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Abstract

Research on a new metaheuristic for optimization is often initially focused on proof-of-concept
applications. It is only after experimental work has shown the practical interest of the method that
researchers try to deepen their understanding of the method’s functioning not only through more and
more sophisticated experiments but also by means of an effort to build a theory. Tackling questions
such as “how and why the method works’’ is important, because finding an answer may help in
improving its applicability. Ant colony optimization, which was introduced in the early 1990s as
a novel technique for solving hard combinatorial optimization problems, finds itself currently at
this point of its life cycle. With this article we provide a survey on theoretical results on ant colony
optimization. First, we review some convergence results. Then we discuss relations between ant colony
optimization algorithms and other approximate methods for optimization. Finally, we focus on some
research efforts directed at gaining a deeper understanding of the behavior of ant colony optimization
algorithms. Throughout the paper we identify some open questions with a certain interest of being
solved in the near future.
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1. Introduction

In the early 1990s, ant colony optimization (ACO)[20,22,23] was introduced by
M. Dorigo and colleagues as a novel nature-inspired metaheuristic for the solution of
hard combinatorial optimization (CO) problems. ACO belongs to the class of metaheuris-
tics [8,32,40], which are approximate algorithms used to obtain good enough solutions
to hard CO problems in a reasonable amount of computation time. Other examples of
metaheuristics are tabu search [30,31,33], simulated annealing [44,13], and evolutionary
computation [39,58,26]. The inspiring source of ACO is the foraging behavior of real ants.
When searching for food, ants initially explore the area surrounding their nest in a random
manner. As soon as an ant finds a food source, it evaluates the quantity and the quality of
the food and carries some of it back to the nest. During the return trip, the ant deposits a
chemical pheromone trail on the ground. The quantity of pheromone deposited, which may
depend on the quantity and quality of the food, will guide other ants to the food source. As
it has been shown in [18], indirect communication between the ants via pheromone trails
enables them to find shortest paths between their nest and food sources. This characteristic
of real ant colonies is exploited in artificial ant colonies in order to solve CO problems.

According to Papadimitriou and Steiglitz [56], a CO problemP = (S, f ) is an op-
timization problem in which, given a finite set of solutionsS (also calledsearch space)
and an objective functionf : S �→ R+ that assigns a positive cost value to each of the
solutions, the goal is either to find a solution of minimum cost value,3 or—as in the case
of approximate solution techniques—a good enough solution in a reasonable amount of
time. ACO algorithms belong to the class of metaheuristics and therefore follow the latter
goal. The central component of an ACO algorithm is a parametrized probabilistic model,
which is called thepheromone model. The pheromone model consists of a vector of model
parametersT calledpheromone trail parameters. The pheromone trail parametersTi ∈ T ,
which are usually associated to components of solutions, have values�i , calledpheromone
values. The pheromone model is used to probabilistically generate solutions to the problem
under consideration by assembling them from a finite set of solution components. At run-
time, ACO algorithms update the pheromone values using previously generated solutions.
The update aims to concentrate the search in regions of the search space containing high
quality solutions. In particular, the reinforcement of solution components depending on the
solution quality is an important ingredient of ACO algorithms. It implicitly assumes that
good solutions consist of good solution components.4 To learn which components con-
tribute to good solutions can help assembling them into better solutions. In general, the ACO
approach attempts to solve an optimization problem by repeating the following two steps:
• candidate solutions are constructed using a pheromone model, that is, a parametrized

probability distribution over the solution space;
• the candidate solutions are used to modify the pheromone values in a way that is deemed

to bias future sampling toward high quality solutions.

3 Note that minimizing over an objective functionf is the same as maximizing over−f . Therefore, every CO
problem can be described as a minimization problem.

4 Note that this does not require the objective function to be (partially) separable. It only requires the existence
of a fitness-distance correlation[41].
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After the initial proof-of-concept application to the traveling salesman problem (TSP)
[22,23], ACO was applied to many other CO problems.5 Examples are the applications to
assignment problems [14,47,46,63,66], scheduling problems [11,17,27,51,64], and vehicle
routing problems [29,59]. Among other applications, ACO algorithms are currently state-
of-the-art for solving the sequential ordering problem (SOP) [28], the resource constraint
project scheduling (RCPS) problem [51], and the open shop scheduling (OSS) problem [4].
For an overview of applications of ACO we refer the interested reader to [24].

The first theoretical problem considered was the one concerning convergence. The ques-
tion is: will a given ACO algorithm find an optimal solution when given enough resources?
This is an interesting question, because ACO algorithms are stochastic search procedures
in which the pheromone update could prevent them from ever reaching an optimum. When
considering a stochastic optimization algorithm, there are at least two possible types of
convergence that can be considered:convergence in valueandconvergence in solution.
When studying convergence in value, we are interested in evaluating the probability that
the algorithm will generate an optimal solution at least once. On the contrary, when studying
convergence in solution we are interested in evaluating the probability that the algorithm
reaches a state which keeps generating the same optimal solution. The first convergence
proofs were presented by Gutjahr in [37,38]. He proved convergence with probability 1− �
to the optimal solution (in [37]), and more in general to any optimal solution (in [38]), of a
particular ACO algorithm that he called graph-based ant system (GBAS). Notwithstanding
its theoretical interest, the main limitation of this work was that GBAS is quite different
from any implemented ACO algorithm and its empirical performance is unknown. A sec-
ond strand of work on convergence focused therefore on a class of ACO algorithms that
are among the best-performing in practice, namely, algorithms that apply a positive lower
bound�min to all pheromone values. The lower bound prevents the probability to generate
any solution to become zero. This class of algorithms is denoted by ACO�min. Dorigo and
Stützle, first in [65] and later in [24], presented a proof for the convergence in value, as
well as a proof for the convergence in solution, for algorithms from ACO�min. With the
convergence of ACO algorithms we deal in Section 3 of this paper.

Recently, researchers have been dealing with the relation of ACO algorithms to other
methods for learning and optimization. One example is the work presented in [2] that
relates ACO to the fields of optimal control and reinforcement learning. A more promi-
nent example is the work that aimed at finding similarities between ACO algorithms and
other probabilistic learning algorithms such as stochastic gradient ascent (SGA), and the
cross-entropy (CE) method. Meuleau and Dorigo have shown in [52] that the pheromone
update as outlined in the proof-of-concept application to the TSP [22,23] is very similar
to a stochastic gradient ascent in the space of pheromone values. Based on this obser-
vation, the authors developed an SGA-based type of ACO algorithm whose pheromone
update describes a stochastic gradient ascent. This algorithm can be shown to converge
to a local optimum with probability 1. In practice, this SGA-based pheromone update has

5 Note that the class of ACO algorithms also comprises methods for the application to problems arising in
networks, such as routing and load balancing (see, for example,[19]), and for the application to continuous
optimization problems (see, for example,[62]). However, in this review we exclusively focus on ACO for solving
CO problems.
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not been much studied so far. The first implementation of SGA-based ACO algorithms
was proposed in[3] where it was shown that SGA-based pheromone updates avoid certain
types of search bias. Zlochin et al. [67] have proposed a unifying framework for so-called
model-based search(MBS) algorithms. An MBS algorithm is characterized by the use of a
(parametrized) probabilistic modelM ∈ M (whereM is the set of all possible probabilistic
models) that is used to generate solutions to the problem under consideration. The class of
MBS algorithms can be divided into two subclasses with respect to the way the probabilistic
model is used. The algorithms in the first subclass use a given probabilistic model without
changing the model structure at run-time, whereas the algorithms of the second subclass
use and change the probabilistic model in alternating phases. ACO algorithms are exam-
ples of algorithms from the first subclass. In this paper we deal with model-based search
in Section 4.

While convergence proofs can provide insight into the working of an algorithm, they
are usually not very useful to the practitioner that wants to implement efficient algorithms.
This is because, generally, either infinite time or infinite space are required for a stochas-
tic optimization algorithm to converge to an optimal solution (or to the optimal solution
value). The existing convergence proofs for particular ACO algorithms are no exception.
As more relevant for practical applications might be considered the research efforts that
were aimed at a better understanding of the behavior of ACO algorithms. Blum [3] and
Blum and Dorigo [5,7] made the attempt of capturing the behavior of ACO algorithms in
a formal framework. This work is closely related to the notion ofdeceptionas used in the
evolutionary computation field. The term deception was introduced by Goldberg in [34]
with the aim of describing problems that are misleading for genetic algorithms (GAs).
Well-known examples of GA-deceptive problems aren-bit trap functions [16]. These func-
tions are characterized by (i) fix-points that correspond to sub-optimal solutions and that
have large basins of attraction, and (ii) fix-points with relatively small basins of attraction
that correspond to optimal solutions. Therefore, for these problems a GA will—in most
cases—not find an optimal solution. In [3,5,7], Blum and Dorigo adopted the term decep-
tion for the field of ant colony optimization, similarly to what had previously been done in
evolutionary computation. It was shown that ant colony optimization algorithms in general
suffer fromfirst order deceptionin the same way as GAs suffer from deception. Blum and
Dorigo further introduced the concept ofsecond order deception, which is caused by a bias
that leads to decreasing algorithm performance over time. Among the principal causes for
this search bias were identified situations in which some solution components on average
receive update from more solutions than others they compete with. This was shown for
scheduling problems in [9,10], and for thek-cardinality tree problem in [12]. Recently,
Montgomery et al. [54] made an attempt to extend the work by Blum and Sampels [9,10]
to assignment problems, and to attribute search bias to different algorithmic components.
Merkle and Middendorf [48,49] were the first to study the behavior of a simple ACO algo-
rithm by analyzing the dynamics of itsmodel, which is obtained by applying the expected
pheromone update. Their work deals with the application of ACO to idealized permutation
problems. When applied to constrained problems such as permutation problems, the solu-
tion construction process of ACO algorithms consists of a sequence of random decisions in
which later decisions depend on earlier ones. Therefore, the later decisions of the construc-
tion process are inherently biased by the earlier ones. The work of Merkle and Middendorf



M. Dorigo, C. Blum / Theoretical Computer Science 344 (2005) 243–278 247

shows that this leads to a bias which they callselection bias. Furthermore, the competition
between the ants was identified as the main driving force of the algorithm. Some of the
principal aspects of the above mentioned works are discussed in Section5.

Outline. In Section 2 we introduce ACO in a way that suits its theoretical study. For this
purpose we take inspiration from the way of describing ACO as done in [6]. We further
outline successful ACO variants and introduce the concept of models of ACO algorithms,
taking inspiration from [49]. In Section 3 we deal with existing convergence proofs for ACO
algorithms, while in Section 4 we present the work on establishing the relation between ACO
and other techniques for optimization. In Section 5 we deal with some important aspects
of the works on search bias in ACO algorithms. Finally, in Section 6 we draw conclusions
and propose an outlook to the future.

2. Ant colony optimization

ACO algorithms are stochastic search procedures. Their central component is the phe-
romone model, which is used to probabilistically sample the search space. The pheromone
model can be derived from amodelof the tackled CO problem, defined as follows:

Definition 1. A modelP = (S,�, f ) of aCOproblem consists of:
• asearch(or solution) spaceS defined over a finite set of discrete decision variables and

a set� of constraintsamong the variables;
• anobjective functionf : S → R+ to be minimized.
The search spaceS is defined as follows: Given is a set ofndiscrete variablesXi with values
v
j
i ∈ Di = {v1

i , . . . , v
|Di |
i }, i = 1, . . . , n. A variable instantiation, that is, the assignment

of a valuevji to a variableXi , is denoted byXi = v
j
i . A feasible solutions ∈ S is a

complete assignment (i.e., an assignment in which each decision variable has a domain value
assigned) that satisfies the constraints. If the set of constraints� is empty, then each decision
variable can take any value from its domain independently of the values of the other decision
variables. In this case we callP anunconstrainedproblem model, otherwise aconstrained
problem model. A feasible solutions∗ ∈ S is called aglobally optimal solution(or global
optimum), if f (s∗)�f (s) ∀s ∈ S. The set of globally optimal solutions is denoted by
S∗ ⊆ S. To solve a CO problem one has to find a solutions∗ ∈ S∗.

A model of the CO problem under consideration implies a finite set of solution com-
ponents and a pheromone model as follows. First, we call the combination of a decision
variableXi and one of its domain valuesvji asolution componentdenoted bycji . Then, the

pheromone model consists of apheromone trail parameterT j
i for each solution compo-

nentcji . The set of all solution components is denoted byC. The value of a pheromone trail

parameterT j
i —calledpheromone value—is denoted by�ji . 6 The vector of all pheromone

6 Note that pheromone values are in general a function of the algorithm’s iterationt: �j
i

= �j
i
(t). This dependence

on the iteration will however be made explicit only when necessary.



248 M. Dorigo, C. Blum / Theoretical Computer Science 344 (2005) 243–278

trail parameters is denoted byT . As a CO problem can be modeled in different ways,
different models of a CO problem can be used to define different pheromone models.

As an example, we consider the asymmetric traveling salesman problem (ATSP): a com-
pletely connected, directed graphG(V,A) with a positive weightdij associated to each
arcaij ∈ A is given. The nodes of the graph represent cities and the arc weights represent
distances between the cities. The goal consists in finding among all (directed) Hamiltonian
cycles inG one for which the sum of the weights of its arcs is minimal, that is, a short-
est Hamiltonian cycle. This NP-hard CO problem can be modeled as follows: we model
each cityi ∈ V by a decision variableXi whose domain consists of a domain valuev

j
i

for each outgoing arcaij . A variable instantiationXi = v
j
i means that arcaij is part of

the corresponding solution. The set of constraints must be defined so that only candidate
solutions that correspond to Hamiltonian cycles inGare valid solutions. The set of solution
componentsC consists of a solution componentcji for each combination of variableXi and

domain valuevji , and the pheromone modelT consists of a pheromone trail parameterT j
i ,

with value�ji , associated to each solution componentc
j
i .

2.1. The framework of a basic ACO algorithm

When trying to prove theoretical properties for the ACO metaheuristic, the researcher
faces a first major problem: ACO’s very general definition. Although generality is a desirable
property, it makes theoretical analysis much more complicated, if possible at all. It is for this
reason that we introduce ACO in a form that covers all the algorithms that were theoretically
studied, but that is not as general as the definition of the ACO metaheuristic as given, for
example, in Chapter 2 of[24] (see also footnote 5).

Algorithm 1 captures the framework of a basic ACO algorithm. It works as follows. At
each iteration,na ants probabilistically construct solutions to the combinatorial optimization
problem under consideration, exploiting a given pheromone model. Then, optionally, a local
search procedure is applied to the constructed solutions. Finally, before the next iteration
starts, some of the solutions are used for performing a pheromone update. This framework
is explained with more details in the following.

InitializePheromoneValues(T ). At the start of the algorithm the pheromone values are
all initialized to a constant valuec > 0.

ConstructSolution(T ). The basic ingredient of any ACO algorithm is a constructive heuris-
tic for probabilistically constructing solutions. A constructive heuristic assembles solutions
as sequences of elements from the finite set of solution componentsC. A solution con-
struction starts with an empty partial solutionsp = 〈〉. Then, at each construction step
the current partial solutionsp is extended by adding a feasible solution component from
the setN(sp) ⊆ C \ {sp}. This set is determined at each construction step by the solution
construction mechanism in such a way that the problem constraints are met. The process of
constructing solutions can be regarded as a walk (or a path) on the so-calledconstruction
graphGC = (C,L), which is a fully connected graph whose vertices are the solution com-
ponents inC and whose edges are the elements ofL. The allowed walks onGC are implicitly
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Algorithm 1 The framework of a basic ACO algorithm
input: An instanceP of a CO problem modelP = (S, f,�).
InitializePheromoneValues(T )
sbs ← NULL

while termination conditions not metdo
Siter ← ∅
for j = 1, . . . , na do
s ← ConstructSolution(T )
if s is a valid solutionthen
s ← LocalSearch(s) {optional}
if (f (s) < f (sbs)) or (sbs = NULL) then sbs ← s

Siter ← Siter ∪ {s}
end if

end for
ApplyPheromoneUpdate(T ,Siter,sbs)

end while
output: The best-so-far solutionsbs

defined by the solution construction mechanism that defines the setN(sp) with respect to a
partial solutionsp. The choice of a solution componentcji ∈ N(sp) is, at each construction
step, done probabilistically with respect to the pheromone model. The probability for the

choice ofcji is proportional to[�ji ]
� · [�(cji )]

�
, where� is a function that assigns to each

valid solution component—possibly depending on the current construction step—a heuris-
tic value which is also called theheuristic information. The value of parameters� and�,
� > 0 and� > 0, determines the relative importance of pheromone value and heuristic
information. The heuristic information is optional, but often needed for achieving a high
algorithm performance. In most ACO algorithms the probabilities for choosing the next
solution component—also called thetransition probabilities—are defined as follows:

p(cji | sp) = [�ji ]
� · [�(cji )]

�

∑
clk∈N(sp) [�

l
k]� · [�(clk)]�

, ∀ cji ∈ N(sp). (1)

Note that potentially there are many different ways of choosing the transition probabilities.
The above form has mainly historical reasons, because it was used in the first ACO algo-
rithms[22,23] to be proposed in the literature. In the rest of the paper we assume that the
construction of a solution is aborted ifN(sp) = ∅ ands is not a valid solution.7

As an example of this construction mechanism let us consider again the ATSP (see
Section 2). LetI denote the set of indices of the current decision variable and of the
decision variables that have already a value assigned. Letic denote the index of the cur-
rent decision variable (i.e., the decision variable that has to be assigned a value in the
current construction step). The solution construction starts with an empty partial solution

7 Alternatively, non-valid solutions might be punished by giving them an objective function value that is higher
than the value of any feasible solution.
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sp = 〈〉, with ic ∈ {1, . . . , |V |} randomly chosen, and withI = {ic}. Also, the index of the
first decision variable is stored in variableif (i.e., if ← ic). Then, at each of the|V | − 1

construction steps a solution componentc
j
ic

∈ N(sp) is added to the current partial solution,

whereN(sp) = {ckic | k ∈ {1, . . . , |V |} \ I}. This means that at each construction step a
domain value is chosen for the decision variable with indexic. Once the solution component
c
j
ic

is added tosp, ic is set toj. The transition probabilities used in each of the first|V | − 1
construction steps are those of Equation1, where the heuristic information can, in the case
of the ATSP, be defined as�(cji ) = 1/dij (this choice introduces a bias towards short arcs).

The last construction step consists of adding solution componentc
if
ic

to the partial solution

sp, which corresponds to closing the Hamiltonian cycle.8

LocalSearch(s). A local search procedure may be applied for improving the solutions
constructed by the ants. The use of such a procedure is optional, though experimentally it
has been observed that, if available, its use improves the algorithm’s overall performance.

ApplyPheromoneUpdate(T ,Siter,sbs). The aim of the pheromone value update rule is to
increase the pheromone values on solution components that have been found in high quality
solutions. Most ACO algorithms use a variation of the following update rule:

�ji ← (1 − �) · �ji + �

Supd
· ∑
{s∈Supd|cji ∈s}

F(s), (2)

for i = 1, . . . , n, andj = 1, . . . , |Di |. Instantiations of this update rule are obtained by
different specifications ofSupd, which—in all the cases that we consider in this paper—is a
subset ofSiter ∪{sbs}, whereSiter is the set of solutions that were constructed in the current
iteration, andsbs is the best-so-far solution. The parameter� ∈ (0,1] is calledevaporation
rate. It has the function of uniformly decreasing all the pheromone values. From a practical
point of view, pheromone evaporation is needed to avoid a too rapid convergence of the
algorithm toward a sub-optimal region. It implements a useful form offorgetting, favoring
the exploration of new areas in the search space.F : S �→ R+ is a function such that
f (s) < f (s′) ⇒ +∞ > F(s)�F(s′), ∀s �= s′ ∈ S, whereS is the set of all the sequen-
ces of solution components that may be constructed by the ACO algorithm and that cor-
respond to feasible solutions.F(·) is commonly called thequality function. Note that the
factor 1/Supd is usually not used. We introduce it for the mathematical purpose of studying
the expected update of the pheromone values. In the cases that we study in this paper the
factor is constant. Hence it does not change the algorithms’ qualitative behaviour.

2.2. ACO variants

Variants of the ACO algorithm generally differ from each other in the pheromone update
rule that is applied. A well-known example of an instantiation of update rule (2) is the

8 Note that this description of the ACO solution construction mechanism for the ATSP is equivalent to the
original description as given in[23].



M. Dorigo, C. Blum / Theoretical Computer Science 344 (2005) 243–278 251

AS-updaterule, that is, the update rule of Ant System (AS)[23]. The AS-update rule is
obtained from update rule 2 by setting

Supd ← Siter. (3)

This update rule is well-known due to the fact that AS was the first ACO algorithm to be
proposed in the literature. An example of a pheromone update rule that is more used in
practice is theIB-updaterule (where IB stands foriteration-best). The IB-update rule is
given by

Supd ← argmax{F(s) | s ∈ Siter}. (4)

The IB-update rule introduces a much stronger bias towards the good solutions found than
the AS-update rule. However, this increases the danger of premature convergence. An even
stronger bias is introduced by theBS-updaterule, where BS refers to the use of thebest-
so-farsolutionsbs, that is, the best solution found since the first algorithm iteration. In this
case,Supd is set to{sbs}.

In practice, ACO algorithms that use variations of the IB-update or the BS-update rule and
that additionally include mechanisms to avoid premature convergence achieve better results
than algorithms that use the AS-update rule. Examples are ant colony system (ACS)[21]
andMAX–MIN Ant System (MMAS) [66], which are among the most successful
ACO variants in practice.

ACS works as follows. First, instead of choosing at each step during a solution construc-
tion the next solution component according to Eq. (1), an ant chooses, with probability

q0, the solution component that maximizes[�ji ]
� · [�(cji )]

�
, or it performs, with proba-

bility 1 − q0, a probabilistic construction step according to Eq. (1). This type of solution
construction is calledpseudo-random proportional. Second, ACS uses the BS-update rule
with the additional particularity that the pheromone evaporation is only applied to values
of pheromone trail parameters that belong to solution components that are insbs. Third,
after each solution construction step, the following additional pheromone update is applied
to pheromone values�ji whose corresponding solution componentsc

j
i have been added to

the solutions under construction:

�ji ← (1 − �) · �ji + � · �0, (5)

where�0 is a small positive constant such thatFmin��0�c, Fmin = min{F(s) | s ∈ S},
andc is the initial value of the pheromones. In practice, the effect of this local pheromone
update is to decrease the pheromone values on the visited solution components, making in
this way these components less desirable for the following ants. We want to remark already
at this point that ACS belongs to the class ACO�min of algorithms, that is, the class of ACO
algorithms that apply a lower bound�min > 0 to all the pheromone values. In the case of
ACS, this lower bound is given by�0. This follows from the fact that (i)�ji ��0, ∀ T j

i ∈ T ,
and (ii)F(sbs)��0.

MMAS algorithms are characterized as follows. Depending on some convergence mea-
sure, at each iteration either the IB-update or the BS-update rule (both as explained above)
are used for updating the pheromone values. At the start of the algorithm the IB-update
rule is used more often, while during the run of the algorithm the frequency with which the
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BS-update rule is used increases. Instead of using an implicit lower bound in the pheromone
values like ACS,MMAS algorithms use an explicit lower bound�min > 0. Therefore, also
MMAS belongs to the class ACO�min of ACO algorithms. In addition to the lower bound,
MMAS algorithms useF(sbs)/� as an upper bound to the pheromone values. The value
of this bound is updated each time a new improved solution is found by the algorithm.

It is interesting to note thatF(sbs)/� is an approximation of the real upper bound�max

to the value of the pheromones, given below.

Proposition 1. Given Algorithm1 that is using the pheromone update rule from Eq.(2),
for any pheromone value�ji , the following holds:

lim
t→∞ �ji (t)�

F(s∗) · |{Supd}|
�

, (6)

wheres∗ is an optimal solution, and�ji (t) denotes the pheromone value�ji at iteration t.

Proof. The maximum possible increase of a pheromone value�ji is—at any iteration—

F(s∗) · |{Supd}| if all the solutions inSupd are equal to the optimal solutions∗ with cji ∈ s∗.

Therefore, due to evaporation, the pheromone value�ji at iterationt is bounded by

�ji
max

(t) = (1 − �)t · c +
t∑

k=1
(1 − �)t−k · F(s∗) · |{Supd}|, (7)

wherec is the initial value for all the pheromone trail parameters. Asymptotically, because
0 < ��1, this sum converges toF(s∗) · |{Supd}|/�. �

From this proposition it is clear that the pheromone value upper bound in the case of the
IB- or the BS-update rule isF(s∗)/�.

2.3. The hyper-cube framework

Rather than being an ACO variant, the hyper-cube framework (HCF) for ACO (proposed
in [6]) is a framework for implementing ACO algorithms that comes with several benefits.
In ACO algorithms, the vector of pheromone values can be regarded as a|C|-dimensional
vector9 ��. The application of a pheromone value update rule changes this vector. It moves
in a |C|-dimensional hyper-space defined by the lower and upper limits of the range of
values that the pheromone trail parameters can assume. We will denote this hyper-space in
the following byHT . Proposition 1 shows that the upper limit for the pheromone values
depends on the quality functionF(·), which implies that the limits ofHT can be very
different depending on the quality function and therefore depending on the problem instance
tackled. In contrast, the pheromone update rule of the HCF as described in the following
implicitly defines the hyper-spaceHT independently of the quality functionF(·) and of

9 Remember that we denote byC the set of all solution components.
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the problem instance tackled. For example, the pheromone update rule from Eq. (2), once
written in HCF-form, becomes

�ji ← (1 − �) · �ji + � · ∑
{s∈Supd|cji ∈s}

F(s)∑
{s′∈Supd} F(s

′)
, (8)

for i = 1, . . . , n, j = 1, . . . , |Di |. The difference between this pheromone update rule and
the one that is used in standard ACO algorithms consists in the normalization of the added
amount of pheromone.

In order to give a graphical interpretation of the pheromone update in the HCF, we consider
a solutions from a different point of view. With respect to a solutions ∈ S, we partition
the set of solution componentsC into two subsets, the setCin that contains all solution
componentscji ∈ s, andCout = C \ Cin. In this way, we can associate to a solutions a
binary vector�s of dimension|C| in which the position corresponding to solution component
c
j
i is set to 1 ifcji ∈ Cin, to 0 otherwise. This means that we can regard a solutions as a

corner of the|C|-dimensional unit hyper-cube, and that the set of feasible solutionsS can
be regarded as a (sub)set of the corners of this same hypercube. In the following, we denote
the convex hull ofS by S̃. It holds that

�� ∈ S̃ ⇔ �� = ∑
s∈S

�s�s, �s ∈ [0,1], ∑
s∈S

�s = 1. (9)

As an example see Fig.1(a). In the following, we give a graphical interpretation of the
pheromone update rule in the HCF. When written in vector form, Eq. (8) can be expressed
as

�� ← (1 − �) · �� + � · �m, (10)

where �m is a|C|-dimensional vector with

�m = ∑
s∈Supd

	s · �s where	s = F(s)∑
s′∈Supd

F(s′)
. (11)

Vector �m is a vector inS̃, the convex hull ofS, as
∑
s∈Siter

	s = 1 and 0�	s�1∀ s ∈ Siter.
It also holds that vector�m is the weighted average of binary solution vectors. The higher
the qualityF(s) of a solutions, the higher its influence on vector�m. Simple algebra allows
us to express Eq. (10) as

�� ← �� + � · ( �m − ��). (12)

This shows that the application of the pheromone update rule in the HCF shifts the current
pheromone value vector�� toward �m (see Fig.1(b)). The size of this shift is determined
by the value of parameter�. In the extreme cases there is either very little update (when
� is very close to zero), or the current pheromone value vector�� is replaced by�m (when
� = 1). Furthermore, if the initial pheromone value vector�� is in S̃, it remains inS̃,
and the pheromone values are bounded to the interval[0,1]. This means that the HCF,
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(0, 1, 1) (1, 1, 1) (0, 1, 1) (1, 1, 1)

(1, 0, 1) (0, 0, 1)(0, 0, 1)

(0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0)

(1, 1, 0) (1, 1, 0)

(1, 0, 1)

Sol. of ant 1

Sol. of ant 2

(a) (b)

Fig. 1. (a) Example of the convex hull of binary solution vectors; (b) example of the pheromone update in the
HCF. In this example, the setS of feasible solutions in binary vector form consists of the three vectors(0,0,0),
(1,1,0) and(0,1,1). The gray shaded area depicts the setS̃. In (b), two solutions have been created by two
ants. The vector�m is the weighted average of these two solutions (where we assume that(0,0,0) is of higher
quality), and�� will be shifted toward�m as a result of the pheromone value update rule (Eq. (8)). Figure from[6].
© IEEE Press.

independently of the problem instance tackled, defines the hyper-space for the pheromone
values to be the|C|-dimensional unit hypercube.10

It is interesting to note that in the case of the IB- and BS-update rules (in which only one
solutionsupd ∈ {sib, sbs} is used for updating) the old pheromone vector�� is shifted toward
the updating solutionsupd in binary vector form:

�� ← �� + � · (�supd − ��). (13)

As a notational convention we use HCF-AS-update, HCF-IB-update, and HCF-BS-update,
if the corresponding update rules are considered for an ACO algorithm that is implemented
in the HCF.

2.4. Models of ACO algorithms

Merkle and Middendorf introduced the use of models of ACO algorithms in[49] for the
study of the dynamics of the ACO algorithm search process. A model of an ACO algorithm
is a deterministic dynamical system obtained by applying the expected pheromone update
instead of the real pheromone update. The advantage of studying an ACO algorithm model
is that it—being deterministic—behaves always in the same way, in contrast to the behavior
of the ACO algorithm itself which in each run slightly differs due to the stochasticity. There
are several ways of studying an ACO model. For example, one might study the evolution of
the pheromone values over time, or one might study the evolution of the expected quality of

10 Note that earlier attempts to normalize pheromone values exist in the literature (see, for example,[35]).
However, existing approaches do not provide a framework for doing it automatically.
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the solutions that are generated per iteration. This expected iteration quality is henceforth
denoted byWF(T ), or byWF(T | t), wheret > 0 is the iteration counter.

We use the following notation for defining ACO models. The template for this
notation is

M(< problem>,< update_rule>,< nr_of_ants>), (14)

where< problem> is the considered problem (or problem type, such as, for example,
unconstrained problems),< update_rule> is the pheromone update rule that is considered,
and< nr_of_ants> is the number of ants that build solutions at each iteration. The number
< nr_of_ants> can be a specific integerna�1, any finite integer (denoted byna < ∞), or
na = ∞. In all cases, the character∗ denotes any possible entry. As an example, consider
the modelM(∗,AS, na < ∞): this is the model of an ACO algorithm that can be applied to
any problem, and that uses the AS-update rule and a finite number of ants at each iteration.
The expected iteration quality of modelM(∗,AS, na < ∞) is

WF(T ) = ∑
Sna∈Sna

(
p(Sna | T ) · 1

na
· ∑
s∈Sna

F (s)

)
, (15)

whereSna is the set of all multi-sets of cardinalityna consisting of elements fromS, and
p(Sna | T ) is the probability that thena ants produce the multi-setSna ∈ Sna , given the
current pheromone values. The expected pheromone update of modelM(∗,AS, na < ∞)

is

�ji ← (1 − �) · �ji + �

na
· ∑
Sna∈Sna


p(Sna | T )

∑
s∈Sna |cji ∈s

F(s)


 , (16)

for i = 1, . . . , n, j = 1, . . . , |Di |.
In order to reduce the computational complexity we may consider modelM(∗,AS, na =

∞), which assumes an infinite number of ants per iteration.11 In this case, the expected
iteration quality is given by

WF(T ) = ∑
s∈S

F(s) · p(s | T ), (17)

wherep(s | T ) is the probability to produce solutions given the current pheromone values.
The expected pheromone update of modelM(∗,AS, na = ∞) is given by

�ji ← (1 − �) · �ji + � · ∑
{s∈S|cji ∈s}

F(s) · p(s | T ). (18)

If, instead, we consider modelM(∗,HCF-AS, na = ∞), that is, the AS algorithm im-
plemented in the HCF using an infinite number of ants, the expected iteration quality is
the same as in modelM(∗,AS, na = ∞) (see Eq. (17)), but the expected pheromone

11 The way of examining the expected behavior of an algorithm by assuming an infinite number of solutions per
iteration has already been used in the field of evolutionary computation (see for example thezeroth order model
proposed in[57]).
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update becomes

�ji ← (1 − �) · �ji + � · ∑
{s∈S|cji ∈s}

F(s)·p(s|T )
WF (T )

, (19)

for i = 1, . . . , n, j = 1, . . . , |Di |. The study of models of ACO algorithms will play an
important role in Section5 of this paper.

3. Convergence of ACO algorithms

In this section, we discuss convergence of two classes of ACO algorithms: ACObs,�min

and ACObs,�min(t). These two classes are defined as follows. First, in order to ease the
derivations, both ACObs,�min and ACObs,�min(t) use simplified transition probabilities that
do not consider heuristic information: Eq. (1) (see Section 2.1), becomes

p(cji | sp) = [�ji ]
�

∑
clk∈N(sp) [�

l
k]�

, ∀ cji ∈ N(sp). (20)

Second, both algorithm classes use the BS-update rule (see Section2.2). Third, both
ACObs,�min and ACObs,�min(t) use a lower limit�min > 0 for the value of pheromone trails,
chosen so that�min < F(s∗), wheres∗ is an optimal solution. ACObs,�min(t) differs from
ACObs,�min because it allows the change of the value of�min at run-time.

For ACObs,�min convergence in value is proven via Theorem 1 which essentially says that,
because of the use of a fixed positive lower bound on the pheromone values, ACObs,�min is
guaranteed to find an optimal solution if given enough time.

For ACObs,�min(t), first convergence in value is proven via Theorem 2, under the condition
that the bound�min decreases to zero slowly enough.12 Then, convergence in solution
is proven via Theorem 3, which shows that a sufficiently slow decrement of the lower
pheromone trail limits leads to the effect that the algorithm converges to a state in which all
the ants construct the optimal solution over and over again (made possible by the fact that
the pheromone trails go to zero).

3.1. Convergence in value

In this subsection, we state that ACObs,�min is guaranteed to find an optimal solution with
a probability that can be made arbitrarily close to 1 if given enough time (convergence
in value). However, as we will indicate in Section 3.2, the convergence in solution for
ACObs,�min cannot be proved.

In Proposition 1 (see Section 2.2) it was proved that, due to pheromone evaporation,
the pheromone values are asymptotically bounded from above with�max as the limit. The
following proposition follows directly from Proposition 1.

12 Unfortunately, Theorem2 cannot be proven for the exponentially fast decrement of the pheromone trails
obtained by a constant pheromone evaporation rate, which most ACO algorithms use.
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Proposition 2. Once an optimal solutions∗ has been found by algorithm ACObs,�min, it
holds that

∀cji ∈ s∗ : lim
t→∞ �ji (t) = �max = F(s∗)

�
. (21)

The proof of this proposition is basically a repetition of the proof of Proposition1,
restricted to the solution components of the optimal solutions∗. Additionally, �0 has—for
each cji ∈ s∗—to be replaced by�ji (t

∗) (where t∗ is the iteration in whichs∗
was found).

Proposition 1 implies that, for the proof of Theorem 1 (see below), the only essential
point is that�min > 0, because from above the pheromone values will anyway be bounded
by �max. Proposition 2 additionally states that, once an optimal solutions∗ has been found,
the pheromone values on all solution components ofs∗ converge to�max = F(s∗)/�.

Theorem 1. Letp∗(t) be the probability that ACObs,�min finds an optimal solution at least
once within the first t iterations. Then, for an arbitrarily small� > 0 and for a sufficiently
large t it holds that

p∗(t)�1 − �, (22)

and asymptoticallylim t→∞ p∗(t) = 1.

Proof. The proof of this theorem consists in showing that, because of�min > 0, at each
algorithm iteration any generic solution, including any optimal solution, can be generated
with a probability greater than zero. Therefore, by choosing a sufficiently large number of
iterations, the probability of generating any solution, and in particular an optimal one, can
be made arbitrarily close to 1. For a detailed proof see[65] or [24]. �

3.2. Convergence in solution

In this subsection we deal with the convergence in solution of algorithm ACObs,�min(t).
For proving this property, it has to be shown that, in the limit, any arbitrary ant of the colony
will construct the optimal solution with probability one. This cannot be proven if, as done in
ACObs,�min, a small, positive lower bound is imposed on the lower pheromone value limits
because in this case at any iterationt each ant can construct any solution with a non-zero
probability. The key of the proof is therefore to allow the lower pheromone trail limits to
decrease over time toward zero, but making this decrement slow enough to guarantee that
the optimal solution is eventually found.

The proof of convergence in solution as presented in [24] was inspired by an earlier work
of Gutjahr [38]. It is organized in two theorems. First, Theorem 2 proves convergence in
value of ACObs,�min(t) when its lower pheromone trail limits decrease toward zero at not more
than logarithmic speed. Next, Theorem 3 states, under the same conditions, convergence in
solution of ACObs,�min(t).
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Theorem 2. Let the lower pheromone trail limits in ACObs,�min(t) be

∀t�1, �min(t) = d

ln(t + 1)
, (23)

with d being a constant, and letp∗(t) be the probability that ACObs,�min(t) finds an optimal
solution at least once within the first t iterations. Then it holds that

lim
t→∞ p∗(t) = 1. (24)

Proof. The proof consists in showing that there is an upper bound to the probability of not
constructing an optimal solution whose value goes to zero in the limit. A detailed proof can
be found in[24]. �

It remains to be proved that any ant will in the limit construct the optimal solution with
probability 1 (i.e., convergence in solution). This result is stated in Theorem 3.

Theorem 3. Let t∗ be the iteration in which the first optimal solutions∗ has been found
andp(s∗, t, k) be the probability that an arbitrary ant k constructss∗ in the t-th iteration,
with t > t∗. Then it holds thatlim t→∞ p(s∗, t, k) = 1.

Proof. The proof of this theorem consists in showing that the pheromone values of solution
components that do not belong to the optimal solution asymptotically converge to 0. For
details see[24]. �

3.3. Extension to include additional features of ACO algorithms

Most, if not all, ACO algorithms in practice include some features that are present neither
in ACObs,�min nor in ACObs,�min(t). Of particular interest is how the use of local search to
improve the constructed solutions and the use of heuristic information affect the convergence
proof for ACObs,�min. 13 Concerning the use of local search, it is rather easy to see that it
neither affects the convergence properties of ACObs,�min, nor those of ACObs,�min(t). This is
because the validity of both convergence proofs (as presented in [24]) depends only on the
way solutions are constructed and not on the fact that the solutions are taken or not to their
local optima by a local search routine.

The second question concerns the consequences of the use of heuristic information, that
is, when considering Eq. (1) instead of Eq. (20) for computing the transition probabilities
during solution construction. In fact, neither Theorem 1 nor Theorems 2 and 3 are affected
by the heuristic information, if we have 0< �(cji ) < +∞ for eachcji ∈ C and� < ∞. In
fact, with these assumptions�(·) is limited to some (instance specific) interval[�min, �max],
with �min > 0 and�max < +∞. Then, the heuristic information has the only effect to change
the lower bounds on the probability of making a specific decision (which is an important
component of the proofs of Theorems 2 and 3).

13 Note that, here and in the following, although the remarks made on ACObs,�min
in general also apply to

ACObs,�min(t)
, for simplicity we often refer only to ACObs,�min

.
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3.4. Convergence proofs for other types of ACO algorithms

A pioneering study from which much of the inspiration for later works was taken is
that of Gutjahr[36–38]. In [37] he presented the first piece of research on the convergence
properties of ACO algorithms, which deals with the convergence in solution for the so-
called graph-based ant system (GBAS). GBAS is very similar to ACObs,�min(t) except that
�min = 0 and the pheromone update rule changes the pheromones only when, in the current
iteration, a solution at least as good as the best one found so far is generated. The following
theorems were proved for GBAS:

Theorem 4. For each� > 0, for a fixed evaporation rate�, and for a sufficiently large
number of ants, the probabilityp that a fixed ant constructs the optimal solution at iteration
t is p�1 − � for all t� t0, with t0 = t0(�).

Theorem 5. For each� > 0, for a fixed number of ants, and for an evaporation rate�
sufficiently close to zero, the probabilityp that a fixed ant constructs the optimal solution
at iteration t isp�1 − � for all t� t0, with t0 = t0(�).

One of the limitations of these proofs is that they require the problem to have a single
optimal solution. This limitation has been removed in an extension of the above two results
in [36]. Another limitation is the way of updating the pheromone values. While the conver-
gence results presented in previous sections hold independently of the way the pheromone
values are updated, the theorems for GBAS hold only for its particular pheromone update
rule. In [36] this limitation was weakened by only requiring the GBAS update rule in the
final phases of the algorithm.

Finally, Gutjahr [38] provided a proof of convergence in solution for two variants of
GBAS that gave the inspiration for the proof of Theorem 2. The first variant was called
GBAS/tdlb (for time-dependent lower pheromone bound), and the second one GBAS/tdev
(for time-dependent evaporation rate). GBAS/tdlb uses a lower bound on the pheromone
values very similar to the one that is used in Theorem 2. Differently, in GBAS/tdev it is the
pheromone evaporation rate that is varied during the run of the algorithm: for proving that
GBAS/tdev converges in solution, pheromone evaporation is decreased slowly, and in the
limit it tends to zero.

3.5. Final remarks on convergence proofs

From the point of view of the researcher interested in practical applications of the al-
gorithms, the interesting part of the discussed convergence proofs is Theorem 1, which
guarantees that ACObs,�min will find an optimal solution if it runs long enough. It is there-
fore interesting that this theorem also applies to ACO algorithms that differ from ACObs,�min

in the way the pheromone update procedure is implemented. In general, Theorem 1 applies
to any ACO algorithm for which the probabilityp(s) of constructing a solutions ∈ S

always remains greater than a small constant� > 0. In ACObs,�min this is a direct conse-
quence of the fact that 0< �min < �max < +∞, which was obtained by (i) explicitly setting
a minimum value�min for pheromone trails, (ii) limiting the amount of pheromone that the
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ants may deposit after each iteration to finite values, (iii) letting pheromone evaporate over
time, that is, by setting� > 0, and by (iv) the particular form of choosing the transition
probabilities. As mentioned in Section2.2, we call the class of ACO algorithms that impose
a lower bound (and, implicitly, an upper bound) to the pheromone values ACO�min. By defi-
nition, Theorem 1 holds therefore for any algorithm in ACO�min, which contains practically
relevant algorithms such as ACS andMMAS.

Open problem 1. The proofs that were presented in this section do not say anything about
the time required to find an optimal solution, which can be astronomically large. It would
be interesting to obtain results on convergence speed for ACO algorithms, in spirit similar
to what has been done in evolutionary computation for relatively simple problems such as,
for example, ONE-MAX[43].

4. Model-based search

Up to now we have regarded ACO algorithms as a class of stochastic search procedures
working in the space of the solutions of a combinatorial optimization problem. Under this
interpretation, artificial ants are stochastic constructive heuristics that build better and better
solutions to a combinatorial optimization problem by using and updating pheromone trails.
In other words, our attention has been directed to the stochastic constructive procedure used
by the ants and to how the ants use the solutions they build to bias the search of future ants by
changing pheromone values. In the following, we show that by changing the point of view,
we can clarify the intrinsic relation of ACO algorithms to algorithms such as stochastic
gradient ascent (SGA) [53,60] and the cross-entropy (CE) method [15,61]. This is done
by studying these algorithms under a common algorithmic framework called model-based
search (MBS) [67]. The results presented in this section were obtained in [25,52,67].

An MBS algorithm is characterized by the use of a (parametrized) probabilistic model
M ∈ M (whereM is the set of all possible probabilistic models) that is used to generate
solutions to the problem under consideration. At a very general level, a model-based search
algorithm attempts to solve an optimization problem by repeating the following two steps:
• Candidate solutions are constructed using some parametrized probabilistic model, that

is, a parametrized probability distribution over the solution space.
• Candidate solutions are evaluated and then used to modify the probabilistic model in

a way that is deemed to bias future sampling toward low cost solutions. Note that the
model’s structure may be fixed in advance, with solely the model’s parameter values being
updated, or alternatively, the structure of the model may be allowed to change as well.

In the following, we focus on the use of fixed model structures based on a vector of model
parametersT , and identify a modelMwith its vector of parametersT . The way of sampling
solutions (i.e., the way of constructing solutions) induces a probability functionp( · | T ) on
the search space of the tackled optimization problem. Given this probability function and a
certain setting� of the parameter values, the probability of a solutions ∈ S to be sampled
is denoted byp(s | �). We assume that
• ∀ s ∈ S the model parameters can assume values�s such that the distributionp( · | �s)

defined byp(s | �s) = 1 andp(s′ | �s) = 0 ∀ s′ �= s is obtained. This “expressiveness”
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assumption is needed in order to guarantee that the sampling can concentrate in the
proximity of any solution, an optimal solution in particular;14

• and that the probability functionp( · | T ) is continuously differentiable with respect
to T .

In MBS algorithms, the view on an algorithm is dominated by its probabilistic model.
Therefore, the tackled optimization problem is replaced by the following continuous max-
imization problem:

�∗ ← argmax
�

WF(T ), (25)

whereWF(T ) (as introduced in Section2.4) denotes the expected quality of a generated
solution depending on the values of the parametersT . It may be easily verified that,
under the “expressiveness’’ assumption we made about the space of possible probability
distributions, the support ofp( · | �∗) (i.e., the set{s | p(s | �∗) > 0}) is necessarily
contained inS∗. This implies that solving the problem given by Eq. (25) is equivalent to
solving the original combinatorial optimization problem.

In the following we first outline the SGA and the CE methods in the MBS framework,
before we show the relation of the two methods to ACO algorithms. In particular, we will
see that the pheromone update rules as proposed in the ACO literature have a theoretical
justification.

4.1. Stochastic gradient ascent

A possible way of searching for a (possibly local) optimum of the problem given by
Eq. (25) is to use the gradient ascent method. In other words, gradient ascent may be
used as a heuristic to change� with the goal of solving Eq. (25). The gradient ascent
procedure starts from some initial model parameter value setting� (possibly randomly
generated). Then, at each iteration it calculates the gradient∇WF(T ) and updates� to
become� + �∇ WF(T )|�, 15 where� is a step-size parameter.

The gradient can be calculated (bearing in mind that∇ ln f = ∇f/f ) as follows:

∇WF(T )= ∇ ∑
s∈S

F(s)p(s | T ) = ∑
s∈S

F(s)∇p(s | T )

= ∑
s∈S

p(s | T )F (s)
∇p(s|T )
p(s|T )

= ∑
s∈S

p(s | T )F (s)∇ ln p(s | T ). (26)

However, the gradient ascent algorithm cannot be implemented in practice, as for its eval-
uation a summation over the whole search space is needed. A more practical alternative is
the use ofstochastic gradient ascent, which replaces—for a given parameter setting�—
the expectation in Eq. (26) by an empirical mean of a sample generated fromp( · | �).

14 Note that this condition may be relaxed by assuming that the probability distribution induced by a parameter
value setting� is in the closure of all inducible probability distributions.

15 Note that∇WF (T )|� denotes the gradient ofWF (T ) evaluated in�.
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The update rule for the stochastic gradient then becomes

�(t + 1) = �(t) + �
∑

s∈Supd

F(s)∇ ln p(s | �(t)), (27)

whereSupd is the sample at iterationt. In order to derive a practical algorithm from the
SGA approach, we need a model for which the derivatives of lnp( · | T ) can be calculated
efficiently. In Section4.3 we will show how this can be done within the context of the ACO
metaheuristic.

4.2. The cross-entropy method

Starting from some initial distribution that is given by the probability functionp( · | �(0))
(denoted in the following byp0), the CE method inductively builds a series of distributions
pt = p( · | �(t)) in an attempt to increase the probability of generating high quality solutions
after each iteration. A tentative way to achieve this goal is to setpt+1 equal top̂, wherep̂
is proportional topt as follows:

p̂ ∝ ptF (·), (28)

whereF(·) is, again, some quality function, depending on the objective function.
If this were possible, then, for time independent quality functions, aftert iterations we

would obtainpt ∝ p0F(·)t . Consequently, ast → ∞, pt would converge to a probability
distribution restricted toS∗. Unfortunately, even if the distributionpt is such that it can
be induced by some setting� of the parameter values, for the distributionp̂ as defined
by Eq. (28) this does not necessarily hold, hence some sort of projection is needed. A
natural candidate for the projectionpt+1 is the distributionp that minimizes theKullback–
Leibler divergence[45], which is a commonly used measure of the difference between two
distributions:

D(p̂‖p) = ∑
s∈S

p̂(s | T ) ln
p̂(s | T )

p(s | T )
(29)

or equivalently thecross-entropy:

− ∑
s∈S

p̂(s | T ) ln p(s | T ). (30)

Sincep̂ ∝ ptF (·), the cross-entropy minimization is equivalent to the following maximiza-
tion problem:

pt+1 = argmax
p(·|�)

∑
s∈S

p(s | �(t))F (s) ln p(s | �). (31)

In a way similar to what happened with the gradient of Eq. (26), the maximization problem
given by Eq. (31) cannot be solved in practice, because the evaluation of the function on
the right-hand side requires summation over the whole search space. As before, however,
a finite sample approximation can be used

pt+1 = argmax
p(·|�)

∑
s∈Supd

F(s) ln p(s | �), (32)
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whereSupd is the sample at iterationt. In some relatively simple cases this problem can
be solved exactly. In general, however, the analytical solution is unavailable. Still, even if
the exact solution is not known, some iterative methods such as SGA for solving this opti-
mization problem may be used. It should be noted that, since the new vector of pheromone
values�(t + 1) is a random variable, depending on a sample, there is no use in running
the SGA process till full convergence. Instead, in order to obtain some robustness against
sampling noise, a fixed number of SGA updates may be used. One particular choice, which
is of special interest, is the use of a single gradient ascent update, leading to an update
rule which is identical to the SGA update shown in Eq. (27). However, in general the CE
method imposes less restrictions on the quality function (e.g., allowing it to change over
time), hence the resulting algorithm may be seen as a generalization of SGA.

4.3. Relation of ACO with SGA and the CE method

The discussion of SGA and of the CE method in the previous two sections was focused
on the update of the model parameter values. However, this is only one of the components
needed in any model-based search algorithm. In the following we focus on the probability
function p( · | T ) that is implicitly given by the solution construction process of ACO
algorithms. We show that the calculation of the derivatives of this probability function can
be carried out in a reasonable time, and we outline the existing work on deriving updates
of the parameter values that describe a SGA, respectively a CE method, in the space of the
parameter values.

TheSGAupdate inACO.The SGA parameter value update that we describe in the following
is a generalization of the one that was presented in [67] (which was itself a generalization
of the one that was given in [52]).

As described in Section 2.1, in ACO algorithms a solutions is constructed as a finite-
length sequence〈cji , . . . , clk, . . . , csr 〉 of solution componentsc from the setC of solu-
tion components. For the sake of simplicity, we rename the components of the sequence
so to obtain〈c1, c2, . . . , c|s|〉. By defining the transition probabilities as done in Eq. (1)
(see p. 8), the probability function in ACO algorithms can be written as

p(s | T ) =
|s|−1∏
h=1

p(ch+1 | sph), (33)

wheresph is the partial sequence〈c1, . . . , ch〉, and consequently

∇ ln p(s | T ) =
|s|−1∑
h=1

∇ ln p(ch+1 | sph). (34)

Let us now consider an arbitrary solution construction steph ∈ {1, . . . , |s|} with N(sph)
being the set of solution components that can be added to the current partial sequences

p
h .

For the sake of readability let us also denote the “desirability’’[�ji ]
� · [�(cji )]

�
of a solution

componentcji (as used for determining the transition probabilities in Eq. (1)) by d(cji ).
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If cji ∈ N(sph) andcji = ch+1 it holds that

�

�T j
i

{
ln p(cji | sph)

}
= �

�T j
i


ln

(
d(cji )

/ ∑
clk∈N(sph )

d(clk)

)


= �

�T j
i

{
ln d(cji ) − ln

∑
clk∈N(sph )

d(clk)

}

= d′(cji )
/

d(cji ) − d′(cji )
/ ∑
clk∈N(sph )

d(clk)

=

1 − d(cji )

/ ∑
clk∈N(sph )

d(clk)


 d′(cji )

d(cji )

=
{

1 − p(cji | sph)
}

d′(cji )
d(cji )

. (35)

Otherwise, ifcji ∈ N(sph) but cji �= ch+1 it holds (by a similar argument) that

�

�T j
i

{
ln p(cji | sph)

}
= −p(cji | sph)

d′(cji )
d(cji )

. (36)

Finally, if cji /∈ N(sph) thenp(cji | sph) is independent ofT j
i and therefore we have that

�

�T j
i

{
ln p(cji | sph)

}
= 0. (37)

By combining these results, the SGA pheromone update procedure is derived as follows.
Let s be the solution for which pheromone updates have to be performed. First, because of
Eqs. (27) and (35), pheromones associated to solution componentsc

j
i ∈ sare reinforced with

the amount�F(s) ·d′(cji )/d(c
j
i ). Then, because of Eqs. (27), (35) and (36), pheromones that

are associated to all the solution components that were considered16 during the construction
of s are decreased by an amount given by�F(s) · p(cji | sph) · d′(cji )/d(c

j
i ). Last, because

of Eq. (37), all the remaining pheromones are not updated.
In order to guarantee stability of the resulting algorithm, it is desirable to have a bounded

gradient∇ ln p(s | T ). This means that a function d(·), for which d′(·)/d(·) is bounded,
should be used. In [52] the authors suggest using d(·) = exp(·), which leads to d′(·)/d(·) ≡
1. It should be further noted that if, in addition,F(·) = 1/f (·) and� = 1, the reinforcement
part becomes 1/f (·) as in the original Ant System algorithm (see Section 2.2).

The cross-entropy update inACO.As we have shown in Section 4.2, the CE method requires
at each step the solution of the problem stated in Eq. (32). Since, in general, the exact solution
is not available, an iterative scheme such as gradient ascent could be employed. As we have
shown in the previous section, the gradient of the log-probability for ACO-type probabilistic
functions can be efficiently calculated. The obtained values may be plugged into any general

16 We say that a solution componentcj
i

was “considered’’ at construction steph, if cj
i

∈ N(sp
h
).
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iterative solution scheme of the cross-entropy minimization problem, for example, the one
described by Eq. (27). If, for example, we use a single-step gradient ascent for solving
Eq. (32), we obtain a generalization of the SGA pheromone update, in which the quality
function is permitted to change over time.

In some special cases, such as for example unconstrained problems, it can be shown
(see [24]) that the parameter update of the CE method is exactly the same as the update of
Ant System implemented in the HCF (see Section 2.3) with a setting of� = 1 (remember
that� is the evaporation rate in standard ACO update rules).

Open problem 2. The relation of ACO algorithms to other probabilistic learning algo-
rithms such as estimation of distribution algorithms[55],or graphicalmodels andBayesian
networks[42], is relatively unexplored. More work on these subjects could be of interest.

5. Search bias in ACO algorithms

In ACO algorithms we find different forms of search bias. A first type of desirable
bias, whose goal is to direct the search towards good zones of the search space, is given
by the pheromone update rule. A less desirable form of bias, however, can be caused by
algorithm features such as the pheromone model and the solution construction process.
In fact, sometimes this additional bias is harmful and results in a decrease of algorithm
performance over time. There are basically two different strands of work on this type of
potentially harmful bias in ACO algorithms. In this section we first review results obtained
by Blum et al. in [12,7], and then we summarize those obtained by Merkle and Middendorf
in [49].

5.1. Negative search bias caused by an unfair competition

The fact that the average quality of the generated solutions improves over time is, in
general, considered to be a desirable characteristic for a metaheuristic. This is because
the generation of better average quality solutions during the algorithms’ execution is often
positively correlated with the probability to generate improved best solutions. Therefore,
situations in which this is not the case might be labelednegative search bias, as it was done
by Blum and Dorigo in [7]. For detecting this type of search bias, they studied the evolution
of the expected iteration qualityWF(T | t) 17 of the solutions that are generated by ACO
algorithm models.

First, the application of ACO algorithms to unconstrained CO problems was consid-
ered, that is, CO problems in which the set� of constraints is empty (see Definition 1
at p. 6). By relating the expected pheromone update to a type of function calledgrowth
transformation[1], the following result was proved in [6]:

Theorem 6. The expected iteration qualityWF(T ) ofM(U,HCF-AS, na = ∞), where
U stands for the application to unconstrained problems, is continuously non-decreasing.

17WF (T | t) is the value ofWF (T ) at iterationt. For a definition ofWF (T ) see Section2.4.
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More formally, it holds that

WF(T | t + 1) > WF (T | t), (38)

as long as at least one pheromone value changes from iteration t to iterationt + 1.

An extension of this result to the modelM(U,AS, na = ∞) was later presented in[5].
These results indicate that the AS algorithm shows a desired behavior when applied to
unconstrained problems. However, this result is not exceedingly useful, because most of the
relevant optimization problems tackled with ACO algorithms are constrained. Therefore, the
focus of research shifted to constrained problems. An example is the case study concerning
the NP-hardk-cardinality tree (KCT) problem [12,3], a generalization of the well-known
minimum spanning tree (MST) problem. It is defined as follows: Given is an undirected
graphG = (V ,E) (where|V | = n and|E| = m) with edge-weightsw(e) ∈ N+, ∀ e ∈ E.
The set of all trees inG with exactlyk edges is henceforth denoted byTk. The goal is to
find a treeTk ∈ Tk that minimizes

f (Tk) = ∑
e∈E(Tk)

w(e). (39)

This means that the objective function value of ak-cardinality tree is given by the sum
of the weights of all its edges. We consider the following CO problem model of the KCT
problem: We assign a binary decision variableXe to each edgee ∈ E. If Xe = 1, thene is
part of thek-cardinality tree that is built. The pheromone model is derived as follows. We
introduce for each of the binary decision variablesXe two solution components:c0

e , which
corresponds toXe = 0, andc1

e corresponding toXe = 1. The pheromone model consists

of a pheromone trail parameterT j
e for each solution componentcje , with j ∈ {0,1}.

The considered solution construction mechanism works as follows. The algorithm starts
with an empty partial solutionsp0 = 〈〉, and with empty setsET (for collecting the added
edges) andVT (for collecting the implicitly added vertices). Then, at construction steph,
0 < h < k, a solution componentc1e ∈ N(sph) is added to the current partial solutionsph .
When adding the solution componentc1e to sph we also adde = {v, v′} toET andv andv′ to
VT . For the first construction step, setN(sp0 ) is defined asN(sp0 ) = {c1e | e = {v, v′} ∈ E}
and for each subsequent construction steph as

N(s
p
h) = {c1e | (e = {v, v′} ∈ E \ ET ) ∧ ((v ∈ VT ) ∨ (v′ ∈ VT ))}. (40)

The definition ofN(sph) is such that only feasiblek-cardinality trees can be generated.
After k construction steps are performed we add, for alle ∈ E with c1e /∈ s

p
k , the solu-

tion componentc0e to spk . By this last step a sequences is completed that corresponds to
a feasible solution. The transition probabilities are at each construction step defined by
Eq. (1), with � = 1 and� = 0. The setting of� = 0 means that no heuristic infor-
mation for biasing the transition probabilities was considered in order to study the pure
behavior of the algorithm.
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Fig. 2. The complete search tree defined by the solution construction mechanism of the ACO algorithm and the
problem instancekct_simple_inst. The bold path in the search tree shows the steps of constructing solution
s3 = 〈c1e2

, c1e3
, c0e1

, c0e4
〉. Figure from[3]. © Akademische Verlagsgesellschaft Aka GmbH.

The evolution of the modelM(KCT,AS, na = ∞) and the behavior of the AS algorithm
was studied when applied to the following small problem instance:

The weight settings for this instance arew(e1) = w(e4) = 1 andw(e2) = w(e3) = 2.
Let us denote this problem instance bykct_simple_inst, and let us consider the problem
of solving the 2-cardinality tree problem inkct_simple_inst. An ACO algorithm using
the above described solution construction mechanism can produce six different sequences
of solution components that map to valid solutions. All six possible solution constructions
are shown in form of a search tree in Fig.2, where sequencess1 ands2 correspond to the
solution(1,1,0,0), that is,(X1 = 1, X2 = 1, X3 = 0, X4 = 0), s3 ands4 correspond to
the solution(0,1,1,0), ands5 ands6 map to the solution(0,0,1,1). The objective function
values aref (s1) = f (s2) = f (s5) = f (s6) = 3 andf (s3) = f (s4) = 4. This means
thats1, s2, s5, ands6 are optimal solutions to this problem instance, whereass3 ands4 are
sub-optimal solutions.

The results of applying the modelM(KCT,AS, na = ∞) to kct_simple_inst are graph-
ically shown in Fig. 3. The expected iteration qualityWF continuously decreases over time.
At first sight, this is a surprising result, as we would expect the exact opposite from an
ACO algorithm. However, this behavior can be easily explained by taking a closer look at
the search tree that is shown in Fig. 2. In the first construction step, there are four differ-
ent possibilities to extend the empty partial solution. The four solution components that
can be added arec1e1

, c1e2
, c1e3

, andc1e4
. However, solution componentsc1e1

and c1e4
in ex-

pectation only receive update from two solutions (i.e., sequencess1 ands2 in case ofc1e1
,

respectively sequencess5 ands6 in case ofc1e4
), whereas solution componentsc1e2

andc1e3
in expectation receive update from four solutions (i.e., sequencessi , wherei ∈ {1, . . . ,4},
in case ofc1e2

, respectively sequencessi , wherei ∈ {3, . . . ,6}, in case ofc1e3
). This means

that for many initial settings of the pheromone values (e.g., when the initial pheromone
values are set to the same positive constantc > 0) T 1

e2
and T 1

e3
receive in expectation
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Fig. 3. The evolution of the expected iteration qualityWF of the modelM(KCT,AS, na = ∞) applied to
problem instancekct_simple_inst for different settings of the evaporation parameter�. All the pheromone values
were initialized to 0.5. The plots show that the expected iteration quality continuously decreases. Moreover, for
increasing� the impact of the pheromone value update increases and the expected iteration quality decreases
faster. Figure from[3]. © Akademische Verlagsgesellschaft Aka GmbH.

more updates thanT 1
e1

and T 1
e4

just because the number of solutions that contribute to
their updates is higher. Therefore, over time the probability of constructing the sub-optimal
solutionss3 ands4 increases, whereas the probability of constructing the optimal solutions
si , wherei ∈ {1,2,5,6}, decreases. This means that the expected iteration quality decreases
over time.

The behavior of the real AS algorithm was compared to the behavior of its model by
applying AS to the same problem instancekct_simple_inst. Fig. 4 shows the evolution
of the empirically obtained average quality of the solutions per iteration for two different
evaporation rate values. The results show that when� is small the empirical behavior of
the algorithm approximates quite well the behavior of its model. However, the stochastic
error makes the real AS algorithm, after approximately 1000 iterations, decide for one of
the two optimal solutions, which results in a turn from decreasing average iteration quality
to increasing average iteration quality.

The bias that is introduced by the fact that some solution components receive in expecta-
tion updates from more solutions than others results from an unfair competition between the
solution components. In contrast, a fair competition can be defined as follows (see also [7]):

Definition 2. Given a modelP of a CO problem, we call the combination of an ACO
algorithm and a problem instanceP of P a competition-balanced system(CBS), if the
following holds: given a feasible partial solutionsp and the set of solution components
N(sp) that can be added to extendsp, each solution componentc ∈ N(sp) is a component
of the same number of feasible solutions (in terms of sequences built by the algorithm) as



M. Dorigo, C. Blum / Theoretical Computer Science 344 (2005) 243–278 269

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

0 500 1000 1500  2000

av
er

ag
e 

ite
ra

tio
n 

qu
al

ity

av
er

ag
e 

ite
ra

tio
n 

qu
al

ity

iteration
0 500 1000 1500  2000

iteration

AS

AS

(a) (b)

Fig. 4. (a) Instancekct_simple_inst, na = 10,� = 0.01; (b) instancekct_simple_inst, na = 10,� = 0.05. The
plots show the evolution of the average iteration quality obtained by the AS algorithm applied to problem instance
kct_simple_inst for na = 10 (i.e., 10 ants per iteration) and two different settings of the evaporation parameter
� (� ∈ {0.01,0.05}). All the pheromone values were initialized to 0.5. The results are averaged over 100 runs
(error bars show the standard deviation and are plotted every 50-th iteration). Figure from[3]. © Akademische
Verlagsgesellschaft Aka GmbH.

any other solution componentc′ ∈ N(sp), c �= c′. 18 In this context, we call the competition
between the solution components afair competitionif the combination of an ACO algorithm
and a problem instance is a CBS.

The application to the small KCT example instance has shown that ACO algorithms
applied to the KCT problem when modeled as shown above are—in general—not CBSs.
The question is now if we can expect an algorithmnot to suffer from a negative search bias
in case an algorithm/problem instance combination is a CBS. In [7], the authors started to
investigate this question by studying the application of ACO algorithms to the asymmetric
traveling salesman problem (ATSP). The results of applying the modelM(ATSP,AS, na =
∞) to randomly generated ATSP instances suggest that the expected iteration quality is
continuously non-decreasing. However, in general this question is still open.

Open problem 3. Is the property of being a competition-balanced system sufficient to
ensure the absence of any negative search bias? In this context, it would be interesting to
see if the result that is stated in Theorem6 can be extended to the modelM(∗, AS, na =
∞) applied to problems for which the combination of AS and the problem is a competition-
balanced system; as, for example, AS applied to the ATSP.

Finally, we note that a (temporary) decrease in expected iteration quality is not necessarily
an indicator for the existence of a negative search bias. In other words, the evolution of
the expected iteration quality is not a reliable indicator for negative search bias. As an
example, let us consider the application of the modelM(U, IB, na = ∞) to a very simple
unconstrained maximization problem consisting of two binary variablesX1 andX2. This

18 Note that there exist ACO algorithms in which partial solutions are extended by “groups’’ of solution com-
ponents. In these cases the definition of a CBS has to be adapted accordingly.
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Fig. 5. The evolution of the expected iteration qualityWF of the modelM(U, IB, na = ∞) applied an uncon-
strained problem instance with two variables (see text for details).

problem has 4 solutions:s1 = 〈c01, c02〉, s2 = 〈c11, c02〉, s3 = 〈c01, c12〉, ands4 = 〈c11, c12〉.
Let us assign the following objective function values:f (s1) = 2, f (s2) = f (s3) = 1,
andf (s4) = 3. Note that, as we are maximizing, we chooseF(·) = f (·). Any ACO
algorithm using the solution construction process for unconstrained problems as outlined
at the beginning of this section is a CBS. Let us assume that at the start of the algorithm the
pheromone values are initialized so thatp(X1 = 1) = p(X2 = 1) = �, with � a positive
number close to zero. With this setting, the probability to construct any of the four solutions
is greater than zero. Therefore, as modelM(U, IB, na = ∞) considers an infinite number
of ants per iteration, for sure at each iteration solutions4 will be the iteration-best solution,
and will therefore be used for updating the pheromone values. The graphic in Fig.5 shows
the evolution of the expected quality of the solutions generated byM(U, IB, na = ∞)

starting from a setting such that� = 0.01. During the first approximately 200 iterations,
the expected quality decreases. For a sufficiently large population size, this result will be
approximated by the IB algorithm. Clearly, in this case, the decrease of expected iteration
quality is not due to a negative bias. This leads to another open question:

Open problem 4. Can it be shown that the modelsM(U, IB, na = ∞) and/orM(U,BS,
na = ∞) have stable attractors that correspond to solutions to the problems?

5.2. Search bias caused by selection fix-points

Merkle and Middendorf[48–50] studied the dynamics of models of ACO algorithms. One
of the questions they tackled concerns the source of the driving force of the algorithm. Often
ACO practitioners ask themselves: Why to use more than one ant per iteration? Wouldn’t
the algorithm work with only one ant? The work presented in [49] gives a theory-based
answer to this question. Let us in the following consider the AS algorithm implemented in
the HCF for the application to unconstrained problems; and let us consider the use of one
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ant per iteration. The expected pheromone update of the algorithms’ model, that is, model
M(U,AS-HCF, na = 1), 19 is given by

�ji (t + 1) = (1 − �) · �ji (t) + � · ∑
{s∈S|cji ∈s}

p(s | T ). (41)

However, it holds that
∑

{s∈S|cji ∈s} p(s | T ) = p(cji | T ) (because the tackled problem

is unconstrained). Moreover, it holds thatp(cji | T ) = �ji (t), because the algorithm is
implemented in the HCF. Therefore, Eq. (41) can be rewritten as

�ji (t + 1) = (1 − �) · �ji (t) + � · �ji (t), (42)

and therefore it holds that�ji (t+1) = �ji (t). This means that the expected pheromone update
does not change the pheromone values, which shows that—without the competition among
the ants—in ACO algorithm models applied to unconstrained problems, when considering
either the AS or the IB updates in the HCF, there is no driving force of the algorithm. This
suggests that (i) the competition between the ants is a driving force of ACO algorithms,
and that (ii) for the above mentioned type of ACO algorithm models, no negative search
bias exists. In the following, we show how this result relates to ACO algorithms that are not
implemented in the HCF.

Let us indicate by
j
i the amount of update that a pheromone value�ji receives. Then,

we can express a general pheromone update rule by

�ji (t + 1) = (1 − �) · �ji (t) + � · 
j
i . (43)

In case of modelM(U,AS, na = 1), it holds that


j
i = p(cji | T ) = �ji (t)

/|Di |∑
k=1

�ki (t) , (44)

which in general is not equal to�ji (t). Therefore, in case the algorithm is not implemented in

the HCF, Eq. (43) makes the pheromone values move towards a situation in which�ji (t) =

j
i . Such situations were labeled by Merkle and Middendorfselection fix-pointsin [49],

where they showed the relevance of theselection fix-point biascaused by the selection
fix-points of ACO algorithms applied to constrained problems.

In particular, the above mentioned work focused on the behavioral study of models
M(PP, IB-HCF, na < ∞) when applied to the following type of permutation problems
(PP): A problem instanceP consists of a set ofn itemsI = {1, . . . , n} and ann × n cost
matrixC = [ci,j ]i,j=1,...,n with integer entries (costs)ci,j �0. The set of solutionsS to the
problem consists of all possible permutations of then items. Given such a permutation�,
its objective function valuef (�) is given by

∑n
i=1 ci,�(i). The problem consists in finding

a permutation� ∈ S with minimal objective function value. Given a problem instanceP,

19 Note that withna = 1 modelsM(U,AS-HCF, na = 1) andM(U, IB-HCF, na = 1) are equivalent.
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one can produce “restricted’’ permutation problem instances of different sizes. Given, for
example, a problem instancePwith cost matrix

C =

 0 1 2

1 0 1
2 1 0


 , (45)

a problem instanceP 2 with the following cost matrix can be produced:

C2 =




0 1 2 ∞ ∞ ∞
1 0 1 ∞ ∞ ∞
2 1 0 ∞ ∞ ∞
∞ ∞ ∞ 0 1 2
∞ ∞ ∞ 1 0 1
∞ ∞ ∞ 2 1 0



. (46)

In a similar way, bigger problem instances (i.e.,P k, k > 2) can be produced from the
elementary subproblemP. The objective function value for a solution� for a restricted
problem instanceP k becomes

∑k−1
j=0

∑n
i=1 cjk+i,�(jk+i) (where thec-entries are from the

matrixCk). These restricted permutation problems simulate real world problems that consist
of subproblems more or less independent of each other. The CO problem model that was
used to tackle these problems with an ACO algorithm is the following: Given a restricted
permutation problem instanceP k, to each positionr = 1, . . . , knof a permutation to be built
is assigned a decision variableXr . The domainDr for a variableXr contains all elements
l ∈ I k = {1, . . . , kn} with cr,l �= ∞ (which means that we do not allow position/item
combinations with infinite cost). Again, we introduce for each variable/value combination
(Xr, l ∈ Dr) a solution componentclr , which has associated a pheromone trail parameter
T l
r . All the pheromone values are initially set to 1/n. The solution construction works as

follows: We start from an empty partial solutionsp0 = 〈〉. SetIp, which is the set of already
placed items, is set to the empty set at the start of solution construction. Then, at each steph
we assign to each decision variable (in the orderr = 1, . . . , kn) a value by selecting one of
the solution componentsclr fromN(s

p
h) = {cqr | q ∈ Dr \ Ip}. The transition probabilities

are at each construction step defined by Eq. (1) (see Section 2.1), with� = 1 and� = 0.
We have seen above that, when ACO algorithms that are implemented in the HCF are

applied to unconstrained problems, every setting of the pheromone values (given that they
are probabilities) is a selection fix-point. However, what are the selection fix-points of, for
example, a constrained problem such as the elementary subproblem of sizen = 3 with the
cost matrix shown in Eq. (45)? If we depict the vector of pheromone values in matrix form
(i.e., in the same form as cost matrixC) we get




�1
1 �2

1 �3
1 = 1 − �1

1 − �2
1

�1
2 �2

2 �3
2 = 1 − �1

2 − �2
2

�1
3 = 1 − �1

1 − �1
2 �2

3 = 1 − �2
1 − �2

2 �3
3 = �1

1 + �2
1 + �1

2 + �2
2 − 1


 . (47)
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It is easy to verify that with the initial setting of the pheromone values to 1/n, the equations
in this matrix hold. Furthermore, the pheromone update in the HCF preserves this property.
Therefore, we only have to care about the four pheromone values�1

1,�2
1,�1

2, and�2
2. Assuming

one ant per iteration, it is clear that for the pheromone values�1
1 and�2

1 it holds that
1
1 = �1

1
and
2

1 = �2
1, respectively. This is because the choice of an item for the first position of the

permutation to be built does not depend on any other decision. This shows that the crucial
pheromone values are�1

2 and�2
2. The
-values for these pheromone values are:


1
2 = �2

1�
1
2

1 − �2
2

+ (1 − �1
1 − �2

1)�
1
2

�1
2 + �2

2

, (48)


2
2 = �1

1�
2
2

1 − �1
2

+ (1 − �1
1 − �2

1)�
2
2

�1
2 + �2

2

. (49)

As shown in[49], there are four solutions to the equations
1
2 − �1

2 = 0 and
2
2 − �2

2 = 0.

Depending on the exact setting of the pheromone values�1
1, �2

1, and�3
1, exactly one of these

solutions is a stable selection fix-point.20 Fig. 6 shows examples of selection fix-points of
different pheromone value settings.

The interesting question is, if and how these selection fix-points will influence the search
process when more than one ant per iteration is used, that is, under competition conditions.
Merkle and Middendorf applied the modelM(PP,HCF-IB, na = 2), for example, to the re-
stricted permutation problemP 64, whereP is the elementary subproblem discussed above.
Observing the evolution of(�1

2, �
2
2, �

3
2) and (�1

3, �
2
3, �

3
3) one can notice a clear bias intro-

duced by the selection fix-points (which are changing, with changing pheromone values).
This is shown in Fig. 7. Merkle and Middendorf observed that the influence of the selec-
tion fix-points—when the model is still far from convergence—increases with increasing
problem size. This is due to the fact that with increasing problem size the influence of the
competition between the ants on one elementary subproblem decreases, and the model ap-
proaches the behavior of the model which only uses one ant. Summarizing, we can conclude
that—even if an algorithm/instance combination is a CBS (see Definition 2)—when applied
to constrained problems the search process is influenced by a bias towards the selection
fix-points.

Recently, Merkle and Middendorf [50] extended their work by introducing a pheromone
update which they callthe competition controlled pheromone update.This update is based
on the observation that the decisions of an ant (during solution construction) do not all have
the same importance. They introduced a measure, based on the Kullback–Leibler divergence
[45], in order to determine this importance. Based on this measure, solution components
that were chosen in decisions with higher importance receive proportionally more update
than other solution components. The usefulness of this update, that was shown for an ACO
model, has still to be tested in an implemented algorithm.

20 Note that the stability of a selection fix-point can be determined by analyzing the eigenvalues of the Jacobian
matrix of the vector function[f1, f2] = [
1

2 − �1
2,


2
2 − �2

2].
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SPs

(0,1,0)

(1,0,0) (0,0,1)

stable
unstable down

unstable left
unstable right

4

6 3

5 2
1

2

3

6
4

5

5

3 6

4

4

3

2

6

1,5

2

1,2

1
1

3,4 6

5

Fig. 6. The graphic shows the stable as well as the three unstable selection fix-points (SPs) (given by(�1
2, �

2
2, �

3
2))

for six different settings of the first row(�1
1, �

2
1, �

3
1). All SPs and pheromone settings (which are triples of points)

are shown in the following form: The first coordinate is the distance from the line between(0,1,0) and(0,0,1).
The second coordinate is the distance from the line between(1,0,0) and(0,0,1), and the third coordinate is the
distance from the line between(0,1,0) and(1,0,0). The inner triangle contains the triples with all coordinates
� 1

2. When all the coordinates are�0, the corresponding point appears inside the big triangle. If not, the point
is placed outside, as it happens for some of the unstable fix-points. Numbers denote the corresponding SPs and
pheromone settings. The authors would like to express their thanks to Daniel Merkle and Martin Middendorf for
providing this graphic which appeared in[49]. © MIT Press.

Open problem 5. How does selection fix-point bias relate to the bias introduced by the
fact that an algorithm/instance combination is not a competition-balanced system? Is, in
such a case, also the selection bias a negative force? Can something be said about the
nature of the selection fix-points for certain types of optimization problems?

Open problem 6. The development of new algorithmic components for ACO based on
theoretical foundation(in the same spirit as the competition controlled pheromone update
introduced in[50]) is an interesting research direction. The extraction of guidelines con-
cerning the choice of ACO algorithmic components as a function of the characteristics of
the considered CO problem could improve the applicability of ACO algorithms in practice.
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2nd row
(0,1,0) (0,1,0)

(1,0,0) (0,0,1) (1,0,0) (0,0,1)

fixed points
3rd row

fixed points

(a) (b)

Fig. 7. (a) Evolution of(�1
2, �

2
2, �

3
2) (i.e., the 2nd row); (b) evolution of(�1

3, �
2
3, �

3
3) (i.e., the 3rd row). The

graphics show the evolution of the pheromone values(�1
2, �

2
2, �

3
2) starting from(0.6,0.1,0.3) (in (a)), respectively

(�1
3, �

2
3, �

3
3) starting from(0.3,0.6,0.1) (in (b)), of the modelM(PP,HCF-IB, na = 2)applied to problem instance

P 64. The pheromone values as well as the corresponding fix-points are shown at iterations 0, 10, 20, 50, 100,
200, 500, and 1000. The authors would like to express their thanks to Daniel Merkle and Martin Middendorf for
providing these two graphics which appeared in[49]. © MIT Press.

6. Conclusions

In this paper we have over-viewed some recent efforts to develop a theory of ant colony
optimization. After giving a brief introduction to the algorithms and problems considered in
the overview, we have discussed convergence, presented connections between ACO algo-
rithms and the stochastic gradient ascent and cross-entropy methods within the framework
of model-based search, and finally discussed the influence of search bias on the working of
ACO algorithms. For each of these different research directions we explicitly listed those
that are, in our opinion, some of the most interesting open problem. As the ACO research
field is currently flourishing, we expect to see many of these problems solved in the near
future.

As a final comment, we note that ACO research is not only about theory. On the contrary,
most of the field is concerned with experimental work. To the reader that, after learning
the theoretical underpinnings of ACO as presented in this paper, becomes interested in the
more practical aspects of the development of ACO algorithms, we suggest the recent book
by Dorigo and Stützle[24]. This book describes in detail all the different types of ACO
algorithms proposed in the literature, suggests how to apply them to different classes of
combinatorial optimization problems and provides hints on how to efficiently implement
them. Source code for ACO algorithms treated in the book is available for download in the
software section of the ACO web-page (http://www.aco-metaheuristic.org ).
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