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Aevaluating which of several alternative algorithms is

best suited to a speci�c application.

Processes and Techniques
Many learning algorithms have been proposed. In order

to understand the relative merits of these alternatives, it

is necessary to evaluate them.�e primary approaches

to evaluation can be characterized as either theoreti-

cal or experimental.�eoretical evaluation uses formal

methods to infer properties of the algorithm, such as its

computational complexity (Papadimitriou, ), and

also employs the tools of7computational learning the-
ory to assess learning theoretic properties. Experimen-

tal evaluation applies the algorithm to learning tasks to

study its performance in practice.

�ere are many di�erent types of property that

may be relevant to assess depending upon the intended

application.�ese include algorithmic properties, such

as time and space complexity.�ese algorithmic prop-

erties are o�en assessed separately with respect to per-

formance when learning a7model, that is, at7training
time, and performance when applying a learned model,

that is, at7test time.
Other types of property that are o�en studied are the

properties of the models that are learned (see 7model
evaluation). Strictly speaking, such properties should

be assessed with respect to a speci�c application or

class of applications. However, much machine learning

research includes experimental studies in which algo-

rithms are compared using a set of data sets with little

or no consideration given to what class of applications

those data sets might represent. It is dangerous to draw

general conclusions about relative performance on any

application from relative performance on this sample

of some unknown class of applications. Such experi-

mental evaluation has become known disparagingly as

a bake-o� .

An approach to experimental evaluation that may

be less subject to the limitations of bake-o�s is the use

of experimental evaluation to assess a learning algo-

rithm’s 7bias and variance pro�le. Bias and variance
measure properties of an algorithm’s propensities in

learningmodels rather than directly being properties of

the models that are learned. Hence, they may provide

more general insights into the relative characteristics

of alternative algorithms than do assessments of the

performance of learned models on a �nite number of

applications. One example of such use of bias–variance

analysis is found in Webb ().

Techniques for experimental algorithm evaluation

include 7bootstrap sampling, 7cross-validation, and
7holdout evaluation.

Cross References
7Computational Learning�eory
7Model Evaluation

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. H. (). The elements of

statistical learning. New York: Springer.

Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Papadimitriou, C. H. (). Computational complexity. Reading,

MA: Addison-Wesley.

Webb, G. I. (). MultiBoosting: A technique for combining

boosting and wagging. Machine Learning, (), –.

Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco: Morgan

Kaufmann.

Analogical Reasoning

7Instance-Based Learning

Analysis of Text

7Text Mining

Analytical Learning

7Deductive Learning
7Explanation-Based Learning

Ant Colony Optimization

Marco Dorigo, Mauro Birattari

Université Libre de Bruxelles, Brussels, Belgium

Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based

metaheuristic for the solution of di�cult combinatorial
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optimization problems. In ACO, each individual of the

population is an arti�cial agent that builds incremen-

tally and stochastically a solution to the considered

problem. Agents build solutions by moving on a graph-

based representation of the problem. At each step their

moves de�ne which solution components are added to

the solution under construction. A probabilistic model

is associated with the graph and is used to bias the

agents’ choices.�e probabilistic model is updated on-

line by the agents so as to increase the probability that

future agents will build good solutions.

Motivation and Background
Ant colony optimization is so called because of its

original inspiration: the foraging behavior of some ant

species. In particular, in Beckers, Deneubourg, and

Goss () it was demonstrated experimentally that

ants are able to �nd the shortest path between their

nest and a food source by collectively exploiting the

pheromone they deposit on the ground while walk-

ing. Similar to real ants, ACO’s arti�cial agents, also

called arti�cial ants, deposit arti�cial pheromone on the

graph of the problem they are solving.�e amount of

pheromone each arti�cial ant deposits is proportional

to the quality of the solution the arti�cial ant has built.

�ese arti�cial pheromones are used to implement a

probabilisticmodel that is exploited by the arti�cial ants

to make decisions during their solution construction

activity.

Structure of the Optimization System
Let us consider aminimization problem (S , f ), whereS
is the set of feasible solutions, and f is the objective func-

tion, which assigns to each solution s ∈ S a cost value
f (s).�e goal is to �nd an optimal solution s∗, that is, a
feasible solution ofminimum cost.�e set of all optimal

solutions is denoted by S∗.
Ant colony optimization attempts to solve this

minimization problem by repeating the following two

steps:

● Candidate solutions are constructed using a param-

eterized probabilistic model, that is, a parameterized

probability distribution over the solution space.

● �e candidate solutions are used to modify the

model in a way that is intended to bias future sam-

pling toward low cost solutions.

The Ant Colony Optimization Probabilistic Model

We assume that the combinatorial optimization prob-

lem (S , f ) is mapped on a problem that can be charac-
terized by the following list of items:

● A�nite set C ={c, c, . . . , cNC
} of components, where

NC is the number of components.

● A�nite setX of states of the problem, where a state is
a sequence x = ⟨ci, cj, . . . , ck, . . . ⟩ over the elements
of C.�e length of a sequence x, that is, the number
of components in the sequence, is expressed by ∣x∣.
�e maximum length of a sequence is bounded by a

positive constant n < +∞.
● A set of (candidate) solutions S , which is a subset of
X (i.e., S ⊆ X ).

● A set of feasible states X̃ , with X̃ ⊆ X , de�ned via a
set of constraints Ω.

● A nonempty set S∗ of optimal solutions, with
S∗ ⊆ X̃ and S∗ ⊆S .

Given the above formulation (Note that, because

this formulation is always possible, ACO can in prin-

ciple be applied to any combinatorial optimization

problem.) arti�cial ants build candidate solutions by

performing randomized walks on the completely con-

nected, weighted graph G = (C,L,T ), where the
vertices are the components C, the set L fully con-
nects the components C, and T is a vector of so-called
pheromone trails τ. Pheromone trails can be associ-

ated with components, connections, or both. Here we

assume that the pheromone trails are associated with

connections, so that τ(i, j) is the pheromone associ-
ated with the connection between components i and

j. It is straightforward to extend the algorithm to the

other cases. �e graph G is called the construction

graph.

To construct candidate solutions, each arti�cial ant

is �rst put on a randomly chosen vertex of the graph.

It then performs a randomized walk by moving at each

step from vertex to vertex on the graph in such a way

that the next vertex is chosen stochastically according

to the strength of the pheromone currently on the arcs.
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AWhilemoving from one node to another of the graphG,
constraints Ωmay be used to prevent ants frombuilding

infeasible solutions. Formally, the solution construction

behavior of a generic ant can be described as follows:

ant_solution_construction

● For each ant:

– Select a start node c according to some problem

dependent criterion.

– Set k =  and xk = ⟨c⟩.
● While xk = ⟨c, c, . . . , ck⟩ ∈ X̃ , xk ∉ S , and the set Jxk
of components that can be appended to xk is not

empty, select the next node (component) ck+ ran-

domly according to:

PT (ck+ = c∣xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(ck ,c)(τ(ck, c))
∑(ck ,y)∈Jxk F(ck ,y)(τ(ck, y))

if (ck, c)∈ Jxk ,

 otherwise,

()

where a connection (ck, y) belongs to Jxk if and only
if the sequence xk+ = ⟨c, c, . . . , ck, y⟩ satis�es the
constraints Ω (that is, xk+ ∈ X̃ ) and F(i, j)(z) is
somemonotonic function – a common choice being

zα η(i, j)β , where α, β > , and η(i, j)’s are heuristic
values measuring the desirability of adding compo-

nent j a�er i. If at some stage xk ∉ S and Jxk = ∅, that
is, the construction process has reached a dead-end,

the current state xk is discarded. However, this sit-

uation may be prevented by allowing arti�cial ants

to build infeasible solutions as well. In such a case,

an infeasibility penalty term is usually added to the

cost function. Nevertheless, inmost of the settings in

whichACOhas been applied, the dead-end situation

does not occur.

For certain problems, one may �nd it useful to use

a more general scheme, where F depends on the

pheromone values of several “related” connections

rather than just a single one. Moreover, instead of

the random-proportional rule above, di�erent selection

schemes, such as the pseudo-random-proportional rule

(Dorigo & Gambardella, ), may be used.

The Ant Colony Optimization Pheromone Update

Many di�erent schemes for pheromone update have

been proposed within the ACO framework. For an

extensive overview, see Dorigo and Stützle ().Most

pheromone updates can be described using the follow-

ing generic scheme:

Generic_ACO_Update

● ∀s ∈ Ŝt ,∀(i, j) ∈ s : τ(i, j)← τ(i, j)+Qf (s∣S, . . . , St),
● ∀(i, j) : τ(i, j)← ( − ρ) ⋅ τ(i, j),

where Si is the sample in the ith iteration, ρ, ≤ ρ < ,
is the evaporation rate, and Qf (s∣S, . . . , St) is some
“quality function,” which is typically required to be non-

increasing with respect to f and is de�ned over the

“reference set” Ŝt .

Di�erent ACO algorithms may use di�erent quality

functions and reference sets. For example, in the very

�rstACOalgorithm–Ant System (Dorigo,Maniezzo,&

Colorni, , ) – the quality function is simply

/f (s) and the reference set Ŝt = St . In a subsequently

proposed scheme, called iteration best update (Dorigo

& Gambardella, ), the reference set is a singleton

containing the best solution within St (if there are sev-

eral iteration-best solutions, one of them is chosen ran-

domly). For the global-best update (Dorigo et al., ;

Stützle &Hoos, ), the reference set contains the best

among all the iteration-best solutions (and if there are

more than one global-best solution, the earliest one is

chosen). In Dorigo et al. () an elitist strategy was

introduced, in which the update is a combination of the

previous two.

In case a good lower bound on the optimal solu-

tion cost is available, one may use the following quality

function (Maniezzo, ):

Qf (s∣S, . . . , St) = τ ( −
f (s) − LB
f̄ − LB

) = τ
f̄ − f (s)
f̄ − LB

,

()

where f̄ is the average of the costs of the last k solutions

and LB is the lower bound on the optimal solution cost.

With this quality function, the solutions are evaluated

by comparing their cost to the average cost of the other

recent solutions, rather than by using the absolute cost

values. In addition, the quality function is automatically

scaled based on the proximity of the average cost to the

lower bound.
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A pheromone update that slightly di�ers from the

generic update described above was used in ant colony

system (ACS) (Dorigo & Gambardella, ).�ere the

pheromone is evaporated by the ants online during

the solution construction, hence only the pheromone

involved in the construction evaporates.

Another modi�cation of the generic update was

introduced in MAX–MIN Ant System (Stützle &

Hoos, , ), which uses maximum and mini-

mum pheromone trail limits. With this modi�cation,

the probability of generating any particular solution is

kept above some positive threshold.�is helps to pre-

vent search stagnation and premature convergence to

suboptimal solutions.
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Anytime Algorithm

An anytime algorithm is an algorithm whose out-

put increases in quality gradually with increased

running time. �is is in contrast to algorithms that

produce no output at all until they produce full-quality

output a�er a su�ciently long execution time.An exam-

ple of an algorithm with good anytime performance

is 7Adaptive Real-Time Dynamic Programming

(ARTDP).

AODE

7Averaged One-Dependence Estimators

Apprenticeship Learning

7Behavioral Cloning

Approximate Dynamic
Programming

7Value Function Approximation

Apriori Algorithm

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Definition
Apriori algorithm (Agrawal, Mannila, Srikant, Toivo-

nen,&Verkamo, ) is a7dataminingmethodwhich
outputs all 7frequent itemsets and 7association rules
from given data.

Input: set I of items, multiset D of subsets of I , fre-
quency threshold min_ fr, and con�dence threshold

min_conf.

Output: all frequent itemsets and all valid association

rules inD.
Method:

: level := ; frequent_sets := ∅;
: candidate_sets := {{i} ∣ i ∈ I};
: while candidate_sets ≠ ∅
.: scan dataD to compute frequencies of all sets in can-
didate_sets;

.: frequent_sets := frequent_sets ∪ {C ∈ candi-
date_sets ∣ frequency(C) ≥ min_ fr};
. level := level + ;
.: candidate_sets := {A ⊂ I ∣ ∣A∣ = level and B ∈
frequent_sets for all B ⊂ A, ∣B∣ = level − };
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Meta-Combiner

A meta-combiner is a form of 7ensemble learn-
ing technique used with 7missing attribute val-
ues. Its common topology involves base learners and
classi�ers at the �rst level, and meta-learner and meta-
classi�er at the second level. �e meta-classi�er com-
bines the decisions of all the base classi�ers.

Metaheuristic

Marco Dorigo, Mauro Birattari,
Thomas Stützle

A metaheuristic is a set of concepts that can be used to
de�ne heuristic methods that can be applied to a wide
set of di�erent problems. In other words, a metaheuris-
tic can be seen as a general algorithmic framework that
can be applied to di�erent optimization problems with
relatively few modi�cations. Examples of metaheuris-
tics include simulated annealing, tabu search, iterated
local search, evolutionary algorithms, and ant colony
optimization.

Metalearning

Pavel Brazdil, Ricardo Vilalta,
Christophe Giraud-Carrier, Carlos Soares
University of Porto, Porto, Portugal
University of Houston,
Houston TX, USA
Brigham Young University, UT, USA

Synonyms
Adaptive learning; Dynamic selection of bias; Learn-
ing to learn; Ranking learning methods; self-adaptive
systems

Definition
Metalearning allows machine learning systems to ben-
e�t from their repetitive application. If a learning sys-
tem fails to perform e�ciently, one would expect the
learning mechanism itself to adapt in case the same

task is presented again. Metalearning di�ers from base-
learning in the scope of the level of adaptation; whereas
learning at the base-level is focused on accumulating
experience on a speci�c task (e.g., credit rating, medical
diagnosis, mine-rock discrimination, fraud detection,
etc.), learning at the metalevel is concerned with accu-
mulating experience on the performance of multiple
applications of a learning system.
Brie�y stated, the �eld of metalearning is focused

on the relation between tasks or domains, and learn-
ing algorithms. Rather than starting afresh on each new
task, metalearning facilitates evaluation and compari-
son of learning algorithms on many di�erent previous
tasks, establishes bene�ts and disadvantages, and then
recommends the learning algorithm, or combination of
algorithms that maximizes some utility function on the
new task. �is problem can be seen as an algorithm
selection task (Rice, ).

�e utility or usefulness of a given learning algo-
rithm is o�en determined through a mapping between
characterization of the task and the algorithm’s estimated
performance (Brazdil & Henery, ). In general, met-
alearning can recommend more than one algorithm.
Typically, the number of recommended algorithms is
signi�cantly smaller than the number of all possible
(available) algorithms (Brazdil, Giraud-Carrier, Soares,
& Vilalta, ).

Motivation and Background
�e application of machine learning systems to
7classi�cation and 7regression tasks has become a
standard, not only in research but also in commerce
and industry (e.g., �nance, medicine, and engineering).
However, most successful applications are custom-
designed, the result of skillful use of human exper-
tise. �is is due, in part, to the large, ever increasing
number of available machine learning systems, their
relative complexity, and the lack of systematic meth-
ods for discriminating among them. �e problem is
further compounded by the fact that, in 7Knowledge
Discovery fromDatabases, each operational phase (e.g.,
preprocessing, model generation) may involve a choice
among various possible alternatives (e.g., progressive
vs. random sampling, neural network vs. decision tree
learning), as observed by Bernstein, Provost, and Hill
().
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see Lampert () for computer vision and Schölkopf

et al. () for bioinformatics. Finally, Vapnik ()

provides the details on statistical learning theory.

Recommended Reading
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., &

Vishwanathan, S. V. N. (). Predicting structured data. Cam-
bridge: MIT Press.

Borgwardt, K. M. (). Graph Kernels. Ph.D. thesis, Ludwig-
Maximilians-University, Munich, Germany.

Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm for

optimal margin classifiers. In D. Haussler (Ed.), Proceedings of
annual conference computational learning theory (pp. –).
Pittsburgh: ACM Press.

Cortes, C., & Vapnik, V. (). Support vector networks. Machine
Learning, (), –.

Haussler, D. (). Convolution kernels on discrete structures (Tech.
Rep. UCS-CRL--). University of California, Santa Cruz.

Joachims, T. (). Text categorization with support vector

machines: Learning with many relevant features. In Proceedings
of the European conference on machine learning (pp. –).
Berlin: Springer.

Jordan, M. I., Bartlett, P. L., & McAuliffe, J. D. (). Convexity,
classification, and risk bounds (Tech. Rep. ). University of
California, Berkeley.

Lampert, C. H. (). Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision, (),
–.

Platt, J. C. (a). Fast training of support vector machines

using sequential minimal optimization. In Advances in kernel
methods—support vector learning (pp. –). Cambridge,
MA: MIT Press.

Platt, J. C. (b). Probabilities for sv machines. In A. J. Smola, P. L.

Bartlett, B. Schölkopf, & D. Schuurmans, (Eds.), Advances in
large margin classifiers (pp. –). Cambridge: MIT Press.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge:
MIT Press.

Schölkopf, B., Tsuda, K., & Vert, J.-P. (). Kernel methods in
computational biology. Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Margin distribution and

soft margin. In A. J. Smola, P. L. Bartlett, B. Schölkopf, &

D. Schuurmans, (Eds.), Advances in large margin classifiers
(pp. –). Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M.

(). Structural risk minimization over data-dependent hier-

archies. IEEE Transactions on Information Theory, (), –
.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (). Bundle methods

for machine learning. In D. Koller, & Y. Singer, (Eds.), Advances
in neural information processing systems (Vol. ). Cambridge:
MIT Press.

Taskar, B. (). Learning structured prediction models: A large
margin approach. Ph.D. thesis, Stanford University.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. ().

Large margin methods for structured and interdependent out-

put variables. Journal of Machine Learning Research, , –
.

Vapnik, V. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). Spline models for observational data. CBMS-

NSF regional conference series in applied mathematics (Vol. ).
Philadelphia: SIAM.

Swarm Intelligence

Swarm intelligence is the discipline that studies the col-
lective behavior of systems composed of many individ-

uals that interact locally with each other and with their

environment and that rely on forms of decentralized

control and self-organization. Examples of such sys-

tems are colonies of ants and termites, schools of �sh,

�ocks of birds, herds of land animals, and also some

artifacts, including swarm robotic systems and some

computer programs for tackling optimization problems

such as7ant colony optimization and7particle swarm
optimization.

Symbolic Dynamic Programming

Scott Sanner, Kristian Kersting

Statistical Machine Learning Group,

NICTA, Canberra, ACT, Australia
Fraunhofer IAIS,

Sankt Augustin, Germany

Synonyms
Dynamic programming for relational domains; Rela-

tional dynamic programming; Relational value itera-

tion; SDP

Definition
Symbolic dynamic programming (SDP) is a generaliza-

tion of the7dynamic programming technique for solv-
ing 7Markov decision processes (MDPs) that exploits
the symbolic structure in the solution of relational and
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