
Ant Colony Optimization
From Scholarpedia

From Scholarpedia, the free peer-reviewed encyclopedia p.18620

Curator: Marco Dorigo, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult
optimization problems.

In ACO, a set of software agents called artificial ants search for good solutions to a given optimization problem. To apply ACO, the
optimization problem is transformed into the problem of finding the best path on a weighted graph. The artificial ants (hereafter ants)
incrementally build solutions by moving on the graph. The solution construction process is stochastic and is biased by a pheromone
model, that is, a set of parameters associated with graph components (either nodes or edges) whose values are modified at runtime by
the ants.

Contents
1 Explaining ACO through an Example
2 Formal Definition of a Combinatorial Optimization Problem
3 The Ant Colony Optimization Metaheuristic

3.1 ConstructAntSolutions
3.2 DaemonActions
3.3 UpdatePheromones

4 Main ACO Algorithms
4.1 Ant System
4.2 Ant Colony System
4.3 MAX-MIN Ant System

5 Applications of ACO and Current Trends
6 References
7 Appendix -- The Natural Inspiration

7.1 The Double-Bridge Experiment
8 External Links
9 See Also

Explaining ACO through an Example
The easiest way to understand how ant colony optimization works is by means of an example. We consider its application to the
traveling salesman problem (TSP). In the TSP a set of locations (cities) and the distances between them are given. The problem consists
of finding a closed tour of minimal length that visits each city once and only once.

To apply ACO to the TSP, we consider the graph defined by associating the set of cities with the set of vertices of the graph. This graph
is called construction graph. Since in the TSP it is possible to move from any given city to any other city, the construction graph is
fully connected and the number of vertices is equal to the number of cities. We set the lengths of the edges between the vertices to be
proportional to the distances between the cities represented by these vertices and we associate pheromone values and heuristic values
with the edges of the graph. Pheromone values are modified at runtime and represent the cumulated experience of the ant colony,
while heuristic values are problem dependent values that, in the case of the TSP, are set to be the inverse of the lengths of the edges.

The ants construct the solutions as follows. Each ant starts from a randomly selected city (vertex of the construction graph). Then, at
each construction step it moves along the edges of the graph. Each ant keeps a memory of its path, and in subsequent steps it chooses
among the edges that do not lead to vertices that it has already visited. An ant has constructed a solution once it has visited all the
vertices of the graph. At each construction step, an ant probabilistically chooses the edge to follow among those that lead to yet
unvisited vertices. The probabilistic rule is biased by pheromone values and heuristic information: the higher the pheromone and the
heuristic value associated to an edge, the higher the probability an ant will choose that particular edge. Once all the ants have
completed their tour, the pheromone on the edges is updated. Each of the pheromone values is initially decreased by a certain
percentage. Each edge then receives an amount of additional pheromone proportional to the quality of the solutions to which it
belongs (there is one solution per ant).

This procedure is repeatedly applied until a termination criterion is satisfied.

Formal Definition of a Combinatorial Optimization Problem
The first step for the application of ACO to a combinatorial optimization problem (COP) consists in defining a model of the COP as a
triplet , where:

 is a search space defined over a finite set of discrete decision variables;

 is a set of constraints among the variables; and

 is an objective function to be minimized (as maximizing over is the same as minimizing over , every COP
can be described as a minimization problem).

The search space is defined as follows. A set of discrete variables , , with values , is
given. Elements of are full assignments, that is, assignments in which each variable has a value assigned from its domain
. The set of feasible solutions is given by the elements of that satisfy all the constraints in the set .

A solution is called a global optimum if and only if: . The set of all globally optimal solutions is
denoted by . Solving a COP requires finding at least one .

The Ant Colony Optimization Metaheuristic
In ACO, artificial ants build a solution to a combinatorial optimization problem by traversing a fully connected construction graph,
defined as follows. First, each instantiated decision variable is called a solution component and denoted by . The set of all
possible solution components is denoted by . Then the construction graph GC(V,E) is defined by associating the components C
either with the set of vertices V or with the set of edges E.

A pheromone trail value is associated with each component . (Note that pheromone values are in general a function of the
algorithm's iteration .) Pheromone values allow the probability distribution of different components of the solution to
be modelled. Pheromone values are used and updated by the ACO algorithm during the search.

The ants move from vertex to vertex along the edges of the construction graph exploiting information provided by the pheromone
values and in this way incrementally building a solution. Additionally, the ants deposit a certain amount of pheromone on the
components, that is, either on the vertices or on the edges that they traverse. The amount of pheromone deposited may depend on
the quality of the solution found. Subsequent ants utilize the pheromone information as a guide towards more promising regions of the
search space.

The ACO metaheuristic is:

The metaheuristic consists of an initialization step and of three algorithmic components whose activation is regulated by the
Schedule_Activities construct. This construct is repeated until a termination criterion is met. Typical criteria are a maximum number of
iterations or a maximum CPU time.

The Schedule_Activities construct does not specify how the three algorithmic components are scheduled and synchronized. In most
applications of ACO to NP-hard problems however, the three algorithmic components undergo a loop that consists in (i) the
construction of solutions by all ants, (ii) the (optional) improvement of these solution via the use of a local search algorithm, and (iii)
the update of the pheromones. These three components are now explained in more details.

ConstructAntSolutions

A set of artificial ants construct solutions from elements of a finite set of available solution components , ,
. A solution construction starts with an empty partial solution . Then, at each construction step, the current

partial solution is extended by adding a feasible solution component from the set of feasible neighbors . The process
of constructing solutions can be regarded as a path on the construction graph GC(V,E). The allowed paths in GC are implicitly defined
by the solution construction mechanism that defines the set with respect to a partial solution .

The choice of a solution component from is done probabilistically at each construction step. The exact rules for the
probabilistic choice of solution components vary across different ACO variants. The best known rule is the one of ant system (AS)
(Dorigo et al. 1991, 1996):

where and are respectively the pheromone value and the heuristic value associated with the component . Furthermore,

Set parameters, initialize pheromone trails

SCHEDULE_ACTIVITIES

 ConstructAntSolutions

 DaemonActions {optional}

 UpdatePheromones

END_SCHEDULE_ACTIVITIES

and are positive real parameters whose values determine the relative importance of pheromone versus heuristic information.

DaemonActions

Once solutions have been constructed, and before updating the pheromone values, often some problem specific actions may be
required. These are often called daemon actions, and can be used to implement problem specific and/or centralized actions, which
cannot be performed by single ants. The most used daemon action consists in the application of local search to the constructed
solutions: the locally optimized solutions are then used to decide which pheromone values to update.

UpdatePheromones

The aim of the pheromone update is to increase the pheromone values associated with good solutions, and to decrease those that are
associated with bad ones. Usually, this is achieved (i) by decreasing all the pheromone values through pheromone evaporation, and (ii)
by increasing the pheromone levels associated with a chosen set of good solutions :

where is the set of solutions that are used for the update, is a parameter called evaporation rate, and is a
function such that

.

 is commonly called the fitness function.

Pheromone evaporation implements a useful form of forgetting, favoring the exploration of new areas in the search space. Different
ACO algorithms, for example ant colony system (ACS) (Dorigo & Gambardella 1997) or MAX-MIN ant system (MMAS) (Stützle &
Hoos 2000), differ in the way they update the pheromone.

Instantiations of the update rule given above are obtained by different specifications of , which in many cases is a subset of
, where is the set of solutions that were constructed in the current iteration, and is the best-so-far solution, that

is, the best solution found since the first algorithm iteration. A well-known example is the AS-update rule, that is, the update rule of ant
system (Dorigo et al. 1991, 1996):

An example of a pheromone update rule that is more often used in practice is the IB-update rule (where IB stands for iteration-best):

The IB-update rule introduces a much stronger bias towards the good solutions found than the AS-update rule. Although this increases
the speed with which good solutions are found, it also increases the probability of premature convergence. An even stronger bias is
introduced by the BS-update rule, where BS refers to the use of the best-so-far solution . In this case, is set to . In
practice, ACO algorithms that use variations of the IB-update or the BS-update rules and that additionally include mechanisms to avoid
premature convergence, achieve better results than those that use the AS-update rule.

Main ACO Algorithms
Several special cases of the ACO metaheuristic have been proposed in the literature. Here we briefly overview, in the historical order in
which they were introduced, the three most successful ones: ant system (Dorigo 1992, Dorigo et al. 1991, 1996), ant colony system
(ACS) (Dorigo & Gambardella 1997), and MAX-MIN ant system (MMAS) (Stützle & Hoos 2000). In order to illustrate the differences
between them clearly, we use the example of the traveling salesman problem.

Ant System

Ant system (AS) was the first ACO algorithm to be proposed in the literature (Dorigo et al. 1991, Dorigo 1992, Dorigo et al. 1996). Its
main characteristic is that the pheromone values are updated by all the ants that have completed the tour. Solution components are
the edges of the graph, and the pheromone update for , that is, for the pheromone associated to the edge joining cities and , is
performed as follows:

where is the evaporation rate, is the number of ants, and is the quantity of pheromone laid on edge by the
-th ant:

where is the tour length of the -th ant.

When constructing the solutions, the ants in AS traverse the construction graph and make a probabilistic decision at each vertex. The
transition probability of the -th ant moving from city to city is given by:

where is the set of components that do not belong yet to the partial solution of ant , and and are parameters that
control the relative importance of the pheromone versus the heuristic information , where is the length of component

 (i.e., of edge).

Ant Colony System

The first major improvement over the original ant system to be proposed was ant colony system (ACS), introduced by Dorigo and
Gambardella (1997). The first important difference between ACS and AS is the form of the decision rule used by the ants during the
construction process. Ants in ACS use the so-called pseudorandom proportional rule: the probability for an ant to move from city to
city depends on a random variable uniformly distributed over , and a parameter ; if , then, among the feasible
components, the component that maximizes the product is chosen, otherwise the same equation as in AS is used.

This rather greedy rule, which favors exploitation of the pheromone information, is counterbalanced by the introduction of a
diversifying component: the local pheromone update. The local pheromone update is performed by all ants after each construction
step. Each ant applies it only to the last edge traversed:

where is the pheromone decay coefficient, and is the initial value of the pheromone.

The main goal of the local update is to diversify the search performed by subsequent ants during one iteration. In fact, decreasing the
pheromone concentration on the edges as they are traversed during one iteration encourages subsequent ants to choose other edges and
hence to produce different solutions. This makes less likely that several ants produce identical solutions during one iteration.
Additionally, because of the local pheromone update in ACS, the minimum values of the pheromone are limited.

As in AS, also in ACS at the end of the construction process a pheromone update, called offline pheromone update, is performed.

ACS offline pheromone update is performed only by the best ant, that is, only edges that were visited by the best ant are updated,
according to the equation:

where if the best ant used edge in its tour, otherwise (can be set to either the length of the
best tour found in the current iteration---iteration-best, ---or the best solution found since the start of the algorithm---best-so-far,

).

It should be noted that most of the innovations introduced by ACS were introduced first in Ant-Q, a preliminary version of ACS by the
same authors.

MAX-MIN Ant System

MAX-MIN ant system (MMAS) is another improvement, proposed by Stützle and Hoos (2000), over the original ant system idea.
MMAS differs from AS in that (i) only the best ant adds pheromone trails, and (ii) the minimum and maximum values of the
pheromone are explicitly limited (in AS and ACS these values are limited implicitly, that is, the value of the limits is a result of the
algorithm working rather than a value set explicitly by the algorithm designer).

The pheromone update equation takes the following form:

where if the best ant used edge in its tour, otherwise, where is the length of the tour of the
best ant. As in ACS, may be set (subject to the algorithm designer decision) either to or to , or to a combination of both.

The pheromone values are constrained between and by verifying, after they have been updated by the ants, that all
pheromone values are within the imposed limits: is set to if and to if . It is important to note
that the pheromone update equation of MMAS is applied, as it is the case for AS, to all the edges while in ACS it is applied only to the
edges visited by the best ants.

The minimum value is most often experimentally chosen (however, some theory about how to define its value analytically has
been developed in (Stützle & Hoos 2000)). The maximum value may be calculated analytically provided that the optimum ant
tour length is known. In the case of the TSP, , where is the length of the optimal tour. If is not known, it

can be approximated by . It is also important to note that the initial value of the trails is set to , and that the algorithm is
restarted when no improvement can be observed for a given number of iterations.

Applications of ACO and Current Trends
The initial applications of ACO were in the domain of NP-hard combinatorial optimization problems. The largest body of ACO
research is still, not surprisingly, to be found in this area. The interested reader will find a rather complete overview of these
applications in (Dorigo & Stützle 2004).

Another application that was considered early in the history of ACO is routing in telecommunication networks. A particularly
successful example of ACO algorithm in this domain is AntNet (Di Caro & Dorigo 1998).

Current research in ACO algorithms is devoted both to the development of theoretical foundations and to the application of the
metaheuristic to new challenging problems.

The development of theoretical foundation was started by Gutjahr, who was the first to prove convergence in probability of an ACO
algorithm (Gutjahr 2000). An overview of theoretical results available for ACO can be found in (Dorigo & Blum 2005).

Concerning applications, the use of ACO for the solution of dynamic, multiobjective, stochastic, continuous and mixed-variable
optimization problems is a current hot topic, as well as the creation of parallel implementations capable of taking advantage of the new
available parallel hardware.

Many papers reporting on current research can be found in the proceedings of the ANTS conference or in the Swarm Intelligence
journal (see External Links section below).

References
J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing exploratory pattern of the Argentine ant. Journal of Insect
Behavior, 3:159–168, 1990.

G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence
Research, 9:317–365, 1998.

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano,
Milan, Italy, 1992.

M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2–3):243–278, 2005.

M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation, 1(1):53–66, 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica,
Politecnico di Milano, Milan, Italy, 1991.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems,
Man, and Cybernetics – Part B, 26(1):29–41, 1996.

M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels. Self-organized shortcuts in the Argentine ant. Naturwissenschaften,
76:579–581, 1989.

W. J. Gutjahr. A Graph-based Ant System and its convergence. Future Generation Computer Systems, 16(8):873–888, 2000.

T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Computer Systems, 16(8):889–914, 2000.

Appendix -- The Natural Inspiration
The name Ant Colony Optimization was chosen to reflect its original inspiration: the foraging behavior of some ant species. In
particular, it was inspired by the double-bridge experiment performed by Jean-Louis Deneubourg and colleagues. In this experiment it
was shown that ants are able to find the shortest path to a food source by collectively exploiting pheromones they deposit on the
ground while moving. Although ACO has grown to become a fully fledged algorithmic framework and now includes many
components that are no longer related to real ants, we report here the double-bridge experiment for its historical value.

The Double-Bridge Experiment

In the double bridge experiment, a nest of a colony of Argentine ants is connected to a food source by two bridges. The ants can reach
the food source and get back to the nest using any of the two bridges. The goal of the experiment is to observe the resulting behavior
of the colony. What is observed is that if the two bridges have the same length, the ants tend to converge towards the use of one of the
two bridges. If the experiment is repeated a number of times, it is observed that each of the two bridges is used in about 50% of the

cases. These results can be explained by the fact that, while moving, ants deposit pheromone on the ground; and whenever they must
choose which path to follow, their choice is biased by pheromone: the higher the pheromone concentration found on a particular path,
the higher is the probability to follow that path.

Let us consider the case in which the two bridges have the same length. How the ants converge towards the use of a single bridge can
be better understood with the help of Figure 1 .

At the start of the experiment the ants explore the surroundings of
the nest. When they arrive at the decision point in which they have
to choose which of the two bridges to use, they choose
probabilistically, with a probability biased by the pheromone they
sense on the two bridges. Initially, each ant chooses one of the two
bridges with 50% probability as there is no pheromone yet.
However, after some time, because of random fluctuations, one of
the two bridges presents a higher concentration of pheromone than
the other and, therefore, attracts more ants. This in turn increases
the pheromone level on that bridge, making it more attractive. It is
this autocatalytic mechanism that makes the whole colony
converge towards the use of the same bridge.

If one of the bridges is significantly shorter than the other, a second mechanism plays an important role: the ants that happen randomly
to choose the shorter bridge are the first to reach the food source. When these ants, while moving back to the nest, encounter the
decision point 2 (see Figure 2), they sense a higher pheromone on the shorter bridge, which is then chosen with higher probability and
once again receives additional pheromone. This fact increases the probability that further ants select it rather than the long one.

Goss et al. (1989) developed a model of the observed behavior: assuming that at a given moment in time, ants have used the first
bridge and the second one, the probability for an ant to choose the first bridge is:

where parameters and are to be fitted to the experimental data---obviously, . Monte Carlo simulations showed a
very good fit for and (Goss et al. 1989).

It is this equation that inspired the equation used in ant system, the first ACO algorithm.

External Links
The main reference about ACO is the book Ant Colony Optimization
(http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10139) .
www.aco-metaheuristic.org (http://www.aco-metaheuristic.org/) : These are the official web pages dedicated to collect
information about ACO.
Software, distributed under the GNU license, is available at www.aco-metaheuristic.org/aco-code/
(http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html)
ACO is often covered by the popular press. Pointers to popularization articles can be found at:
www.aco-metaheuristic.org/aco-in-the-press.html (http://iridia.ulb.ac.be/~mdorigo/ACO/aco-in-the-press.html)
A moderated mailing list dedicated to the exchange of information related to ACO is accessible at:
www.aco-metaheuristic.org/mailing-list.html (http://iridia.ulb.ac.be/~mdorigo/ACO/mailing-list.html)
Many journals and conferences publish papers on ACO:

The main journal reporting research on ACO is Swarm Intelligence (http://www.springer.com/11721) . Other journals
where papers on ACO regularly appear are Artificial Life, Evolutionary Computation, IEEE Transactions on Systems,
Man, and Cybernetics, IEEE Transactions on Evolutionary Computation, INFORMS Journal on Computing, Journal of
Operations Research Society, and European Journal of Operational Research.
ANTS - From Ant Colonies to Artificial Ants: A Series of International Workshops on Ant Algorithms
(http://iridia.ulb.ac.be/~ants) . This biannual series of workshops, held for the first time in 1998, is the oldest conference in
the ACO and swarm intelligence fields. Another more recent series of conferences dedicated to swarm intelligence are the
annual IEEE Swarm Intelligence Symposia, started in 2003.
Special sessions or special tracks on ACO are organized in many conferences. Examples are the IEEE Congress on
Evolutionary Computation (CEC) and the Genetic and Evolutionary Computation (GECCO) series of conferences.
Papers on ACO can regularly be found also in many other conferences such as Parallel Problem Solving from Nature
conferences, INFORMS meetings, ECCO conferences, the Metaheuristics International Conference, the European
Workshop on Evolutionary Computation in Combinatorial Optimization and many others.

See Also
Swarm Intelligence, Particle Swarm Optimization

Marco Dorigo (2007) Ant Colony Optimization. Scholarpedia, p.10721
Created: 2 May 2006, reviewed: 27 March 2007, accepted: 28 March 2007
Retrieved from "http://www.scholarpedia.org/article/Ant_Colony_Optimization"

Categories: Computational Intelligence | Artificial Intelligence

Figure 1: Fig.1 - Branches have
equal lengths (Deneubourg et al.

1990).

Figure 2: Fig.2 - Branches have
different lengths (Goss et al

1989).

This page was last modified 08:32, 18 August 2007.
Patent pending.
Served in 0.488 sec.

