). 

The format of  input messages is given in Fig. 15. In the experiments reported in this 
article (Section 6.4) the AutonoMouse can see the light only with the two frontal eyes 
(the two real" eyes and microphone were used in other experiments reported in Dorigo & 
Colombetti, 1994b). 
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6.2. Experimental Methodology 

In the real world, experiments were tun untileither the goal was achieved or the experimenter 
was convinced that the robot was not going to achieve the goal (at least in a reasonable time). 

Experiments with the real robots were repeated only occasionally, as they are highly 
time consuming. Experiments which were repeated showed that the differences between 
different runs were marginal. 

The performance index used is the light intensity perceived by the frontal central eye 
(which increases with proximity, up to a maximum level of 256). To study the relation 
between the reinforcement program and the actual performance, we plot the average reward 
over intervals of 20 cycles. 

6.3. The Training Policies 

As we have seen, given that the environment used in the simulations was designed to be as 
close as possible to the real environment, messages going from AutonoMouse's sensors to 
ALECSYS and from ALECSYS to AutonoMouse's motors have a very similar structure to that 
of the simulated AutonoMouse. On the other hand, the real robot differs from simulation 
in that sensor input and motor output are liable to be inaccurate s. This is a major point in 
machine learning research, since simulated environments can be but an approximation of 
real ones. 

To study the effect that using real sensors and motors has on the learning process, and 
its relation to the training procedure, we introduced two different training policies, called 
reward-the-intention policy, and reward-the-result policy (see Fig. 16). 

The Reward-the-Intention Policy. We say that a trainer uses the reward-the-intention policy 
il, in order to decide about the reinforcement to give, it uses observations from an ideal 
environment positioned between ALECSYS and the AutonoMouse. This environment is 
said to be ideal because there is no interference with the real world (it is the same type 
of environment ALECSYS senses in simulations). The reward-the-intention trainer rewards 
ALECSYS if it proposes a move that is correct with regard to the input-output mapping he 
wants to teach (i.e., the reinforcement is computed observing the responses in the ideal, 
simulated world). A reward-the-intention trainer knows the desired input-output mapping 
and rewards the learning system if it learns that mapping, regardless of the resulting actions 
in the real world. 

The Reward-the-Result Policy. We say that a trainer uses the reward-the-result policy il, 
in order to decide about the reinforcement to give, it uses observations from the real world. 
The reward-the-result trainer rewards ALECSYS if it proposes an action that diminishes 
the distance from the goal. (In the example the rewarded action is a move that causes the 
AutonoMouse to approach the light source.) A reward-the-result trainer has knowledge 
about the goal, and rewards ALECSYS if the actual move is consistent with the achievement 
of that goal. 

In the case of reward-the-intention, the observed behavior can be the desired one only 
if there is a correct mapping between ALECSYS'S interpretation of sensor (and/or motor) 
messages and the real world significance of AutonoMouse's sensory input (and/or motor 
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Figure 16. The reward-the-intention and reward-the-result trainers. 

commands) 9. Consider the extreme case in which the two AutonoMouse's eyes are inverted 
(i.e., ALECSYS believes the right eye is the left one and vice versa). A reward-the-intention 
trainer will reward ALECSYS for actions that an external observer would judge as wrong; 
in the example of inverted eyes, while the reinforcement program intends to reward the "turn 
towards the light" behavior, the learned behavior will be a "turn away from the light" one. 
In case of a reward-the-result trainer, the mapping problem disappears; ALECSYS learns any 
mapping between sensor messages and motor messages that maximizes the reward received 
by the trainer. 

In the next subsection we present the results of some experiments that had the objective 
of testing ALECSYS's capability to learn under the two different reinforcement policies. We 
also introduced the following handicaps to test ALECSYS'S adaptive capabilities: inverted 
eyes, blindness of one eye, and incorrect calibration of motors. All graphs presented are 
relative to a single experiment. 

6.4. An Experimental Study of Training Policies 

In this section we experimentally compare the reward-the-intention and the reward-the- 
result training policies. In particular we investigate the influence that the choice of a training 
policy has on noisy sensors and motors, and on a set of lesions 1° we on purpose inflicted 
to the AutonoMouse to study the robustness of learning. The experiment is set in a room 
in which a lamp has been arbitrarily positioned. The AutonoMouse is allowed to wander 
freely. The AutonoMouse senses the environment using only its two frontal directional 
eyes. ALECSYS receives a high reward whenever, in the case of reward-the-result policy, the 
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light intensity perceived by the frontal central sensor increases, or, in the case of reward- 
the-intention policy, the proposed move is the correct one with respect to the received 
sensory input. Sometimes, especially in the early phases of the learning process, the 
AutonoMouse loses contact with the light source (i.e., it ceases to see the lamp). In these 
cases, ALECSYS receives a reward if the AutonoMouse turns twice in the same direction. 
This favors sequences of turns in the same direction, assuring that the AutonoMouse will, 
sooner or later, see the light again. In the following, we report and comment on the results 
of experiments with the standard AutonoMouse and with AutonoMice using noisy or faulty 
sensors or motors. In all the experiments, ALECSYS was initialized with a set of randomly 
generated classifiers. 

Noisy Sensors and Motors. In Fig. 17, we compare the performance obtained with the two 
different reinforcement policies using well calibrated sensory or motor devices. Note that 
the performance is better for the reward-the-result policy. Falls in performance at cycle 210 
for the reward-the-intention and at cycle 225 for the reward-the-result policies are due to 
sudden changes in the light position caused by the experimenter moving the lamp far away 
from the AutonoMouse. Figure 18 shows the rewards received by ALECSYS for the same 
two runs. Strangely enough, the average reward is higher (and optimal after 110 cycles) for 
the reward-the-intention policy. This indicates that, given perfect information, ALECSYS 
learns to do the right thing. In the case of reward-the-result however, ALECSYS does not 
always get the expected reward. This is due to the fact that, despite our efforts to build good, 
noise free, sensors and motors, and to calibrate them appropriately, we did not completely 
succeed. 

In Fig. 19 light intensity and average reward are directly compared for the reward-the- 
result policy. (In the graph average reward is multiplied by 25 to ease visual comparison.) 
Obser~)e that the two graphs are strongly correlated; when the AutonoMouse's performance 
starts to increase, so does the reward received by ALECSYS. Drops in rewards reflect, with 
a delay due to the time required to move away from the light, drops in performance. 

These results confirm out expectation, as discussed in Section 6.3, that a trainer us- 
ing the reward-the-intention policy, in order to be a good trainer, needs a very accurate, 
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Figure 19. System performance (light intensity) and average reward (multiplied by 25 to ease visual comparison) 
for the reward-the-result training policy. 

low-level, knowledge of the input-output mapping it is teaching and of how to compute 
this mapping, in order to be able to give the correct reinforcements. Often this is a non- 
reasonable requirement, as this accurate knowledge could be directly used to design the 
behavioral modules, making learning useless. On the other hand, a reward-the-result trainer 
only needs to be able to evaluate the moves of the learning system with respect to the be- 
havioral pattern that it is teaching. 
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Figure 20. Difference in performance between reward-the-result and reward-the-intention training policies in 
the case of an AutonoMouse with inverted eyes. 
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the case of an AutonoMouse with inverted eyes. 

Lesions Study. Lesions differ from noise in that they cause a sensor (or a motor) to sys- 
tematically deviate from its design specifications. In this section we study the robustness of 
our system for three kinds of lesions: inverted eyes, one blind eye, and incorrectly regulated 
motors. Experiments have shown that for each type of lesion the reward-the-result training 
policy was able to teach the target behavior, while the reward-the-intention training policy 
was not. 

Results of the experiment in which we inverted the two frontal eyes of the AutonoMouse 
are shown in Figs. 20 and 21 (these graphs are analogous to those regarding the standard 
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Figure 22. Difference in performance between reward-the-result and reward-the-intention training policies in 
the case of one blind eye. 

eye configuration of Figs. 17 and 18). While graphs obtained for the reward-the-result 
training policy are qualitatively comparable, graphs obtained for the reward-the-intention 
training policy differ greatly (see Figs. 17 and 20). As discussed before (see Section 6.3), 
with inverted eyes the reward-the-intention policy fails. (Note that in this experiment the 
light source was moved after 150 cycles.) 

Similar qualitative results were obtained using only one of the frontal directional eyes 
(one blind eye experiment). Figure 22 shows that the reward-the-intention policy is not 
capable of letting the AutonoMouse learn to approach the light source. In this experiment 
the light was never moved because the task was already hard enough. The reward-the- 
result policy, however, allows the AutonoMouse to approach the light, although it requires 
more cycles than with two working eyes. (At cycle 135 there is a drop in performance: the 
AutonoMouse lost sight of the light and turned right until it saw the light source again.) 

As a final experiment the AutonoMouse was given badly regulated motors. In this exper- 
iment bits going to each motor had the following new meaning: 

00 - stay still, 
01 - o n e  step forward, 
10 - two steps forward, 
11 - four steps forward. 

The net effect was an AutonoMouse that could not move backward any longer, and 
that on the average moved rauch more quickly than before. The result was that it was 
much easier to lose contact with the light source, as happened with the reward-the-intention 
policy after the light was moved (in this experiment the light source was moved after 90 
cycles); but, as the average speed of the AutonoMouse was higher, it took fewer cycles 
to reach the light. Fig. 23, the result of a typical experiment, shows that also in this 
case the reward-the-result training policy was better than the reward-the-intention training 
policy. 
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Figure 23. Difference in performance between reward-the-result and reward-the-intention training policies in 
the case of incorrect regulation of motors. 

7. Conclusions 

Attempts to use learning classifier systems for real robot control applications raise a number 
of problems, the most prominent of  which is that they are in general too slow to allow the on- 
line learning of even simple behaviors. We attack this problem along three main directions: 
(i) increase of  the speed with which a CS learns to solve a given task, (ii) reduction of the 
learning complexity, and (iii) the use of  a trainer. 

Point (i) is addressed by a variety of improvements of Holland's CS and by means of 
parallelization. These are discussed at length in Section 3 of this article. The resulting 
learning system, called ALECSYS, beside being quicker than the original Holland's CS, 
also provides a flexible way to define many cooperating modules, each module being a 
parallel CS. 

To reduce learning complexity we design a distributed architecture in which each module 
is a basic behavior or a coordination behavior. Modules are CSs and the use of  ALECSYS 
allows to run them in parallel. We experimentally show that the use of a distributed, hierar- 
chical architecture can help to control the complexity of learning. 

The use of  a trainer brings in same new issues. First we experimentally show that, in our 
Animat application, the use of  negative reinforcements to punish wrong actions speeds up 
learning. Then we study how to distribute reinforcements to the different modules which 
comprise a distributed architecture. We propose and experimentally compare two poli- 
cies called holistic and modular shaping. Experimental results show that modular shaping, 
when feasible, performs better than holistic shaping. To use modular shaping the internal 
components (CSs in our approach) of  the learning system must be accessible. 

Finally, we study the influence that different kinds of data used by the trainer to j udge the 
learning system behavior have on the learning process in case of real robot experiments. A 
result of  out research is that, in order for the robot to be robust to sensor or motor noise, or 
to major changes (lesions) in the characteristics of its sensors or motors, the trainer taust 



238 DORIGO 

observe the behavior of the real robot, as opposed to the intended behavior of the learning 
system. In fact, the use of the reward-the-result policy resulted in the development of a 
robust robot, while the reward-the-intention policy was rauch less effective. This result 
underlines again the importance of using real robots to develop really adaptive and robust 
systems. 

It is interesting to note that to analyze the data obtained with the real robot we had to 
film the experiments. This allowed us to study and compare the AutonoMouse behavior 
in different situations and to compare the observed behavior with the corresponding data 
plots. This activity is not part of the traditional computer science methodology used to 
evaluate software systems and further research will be necessary to understand all of his 
implications (first steps in this direction can be found in Colombetti, 1994). 

In conclusion, our study shows that learning classifier systems are a feasible tool to build 
robust robot control systems. To achieve this goal we found very helpful to decompose the 
desired overall robotic behavior into a set of simpler interacting behaviors organized in a 
hierarchy. These interacting behaviors were implemented as a set of CSs using a distributed 
architecture in which each CS runs on a different set of processors. This choice, together 
with the use of a trainer providing immediate reinforcements, was sufficient to achieve 
adequate levels of performance for a variety of behaviors. 
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Notes 

1. In this article a trainer is a reinforcement program which provides step-by-step reinforcements. 

2. The AutonoMouse project was born at Politecnico of Milano in early 1990 with the goal of building mouse- 
sized, autonomous robots. The name given to these robots came quite naturally: AutonoMice. The robot 
described in the last part of this paper is the second of a gro.wing generation. References to the first Au- 
tonoMouse can be found in (Dorigo & Sirtori, 1991a), While phase I of the project was devoted to testing the 
feasibility of the robot design, phase II is concemed with the development of autonomous learning capabilities. 

3. Default rules are rules which cover broad categories of system responses, and are opposed to specific rules 
which cover situations in which default rules are incorrect. In CSs default rules are implemented by using 
don't care (#)symbols (Riolo, 1989). 

4. ALECSYS is implemented in parallel C and Express, and runs on Quintek boards inserted in PCs (ATs or 
better). The simulation environment is written in C and runs on the host computer (a PC). Both ALECSYS, the 
simulation environment, and the communication software for experiments with the real robot are available. 
Requests should be directed to the author of this paper. 

5. In these simulations the AutonoMouse can hear, but cannot see, the predator. Therefore, to avoid conflict 
situations like if the predator is between the agent and the lair, we make the implicit assumption that the 
Animat can hear the predator when the predator is still very far away, so that it always has the time to reach 
the lair before the predator enters the computer monitor. 
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6. This implies that three bits in the action part are useless, as actuator messages are 6-bit long. 

7. Rules in CS-play are 15 bits long, in CS-hide 18 bits long, and in CS-switch they are 6 bits long. 

8. We note that, although not investigated in this paper, some of our experiments exbibited a certain amount 
of reward noise, due to the use of sensors to evaluate performance, in addition to the two kinds of noise 
mentioned before. 

9. lfthis condition holds, we say that ALECSYS and the AutonoMouse are weil calibrated. 

10. In this paper we call lesions those malfunctionings which make the behavior of a sensor, or of a motor, 
sistematically different from the design specifications. This is different from noise, which in our experiments 
could be modeled as a Gaussian distribution around a mean behavior which meets the designer specifications 
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