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Abstract 

Learning plays a vital role in the development of autonomous agents. In this paper, we 
explore the use of reinforcement learning to "shape" a robot to perform a predefined 
target behavior. We connect both simulated and real robots to ALECSYS, a parallel 
implementation of a learning classifier system with an extended genetic algorithm. After  
classifying different kinds of Animat-like behaviors, we explore the effects on learning of 
different types of agent's architecture and training strategies. We show that the best results 
are achieved when both the agent's architecture and the training strategy match the 
structure of the behavior pattern to be learned. We report the results of a number of 
experiments carried out both in simulated and in real environments, and show that the 
results of simulations carry smoothly to physical robots. While most of our experiments 
deal with simple reactive behavior, in one of them we demonstrate the use of a simple and 
general memory mechanism. As a whole, our experimental activity demonstrates that 
classifier systems with genetic algorithms can be practically employed to develop autonom- 
ous agents. 

I, Introduction 

This  p a p e r  is a b o u t  l ea rn ing ,  in two d i f fe ren t  senses.  It is a b o u t  an a u t o m a t i c  
l e a r n i n g  sys tem used  to d e v e l o p  beha v io r a l  p a t t e r n s  in an a u t o n o m o u s  agen t ,  a 
s imp le  m o u s e - l i k e  r o b o t  tha t  we call  the  A u t o n o M o u s e .  M o r e o v e r ,  it is a b o u t  
w h a t  we l e a r n e d  on des igning  and  t ra in ing  a u t o n o m o u s  agents  to act in the  wor ld .  
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Broadly speaking, our work situates itself in the recent line of research which 
concentrates on the realization of artificial agents strongly coupled with the 
physical world, and usually dubbed embedded or situated agents. Paradigmatic 
examples of this trend are the works by Agre and Chapman [1], Kaelbling [27], 
Brooks [10, 12], Kaelbling and Rosenschein [30], Whitehead and Ballard [51], and 
others. While there are important differences among the various approaches, 
some common points seem to be well established. A first, fundamental require- 
ment is that agents must be grounded, in that they must be able to carry on their 
activity in the real world and in real time. Another important point is that 
adaptive behavior cannot be considered as a product of an agent considered in 
isolation from the world, but can only emerge from a strong coupling of the agent 
and its environment. 

There are basically two ways to obtain such a coupling. The first way relies on 
smart design: the designer analyzes the dynamics of the complex system made up 
by the agent and the environment, so that such dynamics can be exploited to 
produce the desired interactions. This approach has been pioneered by 
Rosenschein and Kaelbling [41]. 

The second approach relies on automatic learning to dynamically develop an 
autonomous agent through interaction with the world. The idea is that the 
interactions between an agent and its environment soon become very complex, 
and their analysis is likely to be a hard task. Moreover, the classical design 
method based on the factorization of a complex system into a network of modular 
subsystems is likely to constrain the space of possible designs in such a way that 
many interesting, nonmodular solutions will be excluded (Beer [5]). 

The approach we advocate is intermediate. First, we design the learning system 
architecture in such a way as to favor learning basing our design choices on a 
detailed analysis of the task and of the interactions between the agent and the 
world; in this phase smart design will exploit the environment's characteristics in 
order to make learning possible. 

Second, we use learning as a means to translate suggestions coming from an 
external trainer into an effective control strategy that allows the agent to achieve 
a goal; this kind of reinforcement learning scheme has been applied to real robots 
by Mahadevan and Connell [36] and by us. We call this approach shaping, as 
opposed to the more classical reinforcement learning approach, in which an 
organism increasingly adapts to its environment by directly experiencing the 
effects of its activity (see for example Barto, Bradke and Singh [3], and 
Whitehead and Lin [52]). 

The problem we face is therefore to find a right balance between design, 
learning and training, that is between the knowledge we craft into the agent and 
the knowledge the agent is to find out by interacting with the environment under 
the guidance of the trainer. To solve this problem we rely heavily on experimenta- 
tion, in that different design choices and different training and learning strategies 
must be compared through experimental activity, with both simulated agents and 
real robots. A number of experiments are discussed in this paper, which is 
organized as follows. In Section 2 we describe the agents, environments and 
behavioral patterns we have used in our experiments. Section 3 summarizes the 
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reinforcement learning technique we have used and illustrates ALECSYS, the 
software tool we have developed to implement learning agents. Section 4 provides 
a characterization of those features of the environment that allow a trainer to 
steer our agents toward the desired patterns of interaction. In Section 5 we discuss 
different kinds of architecture and learning strategies that can be used to 
implement the agent's behavior. Sections 6 and 7 present some experiments 
carried out by simulation and in the real world. In Section 8 we survey related 
work. Finally, in Section 9 we draw some conclusions and suggest directions for 
further research. 

2. The AutonoMouse  and its world 

Behavior is a product of the interaction between an agent and its environment. 
The universe of possible behavioral patterns is therefore determined by the 
structure and the dynamics of both the agent and the environment, and by the 
interface between the two (the sensors and the effectors). In this section, we 
describe the agents, the environments and the behavioral patterns we have chosen 
to carry out our experiments. 

2.1. The agent's anatomy 

Our artificial agent, the AutonoMouse, is a small moving robot. So far, we 
have experimented with two versions of it, called AutonoMouse II and Au- 
tonoMouse IV, respectively described in Figs. 1 and 2. Pictures of AutonoMouse 
II and of AutonoMouse IV are presented in Figs. 3(a) and 3(b), respectively. 

left wheel and motor 
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- 
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Fig. 1. Description of AutonoMouse II. 
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Fig. 2. Description of AutonoMouse IV. 

AutonoMouse  II  has four directional eyes and two motors.  Each directional eye 
can sense a light source within a cone of about  60 degrees. Each motor  can stay 
still or  move  the connected wheel one or two steps forwards, or one step 
backwards.  Au tonoMouse  II is connected to a t ransputer  board on a PC via a 
9600-baud RS-232 link. Only a small amount  of processing is done on-board (i .e. ,  
the collection of data f rom sensors and to actuators and the management  of 
communicat ions  with the PC). Learning algorithms run on the t ransputer  board.  

Au tonoMouse  IV has two directional eyes, a sonar, front and side whiskers, 
and two motors.  Each directional eye can sense a light source within a cone of 
about  180 degrees. The two eyes together cover a 270 degrees zone, with an 
overlapping of 90 degrees in front of the robot.  The sonar is highly directional and 
can sense an object  as far as 10 meters.  For the purposes of the experiment  
presented in Section 7, the output of  the sonar can assume two values, either 
I_sense an object ,  or I do not_sense an object.  Each motor  can stay still or 
move  the connected track one or two steps forwards, or one step backwards.  
Au tonoMouse  IV is linked to a t ransputer  board on a PC via a 4800-baud 
infra-red link. 

The  simulated AutonoMice  are basically the models of their physical counter- 
parts.  

2.2. The agent's "mind" 

The AutonoMouse  is connected to ALECSYS (A LEearning Classifier SYStem), a 
classifier system with a genetic algorithm implemented  on a network of transpu- 
ters (Dor igo and Sirtori [23]). We chose to work with learning classifier systems 
because they seem particularly fit to implement  simple reactive interactions in an 
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(a) 

(b) 

Fig. 3. (a) AutonoMousc II's portrait. (b) AutonoMousc IV's portrait. 
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efficient way; still, their use leaves open the possibility to study, in future 
extensions of our work, issues arising from delayed reinforcement. 

2.3. The environment 

We would like our environment to be inhabited by such things as preys, sexual 
partners, predators, etc. More modestly, the AutonoMouse is presently able to 
deal reasonably well with much poorer entities, like slowly moving lights, steady 
obstacles, and sounds. Of course, we could fantasize freely in simulations, by 
introducing virtual sensors able to detect the desired entities, but then results 
would not carry to real experimentation; so, we prefer to adapt our goals to the 
actual capacities of the agent. 

2.4. Behavior 

A first, rough classification allows one to distinguish between Stimulus-Re- 
sponse (S-R) behavior, that is reactive responses connecting sensors to effectors 
in a direct way, and dynamic behavior, requiring some kind of internal state to 
mediate between input and output. Although in some experiments we have built 
rudimentary kinds of dynamic behavior, so far we have been mainly working with 
S-R responses. 

In our work we have been influenced by the Animat problem (Wilson [54]), 
that is the issue of realizing an artificial system able to adapt and survive in a 
natural environment. This means that we are interested in behavioral patterns 
that are the artificial counterparts of basic natural responses, like feeding and 
fleeing from predators. Our experiments are therefore to be seen as possible 
solutions to fragments of the Animat problem. 

We believe that experiments on autonomous agents must be carried out in the 
real world to be truly significant. However, such experiments are in general costly 
and time-consuming. It is therefore advisable to preselect a small number of 
potentially relevant experiments to be performed in the real world. To carry out 
the selection we use a simulated environment, which allows us to have accurate 
expectations on the behavior of the real agent and to prune the set of possible 
experiments. 

One of the hypotheses we want to explore is that relatively complex behavioral 
patterns can be built bottom-up from a set of simple responses. This hypothesis 
has already been put to test in robotics, for example by Arkin [2] with his 
Autonomous Robot Architecture that integrates different kinds of information 
(perceptual data, behavioral schemes and world knowledge) in order to get a 
robot to act in a complex natural environment. Arkin's robot generates complex 
responses, like walking through a doorway, as a combination of competing 
simpler responses, like moving ahead and avoiding a static obstacle (the wall, in 
the doorway example). The key point is that complex behavior can demonstrably 
emerge from the simultaneous production of simpler responses. We have consid- 
ered five kinds of basic responses: 



M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 327 

• The approaching behavior, that is getting closer to an almost still object with 
given features; in the natural world, this response is a fundamental com- 
ponent of feeding and sexual behavior. 

• The chasing behavior, that is following and trying to catch a moving object 
with given features; as the preceding approaching behavior, this response is 
important for feeding and reproduction. 

• The mimetic behavior, that is entering a well-defined physical state which is a 
function of a feature of the environment; this is inspired by the natural 
behavior of a chameleon, changing its color according to the color of the 
environment. 

• The avoidance behavior, that is avoiding physical contact with an object of a 
given kind; this can be seen as the artificial counterpart of a behavioral 
pattern which allows an organism to avoid hurting objects. 

• The fleeing behavior, that is moving as far as possible from an object with 
given features; the object can be viewed as a predator. 

More complex behavioral patterns can be built from these simple responses in 
many different ways. So far, we have studied the following building mechanisms: 

• Independent sum: two or more independent responses are produced at the 
same time; for example, an agent may assume a mimetic color while chasing 
a prey. 

• Combination: two or more homogeneous responses are combined into a 
resulting behavior; consider the movement of an agent following a prey and 
trying to avoid an obstacle at the same time. 

• Suppression: a response suppresses a competing one; for example, the agent 
may give up chasing a prey in order to flee from a predator. 

• Sequence: a behavioral pattern is built as a sequence of simpler responses; 
for example, fetching an object involves reaching the object, grasping it, and 
coming back. 

In general, more than one mechanism can be at work at the same time: for 
example, an agent could try to avoid still hurting objects while chasing a moving 
prey and being ready to flee if a predator is perceived. 

2.5. The trainer 

Training an agent means making its behavior converge to a predefined target 
behavior. While this is the case for any learning scheme allowing for supervised 
learning, the way in which trainers can exert their role varies from scheme to 
scheme. For example, most learning schemes used with neural networks require 
comparing the network's actual response with the "correct" response, as pre- 
defined by the trainer. This scheme is not fit for training a real robot, though, 
because the correct behavior cannot easily be presented for a comparison. 
Instead, we have adopted a reinforcement scheme, that is a learning mechanism 
able to accept from the trainer a positive or negative reinforcement as a 
consequence of a response. 

In the literature, the term "reinforcement learning" mostly refers to un- 
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supervised learning contexts: an agent interacts with its environment in a 
completely unsupervised setting, and receives a reward only when it achieves a 
final goal. This setting closely resembles a natural situation, in which an organism 
is only occasionally rewarded by its environment. It seems to us, however, that 
this kind of unsupervised learning alone is not suitable to develop effective 
robots. In fact, unsupervised learning provides little useful information to the 
agent, and this results into very slow learning rates. Contrary to many natural 
situations, in artificial settings we can have trainers at our disposal, and there is no 
reason not to exploit their knowledge to achieve faster learning. 

Training an artificial robot closely resembles what experimental psychologists 
do in their laboratories, when they train an experimental subject to produce a 
predefined response. To stress this similarity, we have borrowed the term shaping 
from experimental psychology (this term dates back at least to Skinner [44], and 
has already been used in machine learning by Singh [43]). It turns out that our 
trainer is similar to what Whitehead [49, 50] calls external critic. A similar method 
has already been proved to be effective by Mahadevan and Connell [36]. 

A shaping setting includes an agent, an environment, and a trainer. In 
principle, the trainer could be a human being observing the agent's interaction 
with the environment, and issuing reinforcements consequently; for efficiency 
reasons, however, reinforcements are provided automatically by a reinforcement 
program (RP). 

The role of the RP in shaping the robot's behavior is critical, in that it embodies 
the trainer's characterization of the target behavior. If we compare robot shaping 
with traditional task-level robot programming, the RP can be viewed as a sort of 
source code which has to be translated into the robot's control program. The 
learning mechanism plays the role of a situated translator--that is, a translator 
which is sensitive to the actual interaction between the agent and the world. And 
it is precisely through the world sensitivity of learning that a proper degree of 
flexibility can be achieved. 

3. The learning system 

Here we briefly illustrate some characteristics of ALECSYS, a parallel learning 
classifier system allowing for the implementation of hierarchies of classifier 
systems, which can be exploited to build modular agents. 

ALECSYS introduces some major improvements in the standard model of 
learning classifier systems (CSs) (Booker, Goldberg and Holland [8]). First, 
ALECSYS permits to distribute a CS on any number of transputers [19, 20, 23]. 
Second, it gives the learning system designer the possibility to use many 
concurrent CSs, each one specialized in learning a specific behavioral pattern. 
Using this feature the system designer can use a divide-and-conquer approach: the 
overall learning task is decomposed in several learning subtasks (easier and 
quicker to learn), which are coordinated by coordination modules which are 
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themselves learning subtasks. 1 Our agents are therefore not completely built 
through learning; they also have a certain amount of " innate"  architecture. 
(Innate architecture is created by the way in which the global system is built from 
interconnected classifier subsystems.) Third, ALECSYS introduces a set of new 
operators that overcome some of the problems and inefficiencies of previous CS 
implementations. This last point will not be considered here; details about the 
algorithms can be found in [21]. In our experiments we used an enhanced version 
of the basic algorithm presented in the next subsection. 

3.1. The learning classifier system paradigm 

As the model proposed by Booker et al. [8], our learning classifier systems are 
composed of three main components (see Fig. 4). 

• The performance module, which is a kind of parallel production system, 
implementing a behavioral pattern as a set of condition-action rules, or 
classifiers. Our classifiers have two conditions and one action. Conditions and 
actions are strings of fixed length k; symbols in the condition string belong to 
(0, 1, # ) ,  symbols in the action string belong to {0, 1}. 

• The credit apportionment module, which is responsible for the redistribution 
of incoming reinforcements to classifiers. Basically, the algorithm is an 
extended version of the bucket brigade described by Dorigo [21]. 

• The rule discovery module, which creates new classifiers according to an 
extended genetic algorithm [21]. 

Learning takes place at two distinct levels. First, the apportionment of credit 
can be viewed as a way of learning from experience the adaptive value of a 
number of given classifiers with respect to a predefined target behavior. Second, 
the rule discovery mechanism allows the agent to explore the value of new 
classifiers. 

In CSs the bucket brigade algorithm solves both the structural and temporal 
credit assignment problems (see, for example, [46]). Every classifier maintains a 
value, called strength, that is modified by the bucket brigade in an attempt to 
redistribute rewards to classifiers that are useful and punishments to those that are 
useless (or harmful). Strength is used to assess the degree of usefulness of 
classifiers; classifiers that have all conditions satisfied are fired with a probability 
that is a function of their strength. The genetic algorithm explores the classifiers 
space recombining useful classifiers to produce possibly better offspring. Offspring 
are then evaluated by the bucket brigade. 

An example can help to understand how the CS model works (see Fig. 4). 
Consider AutonoMouse II (Figs. 1 and 3(a)) and the learning task approaching a 

1 This technique is somewhat reminiscent of the approach taken by Mahadevan and Connell [36]. The 
main difference is that we not only learn basic behaviors, but we also learn how to make them interact 
(i.e., their coordination); in the work of Mahadevan and Connell, coordination is achieved by a 
hardwired subsumption architecture. Another difference is that we use learning classifier systems 
instead of Q-learning with statistical clustering. 
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l ight  source .  The learning system is initialized by a set of randomly generated 
classifiers, each with the same strength. The CS receives four-bit input messages, 
identifying the light position (see below and Fig. 5 for details), which are 
appended to the message list, a data structure which is initially empty. Messages 
in the message list are then matched against conditions of classifiers; matching 
classifiers are activated for inclusion in the next stage. The auction module 
chooses probabilistically within the set of activated classifiers those which are 
allowed to append a message to the message list. (A classifier has a probability to 
win the auction proportional to its strength.) Some of the messages appended can 
be sent to effectors: they are proposing actions (e.g., robot moves). If the 
proposed actions are not conflicting, then the actions are carried out. Otherwise a 
conflict resolution mechanism is called. The conflict resolution mechanism could, 
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for example, choose one of the conflicting actions probabilistically, with a 
probability proportional to the strength of the classifier that proposed the action. 
This action is rewarded (or punished) by the trainer. 

As the classifier set is randomly generated, with high probability it does not 
contain all the rules necessary to accomplish satisfactorily the task. It is the duty 
of the genetic algorithm to recombine classifiers and to substitute low strength 
ones with new ones. The genetic algorithm (Holland [25]) will not be discussed 
here as it is a well-established algorithm. 

3.2. Basic and coordination behaviors in ALECSYS 

With ALECSYS it is possible to define two classes of learning modules; we call 
them basic behaviors and coordination behaviors. Both are implemented as 
classifier systems. 

Basic behaviors are directly interfaced with the environment. Each basic 
behavior receives bit-strings as input from sensors and sends bit-strings to 
actuators to propose actions. Basic behaviors inserted in a hierarchical architec- 
ture occupy level 1; they send bit-strings to connected higher-level coordination 
modules. Consider for example AutonoMouse II and the basic behavioral pattern 
Chase. As all behaviors (both basic and coordination ones), it is implemented as a 
CS. For ease of reference we call this classifier system CS-Chase. Fig. 5 shows the 
input-output  interface of CS-Chase. In this case the input pattern only says which 
sensors see the predator. (AutonoMouse II has four binary sensors, see Figs. 1 
and 3(a), which are set to 1 if light intensity is higher than a given threshold, to 0 
otherwise.) The output pattern is composed of a proposed action, a direction o f  
motion plus a move~do_not_move command, and of a bit-string (in this case of 
length 1) for the coordinator; this bit-string is there to let the coordinator know 
that CS-Chase was proposing an action. Note that the value of this bit-string is not 
designed, but must also be learned by CS-Chase. 

Coordination behaviors receive input from lower-level behavioral modules and 

position of chased 
object 

11ooi111 
~j ~ to the 

~ - ~  ~ '  coordinator 
direction x move / 
of motion do_not_move 

input pattern 

I CS-C" se I 

11oo1111 
output pattern 

z) b) c) 
Fig. 5. (a) Example of input message. (b) Example of output message. (c) Example of input-output 
interface for the CS-Chase behavior. 
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Fig. 6. Example of innate architecture for a three-behavior learning task. 

produce an output action that, with different modalities depending on the 
composition rule used, influences the degree of application of actions proposed by 
basic behaviors. Fig. 6 shows one possible innate architecture of an agent that has 
the following learning task (which we call the Chase/Feed/Flee behavior): 

If there is a predator 
then Flee 
else if hungry 

then Feed (i.e., search for food} 
else Chase the moving object. 

In our simulated environment predators appear at random time intervals; the 
agent becomes hungry whenever it sees a food source; the moving object is always 
present (this means that at least one basic behavioral module is always active). 

In this example, a basic behavior has been designed for each of the three 
behavioral patterns used to describe the learning task. In order to coordinate 
basic behaviors in situations in which two or more of them propose actions 
simultaneously, a coordination module is used. It receives a bit-string from each 
connected basic behavior (in this case a one-bit string, the bit indicating whether 
the sending CS wants to do something or not) and proposes a coordination action. 
This coordination action goes into the composition rule module, which imple- 
ments the composition mechanism. In this example the composition rule used is 
suppression, and therefore only one of the basic actions proposed is applied. 

4. Interdependence between the environment, the learning agent, and the 
trainer 

Our scenario includes an environment, a learning agent, and a trainer in charge 
of shaping agent-environment interactions. Even if our agents and environments 
are very simple, to characterize their interactions is by no means trivial. First, the 
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agent's architecture is not given a priori, but is at least partially designed in order 
to fit a given situation. Also the environment is not completely "natural", in that 
it contains artificial objects that can be exploited in order to make the intended 
interactions possible. Moreover, there are many different ways in which one may 
attempt to shape the agent's behavior. 

In general, we start with some intuitive idea of a target behavior in mind. We 
consider whether the natural characteristics of the environment are likely to suit 
such behavior, or whether we need to enrich the environment with appropriate 
artificial objects, like moving lights and special surfaces. Then we design a 
sensorimotor interface and an internal architecture that allows the agent to gather 
enough information from the environment, and to act back on the environment so 
that the desired interaction can emerge. Finally, we ask ourselves what shaping 
policy (i.e., strategy in providing reinforcements) can actually steer the agent 
toward the target behavior. This process is iterative, in that difficulties in finding, 
say, an appropriate shaping policy may compel us to backtrack and modify 
previous design decisions. 

In the following, we discuss the relevant aspects of all entities involved in 
making a pattern of interaction emerge. 

4.1. Properties of actions 

Consider the five basic responses introduced in Section 2. Four of them are 
objectual, in that they involve the agent's relationship with an external object; 
these responses are the approaching, chasing, avoidance, and fleeing behaviors. 
One response, namely the mimetic behavior, is not objectual, in that it involves 
only states of the agent's body. 

Objectual responses are: 
• type-sensitive, in that agent-object interactions are sensitive to the type to 

which the object belongs (prey, obstacle, predator, etc.); 
• location-sensitive, in that agent-object interactions are sensitive to the 

relative location of the object with respect to the agent. 
Type-sensitivity is interesting because it allows for fairly complex patterns of 

interaction, which are however within the capacity of an S -R  agent. In fact, it 
requires only that the agent be able to discriminate some object feature 
characteristic of the type. Clearly, the types of objects an S -R  agent can tell apart 
depend on the physical interactions between external objects and the agent's 
sensory apparatus. Note that an S -R  agent is not able to identify an object, which 
means discerning two identical but distinct objects of the same type. 

The interactions we consider do not depend on the absolute location of the 
objects and of the agent; in fact, they depend only on the relative angular 
position, and sometimes on the relative distance, of the object with respect to the 
agent. Again, this requirement is within the capacities of an S -R  agent. 

It is important to note that an agent's behavior can only be understood in 
relation with the environment. For example, the difference between the avoid- 
ance behavior and the fleeing behavior cannot be understood by considering the 
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agent in isolation from its environment. In both behaviors, the agent's task is just 
to increase the distance between itself and some external object. However, 
external observers understand the agent to avoid obstacles (i.e., still or at most 
"blindly" moving objects), while they understand it to flee from predators (i.e., 
objects that may actively try to chase it). 

In the context of shaping, differences that appear to an external observer can 
be relevant even if they are not perceived by the agent. The reason is that trainers 
will in general base their reinforcing activity on an observation of the agent's 
interaction with the environment, and not on the agent's internal states alone. 
Clearly, from the point of view of the agent a single move of the avoidance or of 
the fleeing behavior are exactly the same. However, in complex behavior 
patterns, avoidance and fleeing relate differently to other behaviors. In general, 
avoidance should modulate some other movement response; on the contrary, 
fleeing will be more successful if it suppresses all competing responses. As we 
shall see in the following sections, this fact influences both the architectural design 
and the shaping policy for the agent. 

4.2. Properties of the environment 

For learning to be successful, the environment must have a number of 
properties. Given the kind of agent we have in mind, the interaction of a physical 
object with the agent depends only on the object's type and on its relative 
position with respect to the agent. Therefore, sufficient information about object 
types and relative positions must be available to the agent. This problem can be 
solved in two ways: either the natural objects existing in the environment have 
sufficient distinctive features that allow them to be identified and located by the 
agent, or else artificial objects must be designed so that they can be identified and 
located. For example, if we want the agent to approach light L 1 and avoid light 
L 2, the two lights must be of different color, or have a different polarization 
plane, to be distinguished by appropriate sensors. In any case, recognition will be 
possible only if the rest of the environment cooperates. For example, if light 
sensing is involved, environmental lighting must be almost constant during the 
agent's life. 

In order for a suitable response to depend on an object's position, objects must 
be still, or move slowly enough with respect to the agent's speed (this aspect will 
be further discussed below). This does not mean that a sufficiently smart agent 
could not evolve a successful interaction pattern with very fast objects: however, 
such a pattern could not depend on the instantaneous relative position of the 
object, but would involve some kind of extrapolation of the object's trajectory, 
which is beyond the present capacities of the AutonoMice. 

4.3. Properties of the learning system 

The learning system we use is based on the metaphor of biological evolution. 
This raises the question of whether evolution theory provides the right technical 
language to characterize the learning process. 



M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 335 

We think we should resist this temptation. There are various reasons why the 
language of evolution cannot literally apply to our agents. First, we use an 
evolutionary mechanism to implement individual learning rather than philogenetic 
evolution. Second, the distinction between phenotype and genotype, which is 
essential in evolution theory, in our case is rather confused; in fact, individual 
rules within a CS play both the role of a single chromosome and of the phenotype 
undergoing natural selection. In our experiments, we found that we tend to 
consider the learning system as a black box, able to produce S -R  associations and 
categorizations of stimuli into relevant equivalence classes. More precisely, we 
expect the learning system: 

• to discover useful associations between sensory input and responses; 
• to categorize input stimuli so that precisely those categories will emerge, 

which are relevantly associated to responses. 
Given these assumptions, the sole preoccupation of the designer is that the 
interactions between the agent and the environment can produce enough relevant 
information for the target behavior to emerge. As it will appear from the 
experiments reported in the following sections, this concern influences the design 
of artificial environment objects and of the agent's sensory interface. 

4.4. The trainer as an agent 

In principle, the trainer is an agent, with own sensors, effectors and control. 
Sensors allow the trainer to observe the behavior of the robot to be shaped, 
effectors are used to provide reinforcements, and the control system implements a 
given shaping policy. Note that the trainer's environment includes both the 
robot's environment and the robot itself. 

As we have already said, in the experiments reported in this paper the role of 
the trainer is played by the reinforcement program (RP). For the implementation 
of the RP, the only nontrivial function is the observation of the agent's behavior. 
In fact, previous research in robot shaping has solved this problem by identifying 
the RP's sensors with the agent's sensors, that is by providing the trainer exactly 
with the same input information that is fed to the robot (see [36]). This approach 
has some shortcomings. First, it does not allow the trainer to gather more 
information about the environment than the agent does, which seems to be an 
unnecessary limitation. Second, and more important, it binds the shaping policy 
to depend on low-level details of the agent's physical structure. As a consequence, 
the RP will in general be as complex as a program directly implementing the 
target behavior, and this greatly limits the effectiveness of learning as an 
alternative to robot programming; moreover, any low-level change to the agent's 
physical architecture makes it necessary to write a new RP. 

In our opinion, RPs should be easier to write than control programs, and 
should be portable from agent to agent, at least when the differences are not too 
large. To achieve this result, an RP must be abstract enough and independent of 
the agent's internal structure. Often, this involves providing the RP with own 
sensors, able to extract information from the environment independently of the 
agent. 
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To give a concrete example, in the experiments with AutonoMouse II (see 
Section 7), the robot used only binary information from its four directional eyes, 
while the RP used the two central eyes (Fig. 1) placed on the robot to evaluate 
the increase or decrease of light intensity, which is related to the distance from 
the light source. In other words, the robot carried the trainer's sensors on board. 
In the experiment with AutonoMouse IV (also reported in Section 7) we have 
followed a different strategy: the same hardware devices are used both as the 
sensors of the agent and as the sensors of the RP; however, while the eight-bit 
output of such devices is used directly by the RP, it is transformed into simpler 
on/off  signals before being input to the robot. In this way, the agent receives 
enough information to implement the target behavior, but its learning speed 
profits from the reduction of the search space size. 

As a consequence of these design decisions, the very same RP can be used to 
shape a variety of different agents, provided their sensory apparatus is fine 
enough to support the relevant discriminations in the given environment. The 
conceptual analysis of the target behavior necessary for writing the RP can be 
highly independent of the agent to be shaped, thus making the RP portable from 
agent to agent. This is coherent with our claim that reinforcement learning can be 
seen as a kind of situated translation of a high level specification of the target 
behavior (see end of Section 2). The learning mechanism, regarded as a 
translator, is machine-independent in that it need not embed a model of the device 
for which the control program is produced. And trainers, regarded as robot 
programmers, can concentrate on their own view of the interaction, neglecting the 
agent's architecture as far as the agent is sufficiently powerful to discriminate 
relevant world states. 

4.5. Beyond reactive behavior 

In one of our experiments, we tried to go beyond simple S-R behavior. As 
remarked by Beer [5], this implies that the agent is endowed with some form of 
internal state (which need not be regarded as a "representation" of anything). 
The most obvious candidate for an internal state is a memory of the agent's past 
(Whitehead and Lin [52]). Of course, the designer has to decide what has to be 
remembered, how to remember it, and for how long. Such decisions cannot be 
taken without a prior understanding of relevant properties of the environment. 

In an experiment reported in Section 6, we added a memory of the past state of 
the agent's sensors, allowing the learning system to exploit regularities of the 
environment. The idea is that if physical objects are still or move slowly with 
respect to the agent, their current position is strongly correlated with their 
previous position. Therefore, how an object was sensed in the past is relevant to 
the actions to be performed now, even if the object is not currently perceived. 

In fact, suppose that at cycle N the agent senses a light in the leftmost area of its 
visual field, and that at cycle N + 1 the light is no longer sensed. This piece of 
information is useful to approach the light, because at cycle N + 1 the light is 
likely to be out of the agent's visual field on its left. The experiments showed that 
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a memory of past perceptions initially makes the learning process harder, but 
eventually increases the performance of the approaching behavior. 

By running a number of such experiments, we confirmed an obvious expecta- 
tion, namely that the memory of past perceptions is useful only if the relationship 
between the agent and its environment changes slowly enough to preserve a high 
correlation between subsequent states. In other words, agents with memory are 
favored only in predictable environments. 

4.6. Learning versus design 

As we have already remarked, successful learning presupposes a careful design 
of the agent's interface, and possibly of artificial world objects. A further design 
issue regards the controller's architecture, that is the overall structure of the 
system in charge of producing actual behavior. This issue is particularly relevant 
when the target behavior is not a basic response, but a complex behavior pattern. 

In principle, also complex behavior patterns, like the ones presented in Section 
2, can be learned by a single classifier system. However, learning might be very 
slow, because more complex behaviors correspond to larger search spaces for 
both credit apportionment and rule discovery. It is therefore interesting to see 
whether a search space can be factored into a number of smaller spaces. This 
question brings in the issue of architecture: intuitively, when a complex behavior 
pattern can be decomposed into simpler elements, some kind of hierarchical 
architecture is expected to speed up learning as a result of narrowing search. In 
fact, the use of a prewired architecture is also suggested by results obtained by 
other researchers in the field of autonomous systems (e.g., [35, 36]). 

As we shall see in Sections 6 and 7, the experiments carried out to sys- 
tematically compare different types of architectures confirm this expectation. 
Different kinds of complex behavior do profit from different types of architec- 
tures; at the same time, each type of architecture constrains the shaping 
procedure, that is the strategy adopted to drive learning. These issues are dealt 
with in the next section. 

5. Types of architectures and shaping policies 

In ALECSYS, an agent can be implemented by a network of different CSs. The 
issue of architecture is therefore the problem of designing the network that best 
fits some predefined class of behaviors. So far, we have experimented with 
different types of architectures, that can be broadly classified in two classes: 

• monoli thic  architectures, built by one CS directly connected to the agent's 
sensors; 

• distributed architectures, built by many CSs; in this case we distinguish 
between two subclasses: 
- f lat architectures, built by more than one CS, in which all CSs are at "level 

1", i.e. directly connected to the agent's sensors; 



338 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 

(~) (b) 
Fig. 7. Monolithic architectures. 

- hierarchical architectures, built by a hierarchy of levels. 
Within such classes, there are still a number of possible choices, described below. 

5.1. Monolithic architectures 

The simplest choice is, of course, the monolithic architecture, with only one CS 
in charge of controlling the whole behavior 2 (Fig. 7). If the target behavior is 
made up of several basic responses, there is a further choice to be made: the state 
of all sensors can be wrapped up in a single message (Fig. 7(a)), or distributed 
into a set of independent messages (Fig. 7(b)). We call the latter case monolithic 
architecture with distributed input. The idea is that inputs relevant to different 
responses can go into distinct messages; in such a way, input messages are 
shorter, and the overall learning effort can be reduced (see Section 6.3.2). 

5.2. Flat architectures 

A distributed architecture is made up of more than one CS. If all CSs are 
directly connected to the agent's sensors, then we use the term flat architecture 
(Fig. 8). The idea is that distinct CSs implement the different basic responses that 
make up a complex behavior pattern. There is a further issue, here, regarding the 
way in which the agent's response is built up from the moves proposed by the 
distinct CSs. If such moves are independent, they can be realized by different 
effectors at the same time (Fig. 8(a)); those moves that are not independent, 
however, have to be integrated into a single response before they are realized 
(Fig. 8(b)). 

I environment ] 

(a) (b) 
Fig. 8. Flat architectures. 

2 Mahadevan and Connell [36] first proposed the term monolithic architecture for this kind of structure. 
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5.3. Hierarchical architectures 

In a fiat architecture, all CSs receive input only from the sensors. In a 
hierarchical architecture, the set of all CSs can be partitioned into a number of 
levels. By definition, a CS belongs to level N if it receives input from systems of 
level N -  1 at most, where level 0 is defined as the level of sensors. An N-level 
hierarchical architecture is a hierarchy of CSs having level N as the highest one; 
Fig. 9 shows two different two-level hierarchical architectures. First-level CSs 
implement basic behaviors described in Section 3, higher-level CSs implement 
coordination behaviors. 

With a CS in a hierarchical architecture we have two problems; first, how to 
receive input from a lower-level CS; second, what to do with the output. 
Receiving input from a lower-level CS is easy: remember that all messages are 
bit-strings of some fixed length; therefore, an output message produced by CS 1 
can be treated as an input message by a different CS 2. In a sense, lower-level CSs 
are viewed by higher-level ones as virtual sensors. 

The problem of deciding what to do with the output of CSs is more complex. In 
general, the output messages from the lower levels go to higher-level CSs, while 
the output messages from the higher levels can go directly to the effectors to 
produce the response (Fig. 9(a)), or be used to control the composition of 
responses proposed by lower CSs (Fig. 9(b)). In this paper, most of the 
experiments were carried out using suppression as composition rule; we dub the 
resulting hierarchical systems switch architectures. In Fig. 10 we show an example 
of a three-level switch architecture implementing an agent which should learn the 
Chase/Feed/Flee behavior introduced in Section 3. In this example the coor- 
dinator of level two (SWl) should learn to suppress the Chase behavior whenever 
the Feed behavior proposes an action, while the coordinator of level three (SW2) 
should learn to suppress SW1 whenever the Flee behavior proposes an action. 

5.4. How to design an architecture: qualitative criteria 

The most general criterion for choosing an architecture is to make the 
architecture naturally match the structure of the target behavior. This means that 

4 

Z 
(a) (b) 

Fig. 9. Two-level hierarchical architectures. 
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Fig. 10. An example of a three-level switch architecture for the Chase/Feed/Escape behavior. 
Besides the three basic behaviors can be seen the two switches, SWl and SW2. 

each basic response should be assigned a CS, and that such CSs should be 
connected in the most natural way to obtain the global behavior. 

Suppose the agent should normally follow a light, while being ready to reach its 
nest if a specific noise is sensed (revealing the presence of a predator). This 
behavior pattern is made up of two basic responses, namely following a light and 
reaching the nest, and the relationship between the two is one of suppression (see 
Section 2). In such a case, the switch architecture is a natural choice. 

In general, the four mechanisms for building complex behaviors defined in 
Section 2 map onto different types of architecture in the following way: 

• Independent sum: flat architecture with independent outputs (Fig. 8(a)). 
• Combination: flat architecture with integrated outputs (Fig. 8(b)), or 

hierarchical architecture. 
• Suppression: switch architecture (remember that the switch architecture is a 

special kind of hierarchical architecture). 
• Sequence (not treated in this paper; see [16]): hierarchical architecture. 

5.5. How to design an architecture: quantitative criteria 

In Section 4 we stressed that the main reason for introducing architecture is 
speeding up learning of complex behavior patterns. Clearly, speed-up is the result 
of factoring a large search space into smaller ones; therefore, a distributed 
architecture will be useful only if the component CSs have smaller search spaces 
than a single CS able to perform the same task. 

We can turn this consideration into a quantitative criterion, by observing that 
the size of a search space grows exponentially with the length of messages. This 
implies that a hierarchical architecture can be useful only if the lower-level CSs 
realize some kind of informational abstraction, thus transforming the input 
messages into shorter ones; an example of this is provided by the experiment on 
the two-level switch architecture in Section 6. Consider for example an architec- 
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ture in which a basic behavioral module receives from its sensors four-bit 
messages saying where the light is. If this basic behavioral module sends to the 
upper level four-bit messages indicating the proposed direction of motion, then 
the upper level could have used the sensorial information directly, by-passing the 
basic module. In fact, even if this basic behavioral module learns the correct 
input-output mapping, it does not operate any information abstraction and, as it 
sends to the upper level the same number of bits it receives from it sensors, it 
makes the hierarchy computationally useless. 

5.6. Shaping policies 

The use of a distributed system, either fiat or hierarchical, brings in the new 
problem of deciding a shaping policy, that is the order in which the various tasks 
are to be learned. There are two extreme choices: 

• holistic shaping: the whole network of CSs is treated as a single system, with 
all components being trained together; 

• modular shaping: each component is trained separately. 
Intermediate choices are possible. 

In principle, training different CSs separately makes learning easier; however, 
the shaping policy must be designed in a sensible way. Hierarchical architectures 
are particularly sensitive to the shaping policy; indeed, it seems reasonable that 
the coordination modules be shaped after the lower modules have learnt to 
produce the simple behaviors. The experiments on two-level and three-level 
switch architectures (Section 6) show that in fact good results are obtained by: 
shaping the lower CSs, then "freezing" them and shaping the coordinators, and 
finally letting all components free to go on learning together. 

6. Experiments in simulated worlds 

In this and in the next section we present some results obtained with simulated 
and real agents. The desire to give an answer to the following questions has 
guided the choice of which experiments to discuss: 

• Architecture: does decomposition in subtasks help the learning process? 
• Shaping policy: how must shaping be structured? Can basic behaviors and 

coordination of behaviors be learned at the same time, or is it better to split 
the learning process into several distinct phases? 

• Architecture~shaping: is there any relation between the agent's architecture 
and the shaping policy to be used? 

• Architecture~learning: can an inappropriate architecture impede learning? 
• Architecture's scalability: can the different architectural approaches we used 

in the first experiments be composed themselves to build more complex 
hierarchical structures? 

• Memory: how can the agent solve problems that require it to remember what 
happened in the past? 



342 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370 

• Simulation~real world: are there major differences between the real and 
simulated worlds? 

Some other important questions, like the learning of basic behaviors, were 
discussed in a previous paper [22]. 

This section is organized as follows. First, we explain our experimental 
methodology. Second, we illustrate the simulated environments we used to carry 
out our experiments. Third, we report experiments that try to answer the first 
four questions (about architecture, shaping and learning). Fourth we show the 
result of a first experiment about the scalability of our approach: a two-level 
switch architecture whose basic behavioral modules are monolithic architectures 
with distributed input. Fifth, we illustrate the results of the "find hidden object" 
experiment in the simulated world. This experiment has also been run with the 
physical robot (see Section 7). Last, we report some experiments about memory 
management. Real-world experiments will be discussed in the next section. 

6.1. Experimental methodology 

Experiments in the simulated worlds were run at least until there was some 
evidence that the performance was unlikely to improve further; this evidence was 
collected automatically by a steady-state-monitor routine, checking whether in the 
last k cycles the performance had significantly changed. In experiments involving 
multi-phase shaping strategies, a new phase was started when the steady-state- 
monitor routine signaled that learning had reached a steady state. In the real 
world, experiments were run until either the goal was achieved or the experimen- 
ter was convinced that the robot was not going to achieve the goal (at least in a 
reasonable time). Simulation experiments were repeated several times (typically 
five), and we report the graphs of typical results. In fact, the use of the 
steady-state-monitor routine made it difficult to show averaged graphs, as new 
phases started at different cycles in different experiments. Nevertheless, all the 
graphs obtained were very similar, which makes us confident that the typical 
result we present is a good approximation of the average behavior of our learning 
system. Experiments with the real robots were repeated only occasionally, as they 
are highly time-consuming. Also in this case, the experiments which were 
repeated showed that the differences between different runs were marginal. 

In all the experiments in simulated worlds, we used the quantity 

P Number of correct responses 
= ~<1 Total number of responses 

as performance measure. That is, performance was measured as the ratio of 
correct moves to total moves performed from the beginning of the simulation. 
Note that the notion of "correct" response is implicit in the RP: a response is 
correct if and only if it receives a positive reward. Therefore, we call the above 
defined ratio the cumulative performance measure induced by the RP. 

We usually plot the performance of the basic behaviors, of the coordination 
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behaviors (when applicable) and of the global system. For basic and coordination 
behaviors only the moves in which they were active are considered; instead, the 
global performance is computed as the ratio of globally correct moves to total 
moves from the beginning of the simulation, where at every cycle a globally 
correct move is a move correct with respect to the current goal (we call cycle the 
interval between two sensors readings). So, for example, if after ten cycles the 
Chase behavior has been active for 6 cycles proposing a correct move 4 times, and 
the Flee behavior has been active for 4 cycles proposing a correct move 3 times, 
then the Chase behavior performance is 4/6, the Flee behavior performance 3/4, 
and the global performance (4 + 3)/(6 + 4) = 7/10. 

6.2. Simulation environments 

From Section 5 it is clear that, in order to test all the proposed architectures, 
we need many different simulated worlds. As we need a basic task for each basic 
behavior, in designing the experimental environments we were guided, besides 
the desire of investigating pieces of the Animat problem, by the necessity of 
building environments in which basic tasks, and their coordination, could be 
learned by the tested agent architecture. We used the following environments. 

• Chase an object environment (single-behavior environment, with and with- 
out memory); 

• Chameleon~Chase environment (two-behavior environment); 
• Chase ~Feed~ Flee environment (three-behavior environment); 
• Find_hidden object environment (two-behavior environment). 

In the Chase an object environment (see Fig. ll(a)), the task is to learn to 
follow a moving object. This environment was studied primarily to test the 
learning classifier system capabilities and as a test-bed to propose improvements 
in the CS model. These aspects and results have been presented and discussed for 
example in [19, 21, 23]. Here it is sufficient to say that the analysis of this and 
related tasks led to the introduction of some new operators that improved the 
learning performance, and that the resulting system was powerful enough to allow 
the real-time learning of simple behaviors like light approaching (see the 
experiments with the AutonoMouse in Section 7). Moreover, we have used this 
environment to test whether the addition of sensor memory could improve the 
performance of the agent. As we show at the end of this section, the results are 
promising. 

The Chameleon/Chase environment was introduced to study the composition 
of two independent behaviors. In this environment the agent learns to follow a 
light source and to change its color according to the background color (see Fig. 
l l(b)) .  Results obtained in this environment were quite satisfactory (see [19]); 
using the flat architecture (Fig. 8(a)) the agent was able to learn to follow the light 
source and to change its color correctly. (After 80,000 iterations, in one typical 
experiment the average performance in the last 1,000 iterations was: 0.97 for the 
Chase behavior, 0.95 for the Chameleon behavior, and 0.92 for the global system. 
These results may give the impression that the learning algorithm is rather slow. 
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Fig. 11. Simulated environment setup: (a) Chase an object environment. (b) Chameleon/Chase 
environment; the environment was partitioned into eight sectors of four different colors. (c) Chase/ 
Feed/Escape environment. (d) Findhidden_object environment: the agent does not see the light 
when it is in the shaded area. 

On the contrary,  a very good performance,  higher than 0.8, was obtained after 
7,000 iterations.) Details about these experiments will not be further discussed in 
this paper. 

In the Chase /Feed /F lee  environment,  already partially introduced in Section 3, 
there are three objects: a light, a food source and a predator.  Basically, the robot 
is predisposed to follow the moving light source. When its distance from the food 
source is less than a threshold, then the robot feels hungry and thus focuses on 
feeding. When a predator  appears, then the main goal is to run away from the 
predator .  The maximum speed of the robot is the same as the speed of the light 
source and of the predator.  The light source and the food are always present (but 
the food can be seen only when closer than a threshold). The predator appears at 
random time intervals, remains in the environment for a random number  of 
cycles, and then disappears. The environment dimensions are 640 x 480 pixels and 
the food distance threshold was set to 45 pixels (a robot 's  step was set to 3 pixels). 
In Fig. l l (c)  a snapshot of the environment is shown. 

In the Find_hidden_object  environment the agent's goal, as in the Chase an 
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object  environment,  is to follow a moving light source. The task is complicated by 
the presence of a wall. Whenever  it is interposed between the light and the agent 
(see Fig. l l ( d ) ) ,  the agent cannot see the light any longer, and must activate a 
new behavioral pattern,  namely a Search for object behavior. 

6.3. The issues o f  architecture, shaping and learning 

Our  experiments show that a factorization of the learning task into several 
simpler learning tasks helps. This is obvious, though it is still interesting to see to 
what extent  cooperat ion among the modules comprising the learning system can 
itself be learned. As discussed in Section 5, two architectural decisions must be 
taken by the system designer: how to decompose the learning problem, and how 
to make the resulting modules interact. The first issue is a matter  of efficiency: a 
basic behavior should not be too difficult to learn. In our system, this means that 
classifiers should be no longer than about 30 bits (and therefore messages cannot 
be longer than 10 bits). The second issue is both a matter  of efficiency, 
comprehensibili ty,  and learnability. We feel, though this was not proved ex- 
perimentally because we did not reach the complexity required by such an 
experiment ,  that a coordination module is constrained by the same limitations in 
complexity as basic modules. The longer the message 3 received, the longer the 
t ime required to learn. Comprehensibility means that by examination of the 
architecture a human observer should be able to understand why certain 
connections occur. Learnability refers to the fact, already discussed in Section 5, 
that not every architecture allows the system to learn any behavior. 

6.3.1. Monolithic architecture 
The  monolithic architecture is the most straightforward way to apply CSs to our  

learning problem; just have a single CS learn the whole thing. With this approach 
the machinery provided by ALECSYS is redundant.  Results obtained with the 
monolithic architecture will therefore be used as a reference to evaluate whether  
by decomposing the overall task into simpler subtasks, and /o r  by using a 
hierarchical architecture, we obtain improved performance.  In an attempt to be 
fair in comparing the different approaches, we adopted the same number  of 
transputers in every experiment.  4 

Fig. 12 shows the typical result for the Chase /Feed /F lee  environment.  An 
important  observation is that the performance of the Flee behavior is higher than 
the performance of the Chase behavior,  which in turn is higher than that of the 
Feed behavior.  This result holds for all the experiments with all the architectures. 

3 The length of a message received by a coordination module is proportional to the number of 
lower-level modules coordinated and to the quantity of information each lower level sends to it. 
4 For a given number of processors, the system performance is dependent on the way the physical 
processors are interconnected, that is on the hardware architecture. The hardware architecture we use 
was chosen after a careful experimental investigation presented elsewhere (see Piroddi and Rusconi 
[39], and Camilli, Meglio, Baiardi, Vanneschi, Montanari and Serra [13]). 
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Fig. 12. Cumulative performance of the typical experiment with the monolithic architecture. 

The  reason is two-fold. The Flee behavior is easier to learn because our agent 
must learn to choose the fleeing movement  among 5 out of 8 possible directions, 
while the correct directions to Chase an object are, for our agent, 3 out of 8 (see 
Fig. 13). 

The lower performance of the Feed behavior is explained by the fact that, in 
our  experiments,  the agent could see the object to be chased and the predator  
from any distance, while the food could be seen only when closer than a given 
threshold. This caused a much lower frequency of activation of Feed, that 
resulted in a slower learning rate for that behavior. 

Lig ~ h t  Light approaching 
Predator direct ions 

Predator escaping 
direct ions 

Fig. 13. Difference between approaching and escaping behaviors. 
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Another observation is that, after an initial very quick improvement of 
performance, both basic and global performances set to an approximately 
constant value, far from optimality. In a typical experiment, the global per- 
formance after 80,000 cycles reached the value 0.72 and did not change any more 
(we ran the experiment up to 300,000 cycles without observing any improvement). 
In fact, as classifiers are 51 bits long, the search space, i.e., the cardinality of the 
set of possible different classifiers, in this architecture has dimension 3 34. 217 . The 
genetic algorithm, together with the apportionment of credit system, appears 
unable to search such a huge space in a reasonable time. 

6.3.2. Monolithic architecture with distributed input 
With this architecture environmental messages are shorter (5 bits long) than in 

the previous case, and we expect therefore a better performance. More than one 
message can be appended to the message list at each cycle (maximum three 
messages, one for each basic behavior). 

The results, shown in Fig. 14, appeared to confirm our expectations: global 
performance settled to 0.86 after 80,000 cycles and both the Chase and Flee 
behaviors reached higher performance levels than with the previous monolithic 
architecture. Only the Feed behavior did not improve its performance. This was 
partially due to the early stop of the experiment. In fact, in longer experiments, in 
which it could be tested adequately, the Feed behavior reached a higher level of 
performance, comparable with that of the Chase behavior. It is also interesting to 
note that the graph qualitatively differs from that of Fig. 12; after the initial steep 
increase, performance slowly continues to improve, suggesting that the learning 
algorithms are effectively searching the classifiers space. 
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6.3.3. Two-level switch architecture 
In this experiment we used a two-level switch architecture, in which the 

coordination behavior implemented suppression. The results, reported in Figs. 15 
and 16, give the following interesting information. First, as shown in Fig. 15 
where we report the performance of the three basic behaviors and of the 
coordinator (switch) in the first 50,000 cycles and the global performance from 
cycle 50,000 to the end of the experiment, the use of the holistic shaping policy 
results in a final performance that is comparable to that obtained with the 
monolithic architecture. This is probably due to the fact that with holistic shaping 
rewards obtained by each individual CS are very noisy. In fact, with this shaping 
policy we give each CS composing the agent the same reward, computed 
observing the global behavior. This means that there are occasions in which a 
double mistake results in a correct, and therefore rewarded, final action. Consider 
for example the situation in which Flee is active and proposes a (wrong) move 
towards the predator, but the coordinator fails to choose the Flee module and 
chooses instead the Chase module, which in turn proposes a move away from the 
chased object (wrong move), say in the direction opposite to that of the predator. 
The result is a correct move (away from the predator) obtained by the composi- 
tion of a wrong selection of the coordinator with a wrong proposed move of two 
basic behaviors. It is easy to understand that it is difficult to learn good strategies 
with such a reinforcement program. 

Second, using the modular shaping policy, performance improves, as expected. 
The graph of Fig. 16 shows three different phases. In the first one, during the first 
33,000 cycles, the three basic behaviors were independently learned. Between 
cycles 33,000 and 48,000 they were "frozen", i.e., learning algorithms were 
deactivated, and only the coordinator was learning. After cycle 48,000 all the 
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Fig. 16. Cumulative performance of the typical experiment with the two-level switch architecture. 
Modular shaping. 

components are free to learn, and we observe the global performance. The 
maximum global performance value obtained with this architecture was 0.84. 

As a help to the reader, we summarize in Table 1 the results about monolithic 
and two-level architectures already presented in Figs. 12, 14, 15 and 16. A 
problem in filling this table was that the experiments were not run using the same 
number of iterations. This, as already said, is due to the steady-state-monitor 
routine, which automatically decided when to shift to a new phase of the 
experiment or when to stop it. Still, the first four experiments are comparable, as 
they all run for about 80,000 iterations. Table 1 shows that, from the global 
behavior point of view, the best results were obtained by the monolithic 
architecture with d i s t r i b u t e d  i n p u t  and by the two-level switch architecture with 

Table 1 
A comparison of monolithic and two-level hierarchical architectures. Performance is measured as the 
cumulative ratio of the number of correct moves to the total number of responses produced. As 
experiments were run with different total numbers of iterations, the number of iterations used to 
compute the performance is shown in parentheses under the performance value 

Architecture Chase Feed Escape Switch I Global 

Monolithic 0.71 0.56 0.75 - -  0.72 
(80O0O) (80000) (80000) - -  (800O0) 

Monolithic with 0.86 0.56 0.92 - -  0.85 
distributed input (80000) (80000) (80000) - -  (80000) 

Two-level switch 0.73 0.56 0.93 0.54 0.66 
Holistic shaping (50000) (50000) (50000) (50000) (85000) 

Two-level switch 0.93 0.92 0.98 0.84 0.82 
Modular shaping (33000) (33000) (33000) (15000) (85000) 
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modular shaping. The performance of the basic behaviors in the second was 
always better. In particular the Feed behavior achieved a much higher per- 
formance level; in fact, using the two-level switch architecture with modular 
shaping, each basic behavior is fully tested independently of the others, and 
therefore the Feed behavior has enough time to learn its task. It is also interesting 
to note that the monolithic architecture and the two-level switch architecture with 
holistic shaping have roughly the same performance. 

6.3.4. Three-level switch architecture 
The three-level switch architecture (see Fig. 10) stretches to the limit the 

hierarchical approach (a three-behavior task architecture with more than three 
levels seems in fact to be senseless). Within this architecture the coordinator used 
in the previous architecture was split into two simpler, binary, coordinators. 
Using holistic shaping, results suggest that the two- and the three-level architec- 
tures are equivalent (see Figs. 15 and 17, and Table 2). More interesting are the 
results obtained with modular shaping. As we have three levels, we can organize 
modular shaping in two or three phases. With two-phase modular shaping 
basically we follow the same procedure as used with the two-level hierarchical 
architecture; in the second phase basic behavioral modules are frozen and the two 
coordinators learn at the same time. In three-phase modular shaping, the second 
phase is devoted to shape the second-level coordinator (all the other modules are 
frozen), while in the third phase the third-level coordinator alone learns. 
Somewhat surprisingly, the results show that, given the same amount of resources 
(computation time in seconds), two-phase modular shaping gave slightly better 
results. The reason probably stems from the fact that, while with two-phase 
modular shaping both coordination behaviors are learning for the whole learning 

Performance 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

#a, ,  

e 

1 0 20 30 40 50 60 70 80 

I 
Number of cycles 

(thousands) 

90 100 110 120 

. . . . . . . . . . .  Chase 

. . . . . . .  Feed 

- -  Escape 

Switch 1 

. . . . . . . . .  Switch 2 

- -  Global 

Fig. 17. Cumulat ive  performance of the typical experiment  with the three-level switch architecture. 
Holist ic  shaping using the architecture of Fig. 10. 



M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 351 

Table 2 
A comparison of two- and three-level hierarchical architectures. Performance is measured as the 
cumulative ratio of the number of correct moves to the total number of responses produced. As 
experiments were run with different total numbers of iterations, the number of iterations used to 
compute the performance is shown in parentheses under the performance value 

Architecture Chase Feed Escape Switch 1 Switch 2 Global 

Two-level switch 0.73 0.56 0.93 0.54 - -  0.66 
Holistic shaping (50000) (50000) (50000) (50000) (85000) 

Two-level switch 0.93 0.92 0.98 0.84 - -  0.82 
Modular shaping (33000) (33000) (33000) (15000) (85000) 

Three-level switch 0.66 0.61 0.92 0.53 0.47 0.70 
Holistic shaping (90000) (90000) (90000) (90000) (90000) (120000) 

Three-level switch 0.94 0.92 0.98 0.97 0.86 0.99 
Two-phase modular (33000) (33000) (33000) (56000) (56000) (120000) 

shaping 

Three-level switch 0.93 0.93 0.98 0.80 0.80 0.95 
Three-phase modular (33000) (33000) (33000) (10000) (10000) (120000) 

shaping 

interval, with three-phase modular shaping the learning interval is split into two 
parts during which only one of the two coordinators is learning, and therefore the 
two switches cannot adapt to each other. The graph of Fig. 18 shows the very high 
performance level obtained in this way. 

For the reader's convenience, we compare in a table the results obtained with 
the two- and three-level switch architectures. Table 2 reports the performance of 
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basic behaviors, of switches, and of the global behavior, as measured after k 
iterations, where k is the number in parentheses below each performance value. 

We have run an experiment with the Chase/Feed/Flee behavior using the 
three-level switch architecture of Fig. 19 to show that the choice of an agent 
architecture which does not correspond naturally to the structure of the target 
behavior leads to poor performance. This architecture differs from the architec- 
ture of Fig. 10 because it was designed so that the distribution of tasks between 
SWl and SW2 should impede learning. In fact, as SW2 does not know whether 
SW1 is proposing a Chase or a Flee action, it cannot decide (and therefore learn) 
whether to suppress SW1 or the Feed behavioral module. 

Results are shown in Figs. 20 and 21. As in the preceding experiment, 
two-phase shaping gave better results than three-phase. It is clear from Fig. 21 
that the low level of global performance achieved was due to the impossibility for 
SW2 to learn to coordinate the SWl and the Feed modules. 

6.4. The issue of  scalability 

The experiment presented in this section regards the composition of the 
monolithic architecture with multiple inputs with the two-level hierarchical 
architecture. We used a Chase/Feed/Flee environment with four instances of each 
class of objects (lights, food, predators). Only one instance in each class was 
relevant for the learning agent (i.e., the agent likes only one of the four light 
colors and one of the four kinds of food, and fears only one of the four potential 
predators). Therefore, basic behaviors, in addition to the basic behavioral 
pattern, had to learn also to discriminate between different objects of the same 
class. For example, the Flee behavior, instead of receiving a single message 
indicating the position of the predator (when present), now receives messages 
regarding many different "animals", only one of which is a real predator. 

enviro  en  ] 
Fig. 19. A three-level switch architecture with a wrong disposition of coordination modules. 
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Different "animals" are distinguished by a tag, and Flee must learn to run away 
only from the real predator (it should be unresponsive to other animals). The 
experiments have shown (see Fig. 22) that the agent learns the new, more 
complex, task, although the performance level appears to be slightly lower than in 
the previous experiment of Fig. 16. 
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6.5. Finding a hidden object 

This experiment, whose environment is sketched in Fig. 11(d), has been run in 
two different versions, one by simulation and one with a real robot (Au- 
tonoMouse IV, see Figs. 2 and 3(b)). The aim was to see whether our system was 
capable of learning a reasonably complex task, involving obstacle detection by 
sonar and whiskers and searching for a hidden object. The target behavior was to 
approach a light, walking around a wall when necessary. In these experiments we 
paid no attention to the issue of architecture, and adopted a simple monolithic CS 
throughout.  

In both the simulated and the real experiment, the eyes and the sonar of the 
robot (AutonoMouse IV in the real world) where used as on/of f  sensors; the 
input interface included: 

• one bit for each of the two eyes (used as on/of f  light sensors); each eye had a 
visual cone of 180 degrees, with a 90 degrees overlapping in front; 

• one bit for the sonar; 
• one bit for each of the two side whiskers. 

The output interface included two bits, coding the following four possible moves: 
still, straight ahead, ahead with a left turn, and ahead with a right turn. In the 
simulated experiments, the wall had a fixed position, while the light automatically 
hid itself behind the wall each time it was reached by the agent. To shape the 
agent, the reinforcement program was written with the following strategy in mind: 

if a light is seen 
then {Approach_the_light behavior) 

Approach it 
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else {Search for object behavior} 
if a distal obstacle is sensed (by sonar) 

then 
Approach it 

else 
if a proximal obstacle is sensed (by whiskers) 

then 
Move along it 

else 
Turn consistently (go on turning in the same direction, which- 
ever it is). 

The distances of the robot from the light and from the wall were computed from 
the geometric coordinates of the simulated objects. The simulation was run for 
50,000 cycles. In Fig. 23 we separately show the Approachthe_light  performance 
(when the light is visible), the Search for_object performance (when the light is 
not visible) and the global performance for a typical experiment. Approaching the 
light appears to be easier to learn than searching for it. This is easy to explain 
given that searching for the light is a rather complex task, involving moving 
toward the wall, moving along it and turning around when no obstacle is sensed. 

6.6. Adding memory to ALECSYS 

All the experiments described so far concern S-R behavior, i.e. direct 
associations of stimuli and responses. Clearly, the production of more complex 
behavior patterns crucially involves the ability to deal with dynamic behavior, that 
is with input-output associations that exploit some kind of internal state. We have 
only started moving in this direction, but a few experiments deserve reporting. 
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In a dynamic system, a major  function of the internal state is memory.  Indeed, 
the limit of S - R  behavior is that it can relate a response only to the current state 
of the environment.  It must be noticed that ALECSYS is not completely memory- 
less; in fact, both the strengths of classifiers and the internal messages appended 
to the message list embody information about past events. However,  it is easy to 
think of target behaviors that require a more specific kind of memory. 

In Section 4, we have already argued that following a light can be made easier 
by a memory of past perceptions. We have endowed the learning system with a 
sensor memory,  that is a kind of short-term memory of the state of the agent's 
sensors. In order  to avoid an ad hoc solution to our problem, we have adopted a 
sensor memory  that functions uniformly for all sensors, independently of the task. 
The idea was to provide the agent with a representation of the previous state of 
each sensor, for a fixed period of time; that is, at any given time t the agent can 
establish, for each sensor S, whether: 

(i) the state of S has not changed during the last k cycles (where the memory 
span k is a parameter  to be set by the experimenter);  

(ii) the state of S has changed during the last k cycles; in this case, enough 
information is given so that the previous state of S can be reconstructed. 

This design allows us to define a sensor memory that depends on the input 
interface, but is independent  of the target behavior (with the exception of k, 
whose optimal value is in fact a function of the task). More precisely, the sensor 
memory  is made up of: 

• a memory word, isomorphic to the input interface; 
• an algorithm that updates the memory word at each cycle, in accordance to 

the specifications (i) and (ii), on the basis of the current input, of the 
previous memory word, and of the number of cycles elapsed from the last 
change; 

• a mechanism that appends the memory word to the message list, with a 
specific tag identifying it as a memory message. 

The memory  process is described in more detail in Fig. 24. Note that, coherently 
with our approach, the actual "meaning"  of memory messages must be learnt by 
the classifier systems. In other words, memory messages are just one more kind of 
messages, whose correlation with the overall task has to be discovered by the 
learning system. 

The results obtained in a typical simulation are reported in Figs. 25-27, that 
compare  the performances of the agent with and without memory.  The target 
behavior  was to track a moving light. The agent had two frontal eyes, each with a 
visual cone of 60 degrees, overlapping for 30 degrees; as a result, the visual space 
in front of the agent was 90 degrees, partit ioned into three sectors of 30 degrees 
each. The memory span was set to 10. 

The result reported in Fig. 25 suggests that the performance of the agent with 
memory  tends to become asymptotically better  than that of the memoryless agent. 
However ,  the learning process is slower. This is easy to explain: the "intellectual 
task" of the agent with memory is harder, because the role of the memory 
messages has to be learned; on the other hand, the agent can learn about the role 
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S l s l l  " I si I -.. I s N I  

M I r o l l  ... I mj I ' I m N I  

S = environment message, coding the state of the sensors; each sensor is 
represented by a bit sequence sj (N being the number of distinct sensors); 

M = memory message; for each sj, there is an mj of equal length. 

The memory message at time t, M(t), is computed from S(t), S(t-1 ), and M(t-1 ). 
The following algorithm is applied at each non initial cycle t (at  cycle t=O, 
mj(O):=sj(O)): 

for j from 1 to N do 
delta_sj= sj( t )  xor sj(t-1 ); 
If delta_sj = iO ... 0 ... O] 

then 
mj( t )  := delta_sj; 
clock(j) := 0 

else 
mj( t )  := mj(t-1 ); 
clock(j) := clock(j) + 1 

endif;  
i f  clock(j) > k 

then 
mj( t )  := O; 
clock(j) := 0 

endif 
endfor 

for each sensor j, 
compute the change of  sj from t-1 to t; 

i f  there is a change, 

set mj to i t  
and set the clock of  sensor j to O, 

else set mj to its previous value, 
and increment the clock of sensor j. 

i f  the memory span of sensor j has elapsed, 

set mj to zero 
and set the clock of sensor j to zero. 

Fig. 24. The memory process. 

of memory only when it becomes relevant, that is when the light disappears from 
sight--and this is a relatively rare event. To show that the role of memory is 
actually relevant, in Figs. 26 and 27 we have decomposed the agent's performance 
into: (a) the performance produced when the light is not visible (and therefore 
memory is relevant); (b) the performance when the light is visible (and thus 
memory is superfluous). In the former case, the performance of the agent with 
memory is now more clearly better. 

We conclude that even a very simple memory system can improve the 
performance of ALECSYS in those cases in which the target behavior is not 
intrinsically S-R. 

7. Experiments with the real robot 

Moving from simulated to real environments is challenging. Not only do the 
robot's sensors and actuators become noisy, but also the RP must rely on real, 
and hence noisy, sensors to evaluate the learning robot moves. We ran some 
experiments to see to what extent the real robot could use the ideas and the 
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Fig. 25. Following a moving light with and without sensor memory. 
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software used in simulations. In this section we present results from experiments 
in the real world using both AutonoMouse II and AutonoMouse IV. 

7.1. Exper iments  with A u t o n o M o u s e  H 

As we said in Section 2, this version of the AutonoMouse is rather unsophisti- 
cated; essentially, it allows the design of very simple experiments, as the available 
sensors are only the four binary eyes and one binary ear. 

Nevertheless, it was possible to show: (i) that our approach works also in real 
environments, where time constraints must be met and where sensor input and 
actuator output are affected by noise; and (ii), that our system is adaptive, being 
capable of graceful degradation of performance in presence of bad-working 
sensors or actuators. In all the experiments with AutonoMouse II we used a 
monolithic instantiation of ALECSYS, with characteristics (format of input and 
output messages, internal parameters used by the learning system, etc.) that are 
essentially the same as those used for the light approaching module of the 
experiments in the preceding section (see Figs. 5 and ll(a)). In the experiments 
with AutonoMouse II, performance was measured through the trainer's sensors 
on board, that is by light intensity: when the robot approaches the light source, 
light intensity increases. 
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7.1.1. Approaching the light source 
In the first experiment we position the AutonoMouse II in a room and let it 

move. The RP rewards the learning system whenever it approaches the light 
source, and punishes it in case of wrong moves. In these experiments with the real 
robot, the RP evaluates the approaching behavior using real sensors, namely the 
two central eyes of Fig. 1. The graph of Fig. 28 shows the developing approaching 
behavior in a typical experiment. Performance is measured through light intensity 
(0 to 255). In the graph we also show the average reward (on the last 20 cycles) 
received by the learning system; in this experiment rewards are +50 for a correct 
move, -80 for a wrong one. The drop in performance at cycles 140 and 380 is due 
to a movement of the light source; as the AutonoMouse had reached the lamp, 
we moved it far away to continue the experiment. In this experiment 100 cycles 
took about 60 seconds. At cycle 220 the AutonoMouse started moving away from 
the light source because of some wrong classifiers; as the moves were wrong, 
ALECSYS was punished by the reinforcement program, and therefore the clas- 
sifiers responsible for the wrong actions lost importance and finally were 
eliminated. 

It is interesting that the number of cycles required to reach the light is lower 
than the number of cycles required to reach a high performance in the simulation 
experiments. This is easy to explain, if one thinks that the correct behavior is 
more frequent than the wrong one as soon as performance is higher than 50%. 
The AutonoMouse starts therefore to approach the light source much before it 
has reached a high frequency of correct moves. Moreover, a comparison of the 
average reward graph with the light intensity graph reveals an interesting property 
of the real robot: its performance, measured through light intensity, shows some 
kind of inertia (with respect to average reward). In fact, it takes time to move and 
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Fig. 28. The  A u t o n o M o u s e  II learns to approach a light source. Light intensity and average reward 
received. 



turn, and it is necessary to make many wrong moves to start to move away from 
the light source. 

7.1.2. Approaching the light source with a blind eye 
To test the adaptive capability we ran some experiments in which the 

AutonoMouse II's capabilities were degraded. These were: 
• AutonoMouse with inverted eyes; 
• AutonoMouse with inverted motors; 
• AutonoMouse with one blind eye; 
• AutonoMouse with incorrect calibration of motors' speed (one motor is 

slower than the other one). 
All of the experiments suggested that the AutonoMouse, although with some 
degraded performance, was still capable of achieving the goal of approaching the 
light source. A thorough discussion of these experiments can be found in [18] (see 
also [15]). As an example we report here in Fig. 29 the result of the "one blind 
eye" experiment. The number of cycles required to reach the light was slightly 
higher than before and at cycle 135 the AutonoMouse lost sight of the light, did a 
360-degrees turn and started to approach the light again. Nevertheless, the 
AutonoMouse achieved its goal in a reasonably short time. 

7.2. Experiment with AutonoMouse IV 

Light intensity 

250 

With AutonoMouse IV we ran the experiment on finding a hidden object, 
whose simulated counterpart is described in Section 6. The environment consisted 
of a large room containing an opaque wall, about 50 × 50 cm, and an ordinary 
lamp (50 W). The wall was realized as a pleated surface, in order to reflect back 
the sonar's beam coming from a wide range of directions (see Fig. 30). The input 
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Fig. 29. A "one  blind eye"  A u t o n o M o u s e  II learns to approach a light source.  
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90 ° 

Fig. 30. Horizontal section of the pleated wall, and reflection of the sonar's beam. 

and output  interfaces were exactly the same as in the simulation, and so was the 
RP. The input from the sonar was defined in such a way that a front obstacle was 
detected within about 1.5 m from the robot. 

There  were three main differences between the real and the simulated 
experiments.  The first difference was that in the real environment the light was 
moved by hand by the experimenter,  hiding it behind the wall when the 
AutonoMouse  got very close to it (10-15 cm). In comparison with the simulated 
environment ,  where the light was moved by the simulation program in a 
systematic way, this procedure introduced an element of irregularity. From the 
results of the experiment,  it is not easy to understand whether this irregularity 
affected the learning process. 

Second difference: the distances of AutonoMouse IV from the light and from 
the wall were estimated on the basis of the outputs of the light sensors and of the 
sonar, respectively. More precisely, each of the two eyes and the sonar output an 
eight-bit number  ranging from 0 to 255, respectively coding the light intensity and 
the distance from an obstacle. To estimate whether the robot got closer to the 
light, the total light intensity (that is, the sum of the outputs of both eyes) at cycle 
t was compared with the total light intensity at cycle t - 1. The sonar's output was 
used in a similar way to estimate whether the robot got closer to the wall. 

The eyes and the sonar were used in different ways by the agent and by the RP: 
from the point of view of the agent, all these sensors behaved as on /o f f  devices; 
for the RP, the eyes and the sonar produced an output with higher discriminative 
power.  Therefore ,  the same hardware devices were used as the trainer's sensors 
and, through a transformation of their outputs, as the sensors of the agent. The 
rationale of this choice has been explained in Section 4; we remark here that the 
main reason for providing the agent with a simplified binary input was to reduce 
the size of the learning system's search space, thus speeding up learning. 

By exploiting the full binary output of the eyes and of the sonar, it was possible 
to estimate the actual effect of a movement toward the light or the wall. 
However ,  given the present sensory apparatus of AutonoMouse IV, we could not 
measure the physical effect of a left or right turn; for these cases, the RP based its 
reward on the expected move, i.e. on the output message sent to the effectors, 
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and not on the actual move. (A detailed discussion of the difference between 
rewarding the AutonoMouse according to estimated or real effects of actions can 
be found in [18]). 

Finally, the third difference: due to practical reasons, the experiment with the 
real AutonoMouse was run for about 4 hours, covering only 5,000 cycles, while 
the simulated experiment was run for 50,000 cycles. 

The graph of Fig. 31 shows that the agent learned the target behavior 
reasonably well, as was in fact intuitively clear by direct observation during the 
experiment. There is however a main discrepancy between the results of the real 
and the simulated experiment. In the simulation experiment reported here, after 
5,000 cycles the light approaching, light searching and global performances had 
respectively reached the approximate values of 0.92, 0.76 and 0.81; the three 
corresponding values in the real experiment are lower (about 0.75) and very close 
to each other. To put it differently, the real and the simulated light searching 
performances are very similar; on the contrary, while in the simulated experiment 
the light approaching behavior is much more effective than the light searching 
behavior, in the real experiment they are about the same. 

We interpret this discrepancy between the real and the simulated experiment as 
an effect of the different way in which the distance between the robot and the 
light was estimated. In fact, the total light intensity does not allow for a very 
accurate discrimination of such a distance. Often, a move toward the light did not 
result in an increase of total light intensity large enough to be detected; therefore, 
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Fig. 31. Finding a hidden object by AutonoMouse IV. 
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a correct move was not rewarded, because the RP did not understand that the 
robot did get closer to the light. As a consequence, the rewards given by the RP 
with respect to the light approaching behavior were not as consistent as in the 
simulated experiments. To check whether this hypothesis is correct, more 
systematic experiments need to be run. 

8. Comparison with related work 

We have already pointed out the relationships between our work and research 
going on in the area of situated agents. In this section we relate our approach to 
other limitrophe research fields. Most prominent is the work on learning classifier 
systems [7, 8, 54]. We built on that work, introducing the idea of using a set of 
communicating classifier systems, running in parallel on a MIMD architecture. We 
also modified the basic learning algorithms to make them more efficient (a 
technical discussion of the learning algorithms can be found in [18, 20, 21[). More 
generally, the whole field of reinforcement learning is related to our work. 
Reinforcement learning has recently been studied in many different algorithmic 
frameworks, learning classifier systems being one. Notably, we have connectionist 
reinforcement learning (e.g., [4, 53]), classifier systems reinforcements learning 
(e.g., [7, 18, 26, 40]), and temporal differences reinforcement learning and 
related algorithms, like the adaptive critic heuristics [45] and Q-learning [47, 48]. 
These different approaches to reinforcement learning are often overlapping. For 
example, the adaptive critic heuristics and Q-learning have been implemented 
through a connectionist system by Lin [33]; also, Compiani, Montanari, Serra and 
Valastro [17] have shown the existence of tight structural relations between 
classifier systems and neural networks. 

Often the applications used to illustrate and compare the proposed algorithms 
are taken from the realm of autonomous robotics. A major difference with our 
work is that we do not investigate the temporal credit assignment problem, which 
is often a main point in reinforcement learning applications. Another difference is 
that only a few of the reinforcement learning applications deal with real robots. 
For example, Singh [43], Lin [33], and Millan and Torras [38] use a point robot 
moving in a two-dimensional simulated world; and Millan [37] uses a simulation 
of a Nomad 200 robot. Grefenstette's SAMUEL, a learning system which uses 
genetic algorithms [24], learns decision rules for a simulated task (a plane should 
learn to avoid being hit by a missile). Booker's GOFER system deals with a 
simulated robot living in a two-dimensional environment and whose goal is to 
learn to find food and avoid poison. The choice of using a real robot makes things 
very different, as the efficiency of the system becomes a major constraint. This 
constraint has guided our choice of a hierarchical architecture in which different 
modules can run in parallel (the same constraint has guided the subsumption 
architecture choice of Mahadevan and Connell [36]). 
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Beside the mentioned work of Mahadevan and Connell, there are only a few 
other applications of reinforcement learning to real robots. 

Maes and Brooks [34] describe an algorithm to learn the coordination behavior 
of a six-legged robot. Their algorithm is focused on learning coordination of 
hardwired basic behaviors, whereas in our case both basic behaviors and their 
coordination are learned. Brooks [11] has recently discussed the possibility to use 
genetic algorithms to evolve programs written in GEN, a high-level language 
especially designed to produce programs which can be easily evolved by the 
genetic algorithm. GEN can then be compiled into the Behavior Language 
(Brooks [9]), a rule-based parallel programming language which compiles into the 
subsumption architecture. This idea is, to the authors' knowledge, still under 
development [11] and no results have been published yet. 

An approach similar to that proposed by Brooks was taken by Koza and Rice, 
who used the Genetic Programming paradigm [31] to evolve Lisp programs to 
control an autonomous robot [32]. Although they use genetic algorithms, their 
approach is very different from ours (and is much closer to the proposal of 
Brooks); in their case the genetic algorithm searches in the space of an 
opportunely defined subset of Lisp programs, while in our case the genetic 
algorithm is cast into the classifier system framework. They try to reproduce the 
results obtained by Mahadevan and Connell [36], applying their learning robot to 
the same problem. Nevertheless, their use of a simulated robot makes a fair 
comparison very difficult. 

Also Beer and Gallagher [6] have been using genetic algorithms to let a neural 
net learn to coordinate the movements of their six-legged robot. Also in this case 
the approach is rather different from ours, as they use the genetic algorithm to 
develop neural net controllers. 

In his Ph.D. dissertation, Kaelbling used reinforcement to let a robot---called 
Spanky--learn to approach a light source and to avoid obstacles ([28]; but see 
also [29]). She used a statistical technique to store an estimate of the expected 
reinforcement for each action-input pair and some information of how precise 
that estimate is. Unfortunately, only a qualitative description of the experiments 
run in the real world is reported. Kaelbling's robots took from 2 to 10 minutes to 
learn a good strategy, while AutonoMouse II after at most one minute was 
already pointing towards the light. Still, it is very difficult to make a comparison, 
as the experimental environment was not the same and Spanky's task was slightly 
more complex. The strength of our approach is that it allows for an incremental 
building of new capabilities; it is not clear whether this can be done with 
Kaelbling's approach. 

Finally, the idea of shaping a robot is related to the work by Shepanski and 
Macy [42], who propose to train a neural net manually by interaction with a 
human expert. In their work the human expert replaces our reinforcement 
program. This approach is very interesting, but it seems difficult to use in a 
nonsimulated environment; it is not clear therefore whether it can be adopted for 
real robot shaping. 
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9. Conclusions and future work 

In this paper, we have described a possible approach to the development of 
situated agents through learning, and presented the results of experimental work 
aimed at demonstrating the viability of classifier systems and genetic algorithms 
for this purpose. 

We view learning as a situated translation into a low-level control program of a 
higherqevel conceptualization of a target behavior. Such a conceptualization is 
reflected into the reinforcement program, in charge of guiding the learning system 
through rewards and punishments. In our experiments, we have tried to enlighten 
some relationships holding among the target behavior, the agent and the trainer. 
In particular, we have shown that several aspects of the agent and of the RP are 
sensitive to features of the environment the agent has to adapt to. 

We ran both simulations and real-world experiments. Simulations have proved 
very useful to test general design criteria, and our methodology resulted robust 
enough to be portable from simulated to real worlds without major problems. 
Even if the evidence collected through our experiments is anecdotal (in that we 
performed no systematic statistical analysis of our data), the results obtained so 
far allow us to make a few claims: 

• Animat-like interactions in simple environments can be practically developed 
through shaping. Fairly complex interaction can be developed even with 
simple, reactive agents. In particular, behavior patterns that appear to follow 
a sequential plan can be realized by a reactive agent when there is enough 
information in the environment to determine the right sequencing of actions 
(see the Chase/Feed/Flee behavior in Section 6). However, the addition of 
nonreactive elements, like a memory of past perceptions, can improve the 
level of adaptation to the dynamics of the environment. 

• The genetic algorithm can be exploited to enforce adaptation of a physical 
robot to its environment. In a modular architecture, both basic skills and 
coordination can be learned. 

• To develop a situated agent, both explicit design and machine learning have 
an important role. In our approach, the main design choices involve: (i) the 
sensors, actuators and controller's architecture of the agent; (ii) the artificial 
objects in the environment; (iii) the sensors and the logic of the trainer; (iv) 
the overall shaping policy. Learning is in charge of developing the functions 
implemented by the various modules of the agent's controller. 

• In shaping the agent's behavior, the trainer can assume a reasonably high- 
level position, abstracting from the details of the agent's anatomy and 
concentrating on agent-environment interactions. 

• A careful design of the agent's architecture can speed up learning. The 
designer should understand, at least at a coarse level, the dynamics of the 
interaction between the agent and the environment and the relationships 
among different basic behaviors. We showed through an experiment the 
disastrous effects of a bad design (see Section 6, Figs. 20 and 21). 
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At present, we feel that we have not wholly exploited the power of ALECSYS. In 
particular: 

• Our Animat-like tasks make only soft requirements to the sensorial 
capacities of the real robot. A major concern of our future research will be 
to give the sensory apparatus some learning skills. In this way we hope to 
have the possibility to work with a richer environmental information (at 
present our sensors can do only little more than giving binary information 
about the presence or absence of simple objects). 

• Complex interactions in non-Markov situation (see [52]) will require a richer 
memory mechanism. We are currently trying to exploit hierarchical architec- 
tures to obtain proper sequential interactions (i.e., sequential behavior 
patterns when the environment does not provide enough information for a 
correct sequencing of actions; see [16]). 

• To develop more interesting interactions, we are currently moving to 
environments with richer dynamics. We are also considering the possibility of 
developing multi-agent, cooperative behaviors. 

• Recent results in reinforcement learning and training [14] suggest that the 
design of the reinforcement program, which currently requires substantial 
designer's effort, could be replaced by direct interaction with a human 
trainer. In the future, this possibility will be compared with another 
interesting option, that is the description of the target behavior through some 
kind of high-level, symbolic language. 

Our system has also a number of weak points; in particular, two of them must 
be highlighted: 

(i) Our learning modules do not address the temporal credit apportionment 
problem: our RP only generates immediate reinforcements in response to 
the actions of the learning agent. We do not know yet whether our learning 
algorithm can manage tasks in which delayed reinforcement is a must. First 
results are contradictory (see [22]) and further research is needed. Clearly, 
this issue is fundamental for developing more complex dynamic behavior, 
beyond the present limits of S -R  responses. 

(ii) Quite a large amount of work is to be put into the architectural design. It is 
sometime sustained, for example by Koza and Rice [32], that the effort put 
into architecture design plus the effort required to solve issues arising from 
the use of reinforcement learning, can be greater than the effort required 
to directly program the robot by hand. Nevertheless we believe that, at 
least until efficient ways to automatically generate good and working 
architectures are devised (and the approach taken by Koza and Rice [32], 
seems to be promising), there is no way out: architecture has to be 
designed. It is often said that, and it is also our position, architecture is the 
result of a learning process on an evolutionary-time scale, while behavior is 
the result of a learning process on a life-time scale. Obviously, the results 
of the first learning process constrain the possible outcomes of the second 
one. We are mainly interested in life scale learning; but we also recognize 
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the importance of putting not too much hardwired knowledge in our 
agents. Comparing our work with that of Mahadevan and Connell, we 
somewhat relax their constraints on the architecture: although we de- 
compose the overall task by design, we do not impose any structure on the 
coordination between learning modules. Coordination is learned, in the 
same way as basic behaviors are. 

As a whole, we believe that our work shows the importance of learning to 
achieve a satisfactory level of adaptation between an artificial agent and its 
environment. Clearly, much further research is needed to understand whether our 
approach can scale up to a complexity comparable to the adaptive behavior of 
living organisms. 

Acknowledgments 

This research has been partially funded by a M.U.R.S.T. 60% grant to Marco 
Colombetti for the year 1992, by a grant from CNR, Progetto finalizzato sistemi 
informatici e calcolo parallelo, Sottoprogetto 2, Tema: Processori dedicati, and by 
CNR, Progetto finalizzato robotica, Sottoobiettivo 2, Tema: ALPI. We would like 
to thank Sridhar Mahadevan, Mukesh Patel, Hans-Michael Voigt and Robert 
Richards for helpful comments on a draft version of this paper. Graziano Ravizza 
designed AutonoMouse II. Franco Dorigo designed and built AutonoMouse IV. 
Franco Dorigo, Andrea Maesani, Stefano Michi, Roberto Pellagatti, Roberto 
Piroddi, and Rino Rusconi participated in implementing and debugging ALECSYS. 
They also ran many of the experiments presented in this paper. Emanuela 
Prato-Previde discussed with us several conceptual and terminological issues 
connected with experimental psychology. 

References 

[1] P.E. Agre and D. Chapman, Pengi: an implementation of a theory of activity, in: Proceedings 
AAAI-87, Seattle, WA (1987) 268-272. 

[2] R.C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation, 
Rob. Autonomous Syst. 6 (1-2) (1990) 105-122. 

[3] A.G. Barto, S.J. Bradtke and S.P. Singh, Learning to act using real-time dynamic programming, 
Artif. Intell. 72 (1995), to appear. 

[4] A.G. Barto, R.S. Sutton and C.W. Anderson, Neuronlike elements that can solve difficult 
learning control problems, 1EEE Trans. Syst. Man Cybern. 13 (1983) 834-846. 

[5] R.D. Beer, A dynamical systems perspective on agent-environment interaction, Artif. Intell. 72 
(1995), to appear. 

[6] R.D. Beer and J.C. Gallagher, Evolving dynamical neural networks for adaptive behavior, 
Adaptive Behav. 1 (1) (1992) 92-122. 

[7] L. Booker, Classifier systems that learn internal world models, Mach. Learn. 3 (2-3) (1988) 
161-192. 

[8] L. Booker, D.E. Goldberg and J.H. Holland, Classifier systems and genetic algorithms, Artif. 
Intell. 40 (1-3) (1989) 235-282. 



M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 369 

[9] R.A. Brooks, The behavior language: user's guide, Memo 1227, MIT AI Lab, Cambridge, MA 
(1990). 

[10] R.A. Brooks, Elephants don't play chess, Rob. Autonomous Syst. 6 (1-2) (1990) 3-16. 
[11] R.A. Brooks, Artificial life and real robots, in: Proceedings 1st European Conference on Artificial 

Life (ECAL) (MIT Press, Cambridge, MA, 1991) 3-10. 
[12] R.A. Brooks, Intelligence without representation, Artif. lntell. 47 (1-3) (1991) 139-159. 
[13] A. Camilli, R. Di Meglio, F. Baiardi, M. Vanneschi, D. Montanari and R. Serra, Classifier 

systems parallelization on MIMD architectures, Technical Report 3-17, CNR, Italy (1990). 
[14] J.A. Clouse and P.E. Utgoff, A teaching method for reinforcement learning, in: Proceedings 9th 

Conference on Machine Learning, Aberdeen, Scotland (1992) 92-101. 
[15] M. Colombetti and M. Dorigo, Learning to control an autonomous robot by distributed genetic 

algorithms, in: Proceedings From Animals to Animats, 2nd International Conference on Simula- 
tion of Adaptive Behavior (SAB92 ), Honolulu, HI (1992) 305-312. 

[16] M. Colombetti and M. Dorigo, Training agents to perform sequential behavior, Adaptive 
Behavior 2 (3) (1994) 247-275. 

[17[ M. Compiani, D. Montanari, R. Serra and G. Valastro, Classifier systems and neural networks, 
in: E.R. Caianiello, ed., Parallel Architectures and Neural Networks (World Scientific, Singapore, 
1989). 

[18] M. Dorigo, ALECSVS and the AutonoMouse: learning to control a real robot by distributed 
classifier systems, Mach. Learn., to appear. Politecnico di Milano, Milan, Italy (1992). 

[19] M Dorigo, Optimization, learning, and natural algorithms, Ph.D. Thesis, Dipartimeto di 
Elettronica e Informazione, Politecnico di Milano, Milan, Italy (1992). 

[20] M. Dorigo, Using transputers to increase speed and flexibility of genetics-based machine learning 
systems, Microprocess. Microprogram. 34 (1992) 147-152. 

[21] M. Dorigo, Genetic and non-genetic operators in ALECSYS, Evolutionary Comput. J. 1 (2) (1993) 
151-164. 

[22] M. Dorigo and U. Schnepf, Genetics-based machine learning and behavior-based robotics: a new 
synthesis, IEEE Trans. Syst. Man Cybern. 23 (1) (1993) 141-154. 

[23] M. Dorigo and E. Sirtori, ALECSYS: a parallel laboratory for learning classifier systems, in: 
Proceedings 4th International Conference on Genetic Algorithms (Morgan Kaufmann, San Diego, 
CA, 1991) 296-302. 

[24] J.J. Grefenstette, C.L. Ramsey and A.C. Schultz, Learning sequential decision rules using 
simulation models and competition, Mach. Learn. 5 (4) (1990) 355-381. 

[25] J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, 
Ann Arbor, MI, 1975). 

[26] J.H. Holland and J.S. Reitman, Cognitive systems based on adaptive algorithms, in: D.A. 
Waterman and F. Hayes-Roth, eds., Pattern-Directed Inference Systems (Academic Press, New 
York, 1978). 

[27] L.P. Kaelbling, An architecture for intelligent reactive systems, in: M.P. Georgeff and A.L. 
Lansky, eds., Reasoning about Actions and Plans (Morgan Kaufmann, Los Altos, CA, 1987) 
395-410. 

[28] L.P. Kaelbling, Learning in embedded systems, Ph.D. Thesis, Stanford University, Stanford, CA 
(1990). 

[29] L.P. Kaelbling, An adaptable mobile robot, in: Proceedings 1st European Conference on 
Artificial Life (ECAL) (MIT Press, Cambridge, MA, 1991) 41-47. 

[30] L.P. Kaelbling and S.J. Rosenschein, Action and planning in embedded agents, Rob. Autonom- 
ous Syst. 6 (1-2) (1991) 35-48. 

[31] J.R. Koza, Genetic Programming: On Programming Computers by Means of Natural Selection 
and Genetics (MIT Press, Cambridge, MA, 1992). 

[32] J.R. Koza and J.P. Rice, Automatic programming of robots using genetic programming, in: 
Proceedings AAAI-92, San Jose, CA (1992). 

[33] L.J. Lin, Self-improving reactive agents based on reinforcement learning, planning and teaching, 
Mach. Learn. 8 (3-4) (1992) 293-322. 



370 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 

[34] P. Maes and R.A. Brooks, Learning to coordinate behaviors, in: Proceedings AAA1-90, Boston, 
MA (1990) 796-802. 

[35] S. Mahadevan, Enhancing transfer in reinforcement learning by building stochastic models of 
robots actions, in: Proceedings 9th Conference on Machine Learning, Aberdeen, Scotland (1992) 
290-299. 

[36] S. Mahadevan and J. Connell, Automatic programming of behavior-based robots using re- 
inforcement learning, Artif. Intell. 55 (2) 311-365. 

[37] J.d.R. Millan, Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an 
autonomous mobile robot, Rob. Autonomous Syst., in press. 

[38] J.d.R. Millan and C. Torras, A reinforcement connectionist approach to robot path finding in 
non maze-like environments, Mach. Learn. 8 (3-4) (1992) 363-395. 

[39] R. Piroddi and R. Rusconi, A parallel classifier system to solve learning problems (in Italian), 
Master Thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy 
(1992). 

[40] G.G. Robertson and R.L. Riolo, A tale of two classifier systems, Mach. Learn. 3 (2-3) (1988) 
139-160. 

[41] S.J. Rosenschein and L.P. Kaelbling, The synthesis of digital machines with provable epistemic 
properties, in: Proceedings 1986 Conference on Theoretical Aspects of Reasoning about Knowl- 
edge (Morgan Kaufmann, Los Altos, CA, 1986) 83-98. 

[42] J.F. Shepanski and S.A. Macy, Manual training techniques of autonomous systems based on 
artificial neural networks, in: Proceedings IEEE 1st Annual International Conference on Neural 
Networks, San Diego, CA (1987) 697-704. 

[43] S.P. Singh, Transfer of learning by composing solutions of elemental sequential tasks, Mach. 
Learn. 8 (3-4) (1992) 323-339. 

[44] B.F. Skinner, The Behavior of Organisms: An Experimental Analysis (D. Appleton Century, 
New York, 1938). 

[45] R.S. Sutton, Temporal credit assignment in reinforcement learning, Ph.D. Thesis, Department of 
Computer and Information Science, University of Massachusetts, Amherst, MA (1984). 

[46] R.S. Sutton, Learning to predict by the methods of temporal differences, Mach. Learn. 3 (1) 
(1988) 9-44. 

[47] C.J.C.H. Watkins, Learning with delayed rewards, Ph.D. Thesis, Psychology Department, 
University of Cambridge, England (1989). 

[48] C.J.C.H. Watkins and P. Dayan, Technical Note: Q-learning, Mach. Learn. 8 (3-4) (1992) 
279-292. 

[49] S.D. Whitehead, A complexity analysis of cooperative mechanisms in reinforcement learning, in: 
Proceedings AAA1-91, Anaheim, CA (1991) 607-613. 

[50] S.D. Whitehead, A study of cooperative mechanisms for faster reinforcement learning, Technical 
Report CS-365, University of Rochester, Rochester, NY (1991). 

[51] S.D. Whitehead and D.H. Ballard, Learning to perceive and act by trial and error, Mach. Learn. 
7 (1) (1991) 45-83. 

[52] S.D. Whitehead and L.-J. Lin, Reinforcement learning of non-Markov decision processes, Artif. 
Intell. 73 (1995), to appear. 

[53] R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement 
learning, Mach. Learn. 8 (3-4) (1992) 229-256. 

[54] S. Wilson, Classifier systems and the Animat problem, Mach. Learn. 2 (3) (1987) 199-228. 


