
Artificial
Intelligence

ELSEVIER Artificial Intelligence 71 (1994) 321-370

Robot shaping: developing autonomous agents through
learning

M a r c o D o r i g o 1'2, M a r c o C o l o m b e t t i *

Progetto di lntelligenza Artificiale e Robotica, Dipartimento di Elettronica e lnformazione,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

Received September 1992; revised November 1993

Abstract

Learning plays a vital role in the development of autonomous agents. In this paper, we
explore the use of reinforcement learning to "shape" a robot to perform a predefined
target behavior. We connect both simulated and real robots to ALECSYS, a parallel
implementation of a learning classifier system with an extended genetic algorithm. After
classifying different kinds of Animat-like behaviors, we explore the effects on learning of
different types of agent's architecture and training strategies. We show that the best results
are achieved when both the agent's architecture and the training strategy match the
structure of the behavior pattern to be learned. We report the results of a number of
experiments carried out both in simulated and in real environments, and show that the
results of simulations carry smoothly to physical robots. While most of our experiments
deal with simple reactive behavior, in one of them we demonstrate the use of a simple and
general memory mechanism. As a whole, our experimental activity demonstrates that
classifier systems with genetic algorithms can be practically employed to develop autonom-
ous agents.

I, Introduction

This p a p e r is a b o u t l ea rn ing , in two d i f fe ren t senses. It is a b o u t an a u t o m a t i c
l e a r n i n g sys tem used to d e v e l o p beha v io r a l p a t t e r n s in an a u t o n o m o u s agen t , a
s imp le m o u s e - l i k e r o b o t tha t we call the A u t o n o M o u s e . M o r e o v e r , it is a b o u t
w h a t we l e a r n e d on des igning and t ra in ing a u t o n o m o u s agents to act in the wor ld .

t This work was partially written while the author was at International Computer Science Institute,
1947 Center Street, Suite 600, Berkeley, 94704-1105 CA, USA.
2 E-mail: dorigo@elet.polimi.it.
* Corresponding author. E-maih colombet@elet.polimi.it.

0004-3702/94/$07.00 (~ 1994 Elsevier Science B.V. All rights reserved
S S D I 0004-3702(93)E0099-8

322 M. Dorigo. M. ('olombetti / Artificial Intelligence 71 (1994)321-370

Broadly speaking, our work situates itself in the recent line of research which
concentrates on the realization of artificial agents strongly coupled with the
physical world, and usually dubbed embedded or situated agents. Paradigmatic
examples of this trend are the works by Agre and Chapman [1], Kaelbling [27],
Brooks [10, 12], Kaelbling and Rosenschein [30], Whitehead and Ballard [51], and
others. While there are important differences among the various approaches,
some common points seem to be well established. A first, fundamental require-
ment is that agents must be grounded, in that they must be able to carry on their
activity in the real world and in real time. Another important point is that
adaptive behavior cannot be considered as a product of an agent considered in
isolation from the world, but can only emerge from a strong coupling of the agent
and its environment.

There are basically two ways to obtain such a coupling. The first way relies on
smart design: the designer analyzes the dynamics of the complex system made up
by the agent and the environment, so that such dynamics can be exploited to
produce the desired interactions. This approach has been pioneered by
Rosenschein and Kaelbling [41].

The second approach relies on automatic learning to dynamically develop an
autonomous agent through interaction with the world. The idea is that the
interactions between an agent and its environment soon become very complex,
and their analysis is likely to be a hard task. Moreover, the classical design
method based on the factorization of a complex system into a network of modular
subsystems is likely to constrain the space of possible designs in such a way that
many interesting, nonmodular solutions will be excluded (Beer [5]).

The approach we advocate is intermediate. First, we design the learning system
architecture in such a way as to favor learning basing our design choices on a
detailed analysis of the task and of the interactions between the agent and the
world; in this phase smart design will exploit the environment's characteristics in
order to make learning possible.

Second, we use learning as a means to translate suggestions coming from an
external trainer into an effective control strategy that allows the agent to achieve
a goal; this kind of reinforcement learning scheme has been applied to real robots
by Mahadevan and Connell [36] and by us. We call this approach shaping, as
opposed to the more classical reinforcement learning approach, in which an
organism increasingly adapts to its environment by directly experiencing the
effects of its activity (see for example Barto, Bradke and Singh [3], and
Whitehead and Lin [52]).

The problem we face is therefore to find a right balance between design,
learning and training, that is between the knowledge we craft into the agent and
the knowledge the agent is to find out by interacting with the environment under
the guidance of the trainer. To solve this problem we rely heavily on experimenta-
tion, in that different design choices and different training and learning strategies
must be compared through experimental activity, with both simulated agents and
real robots. A number of experiments are discussed in this paper, which is
organized as follows. In Section 2 we describe the agents, environments and
behavioral patterns we have used in our experiments. Section 3 summarizes the

M. Dorigo, M. Colombetti I Artificial Intelligence 71 (1994) 321-370 323

reinforcement learning technique we have used and illustrates ALECSYS, the
software tool we have developed to implement learning agents. Section 4 provides
a characterization of those features of the environment that allow a trainer to
steer our agents toward the desired patterns of interaction. In Section 5 we discuss
different kinds of architecture and learning strategies that can be used to
implement the agent's behavior. Sections 6 and 7 present some experiments
carried out by simulation and in the real world. In Section 8 we survey related
work. Finally, in Section 9 we draw some conclusions and suggest directions for
further research.

2. The AutonoMouse and its world

Behavior is a product of the interaction between an agent and its environment.
The universe of possible behavioral patterns is therefore determined by the
structure and the dynamics of both the agent and the environment, and by the
interface between the two (the sensors and the effectors). In this section, we
describe the agents, the environments and the behavioral patterns we have chosen
to carry out our experiments.

2.1. The agent's anatomy

Our artificial agent, the AutonoMouse, is a small moving robot. So far, we
have experimented with two versions of it, called AutonoMouse II and Au-
tonoMouse IV, respectively described in Figs. 1 and 2. Pictures of AutonoMouse
II and of AutonoMouse IV are presented in Figs. 3(a) and 3(b), respectively.

left wheel and motor
frontal left eye

rearlefteye ~ m i c r ° p h T e _ _ / /

-

rear central eye

frontal
~ i i ~ i i ~ i ~ i ! ! ! ~ • central eye

rear right eye /frontal wh/eel

right wheel and motor
Fig. 1. Description of AutonoMouse II.

324 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

t racks Barn

-" wh iske rs

Fig. 2. Description of AutonoMouse IV.

AutonoMouse II has four directional eyes and two motors. Each directional eye
can sense a light source within a cone of about 60 degrees. Each motor can stay
still or move the connected wheel one or two steps forwards, or one step
backwards. Au tonoMouse II is connected to a t ransputer board on a PC via a
9600-baud RS-232 link. Only a small amount of processing is done on-board (i .e. ,
the collection of data f rom sensors and to actuators and the management of
communicat ions with the PC). Learning algorithms run on the t ransputer board.

Au tonoMouse IV has two directional eyes, a sonar, front and side whiskers,
and two motors. Each directional eye can sense a light source within a cone of
about 180 degrees. The two eyes together cover a 270 degrees zone, with an
overlapping of 90 degrees in front of the robot. The sonar is highly directional and
can sense an object as far as 10 meters. For the purposes of the experiment
presented in Section 7, the output of the sonar can assume two values, either
I_sense an object , or I do not_sense an object. Each motor can stay still or
move the connected track one or two steps forwards, or one step backwards.
Au tonoMouse IV is linked to a t ransputer board on a PC via a 4800-baud
infra-red link.

The simulated AutonoMice are basically the models of their physical counter-
parts.

2.2. The agent's "mind"

The AutonoMouse is connected to ALECSYS (A LEearning Classifier SYStem), a
classifier system with a genetic algorithm implemented on a network of transpu-
ters (Dor igo and Sirtori [23]). We chose to work with learning classifier systems
because they seem particularly fit to implement simple reactive interactions in an

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 325

(a)

(b)

Fig. 3. (a) AutonoMousc II's portrait. (b) AutonoMousc IV's portrait.

326 M. Dorigo, M. Colombetti / Art~[icial Intelligence 71 (1994) 321-370

efficient way; still, their use leaves open the possibility to study, in future
extensions of our work, issues arising from delayed reinforcement.

2.3. The environment

We would like our environment to be inhabited by such things as preys, sexual
partners, predators, etc. More modestly, the AutonoMouse is presently able to
deal reasonably well with much poorer entities, like slowly moving lights, steady
obstacles, and sounds. Of course, we could fantasize freely in simulations, by
introducing virtual sensors able to detect the desired entities, but then results
would not carry to real experimentation; so, we prefer to adapt our goals to the
actual capacities of the agent.

2.4. Behavior

A first, rough classification allows one to distinguish between Stimulus-Re-
sponse (S-R) behavior, that is reactive responses connecting sensors to effectors
in a direct way, and dynamic behavior, requiring some kind of internal state to
mediate between input and output. Although in some experiments we have built
rudimentary kinds of dynamic behavior, so far we have been mainly working with
S-R responses.

In our work we have been influenced by the Animat problem (Wilson [54]),
that is the issue of realizing an artificial system able to adapt and survive in a
natural environment. This means that we are interested in behavioral patterns
that are the artificial counterparts of basic natural responses, like feeding and
fleeing from predators. Our experiments are therefore to be seen as possible
solutions to fragments of the Animat problem.

We believe that experiments on autonomous agents must be carried out in the
real world to be truly significant. However, such experiments are in general costly
and time-consuming. It is therefore advisable to preselect a small number of
potentially relevant experiments to be performed in the real world. To carry out
the selection we use a simulated environment, which allows us to have accurate
expectations on the behavior of the real agent and to prune the set of possible
experiments.

One of the hypotheses we want to explore is that relatively complex behavioral
patterns can be built bottom-up from a set of simple responses. This hypothesis
has already been put to test in robotics, for example by Arkin [2] with his
Autonomous Robot Architecture that integrates different kinds of information
(perceptual data, behavioral schemes and world knowledge) in order to get a
robot to act in a complex natural environment. Arkin's robot generates complex
responses, like walking through a doorway, as a combination of competing
simpler responses, like moving ahead and avoiding a static obstacle (the wall, in
the doorway example). The key point is that complex behavior can demonstrably
emerge from the simultaneous production of simpler responses. We have consid-
ered five kinds of basic responses:

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 327

• The approaching behavior, that is getting closer to an almost still object with
given features; in the natural world, this response is a fundamental com-
ponent of feeding and sexual behavior.

• The chasing behavior, that is following and trying to catch a moving object
with given features; as the preceding approaching behavior, this response is
important for feeding and reproduction.

• The mimetic behavior, that is entering a well-defined physical state which is a
function of a feature of the environment; this is inspired by the natural
behavior of a chameleon, changing its color according to the color of the
environment.

• The avoidance behavior, that is avoiding physical contact with an object of a
given kind; this can be seen as the artificial counterpart of a behavioral
pattern which allows an organism to avoid hurting objects.

• The fleeing behavior, that is moving as far as possible from an object with
given features; the object can be viewed as a predator.

More complex behavioral patterns can be built from these simple responses in
many different ways. So far, we have studied the following building mechanisms:

• Independent sum: two or more independent responses are produced at the
same time; for example, an agent may assume a mimetic color while chasing
a prey.

• Combination: two or more homogeneous responses are combined into a
resulting behavior; consider the movement of an agent following a prey and
trying to avoid an obstacle at the same time.

• Suppression: a response suppresses a competing one; for example, the agent
may give up chasing a prey in order to flee from a predator.

• Sequence: a behavioral pattern is built as a sequence of simpler responses;
for example, fetching an object involves reaching the object, grasping it, and
coming back.

In general, more than one mechanism can be at work at the same time: for
example, an agent could try to avoid still hurting objects while chasing a moving
prey and being ready to flee if a predator is perceived.

2.5. The trainer

Training an agent means making its behavior converge to a predefined target
behavior. While this is the case for any learning scheme allowing for supervised
learning, the way in which trainers can exert their role varies from scheme to
scheme. For example, most learning schemes used with neural networks require
comparing the network's actual response with the "correct" response, as pre-
defined by the trainer. This scheme is not fit for training a real robot, though,
because the correct behavior cannot easily be presented for a comparison.
Instead, we have adopted a reinforcement scheme, that is a learning mechanism
able to accept from the trainer a positive or negative reinforcement as a
consequence of a response.

In the literature, the term "reinforcement learning" mostly refers to un-

328 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370

supervised learning contexts: an agent interacts with its environment in a
completely unsupervised setting, and receives a reward only when it achieves a
final goal. This setting closely resembles a natural situation, in which an organism
is only occasionally rewarded by its environment. It seems to us, however, that
this kind of unsupervised learning alone is not suitable to develop effective
robots. In fact, unsupervised learning provides little useful information to the
agent, and this results into very slow learning rates. Contrary to many natural
situations, in artificial settings we can have trainers at our disposal, and there is no
reason not to exploit their knowledge to achieve faster learning.

Training an artificial robot closely resembles what experimental psychologists
do in their laboratories, when they train an experimental subject to produce a
predefined response. To stress this similarity, we have borrowed the term shaping
from experimental psychology (this term dates back at least to Skinner [44], and
has already been used in machine learning by Singh [43]). It turns out that our
trainer is similar to what Whitehead [49, 50] calls external critic. A similar method
has already been proved to be effective by Mahadevan and Connell [36].

A shaping setting includes an agent, an environment, and a trainer. In
principle, the trainer could be a human being observing the agent's interaction
with the environment, and issuing reinforcements consequently; for efficiency
reasons, however, reinforcements are provided automatically by a reinforcement
program (RP).

The role of the RP in shaping the robot's behavior is critical, in that it embodies
the trainer's characterization of the target behavior. If we compare robot shaping
with traditional task-level robot programming, the RP can be viewed as a sort of
source code which has to be translated into the robot's control program. The
learning mechanism plays the role of a situated translator--that is, a translator
which is sensitive to the actual interaction between the agent and the world. And
it is precisely through the world sensitivity of learning that a proper degree of
flexibility can be achieved.

3. The learning system

Here we briefly illustrate some characteristics of ALECSYS, a parallel learning
classifier system allowing for the implementation of hierarchies of classifier
systems, which can be exploited to build modular agents.

ALECSYS introduces some major improvements in the standard model of
learning classifier systems (CSs) (Booker, Goldberg and Holland [8]). First,
ALECSYS permits to distribute a CS on any number of transputers [19, 20, 23].
Second, it gives the learning system designer the possibility to use many
concurrent CSs, each one specialized in learning a specific behavioral pattern.
Using this feature the system designer can use a divide-and-conquer approach: the
overall learning task is decomposed in several learning subtasks (easier and
quicker to learn), which are coordinated by coordination modules which are

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 329

themselves learning subtasks. 1 Our agents are therefore not completely built
through learning; they also have a certain amount of " innate" architecture.
(Innate architecture is created by the way in which the global system is built from
interconnected classifier subsystems.) Third, ALECSYS introduces a set of new
operators that overcome some of the problems and inefficiencies of previous CS
implementations. This last point will not be considered here; details about the
algorithms can be found in [21]. In our experiments we used an enhanced version
of the basic algorithm presented in the next subsection.

3.1. The learning classifier system paradigm

As the model proposed by Booker et al. [8], our learning classifier systems are
composed of three main components (see Fig. 4).

• The performance module, which is a kind of parallel production system,
implementing a behavioral pattern as a set of condition-action rules, or
classifiers. Our classifiers have two conditions and one action. Conditions and
actions are strings of fixed length k; symbols in the condition string belong to
(0, 1, #) , symbols in the action string belong to {0, 1}.

• The credit apportionment module, which is responsible for the redistribution
of incoming reinforcements to classifiers. Basically, the algorithm is an
extended version of the bucket brigade described by Dorigo [21].

• The rule discovery module, which creates new classifiers according to an
extended genetic algorithm [21].

Learning takes place at two distinct levels. First, the apportionment of credit
can be viewed as a way of learning from experience the adaptive value of a
number of given classifiers with respect to a predefined target behavior. Second,
the rule discovery mechanism allows the agent to explore the value of new
classifiers.

In CSs the bucket brigade algorithm solves both the structural and temporal
credit assignment problems (see, for example, [46]). Every classifier maintains a
value, called strength, that is modified by the bucket brigade in an attempt to
redistribute rewards to classifiers that are useful and punishments to those that are
useless (or harmful). Strength is used to assess the degree of usefulness of
classifiers; classifiers that have all conditions satisfied are fired with a probability
that is a function of their strength. The genetic algorithm explores the classifiers
space recombining useful classifiers to produce possibly better offspring. Offspring
are then evaluated by the bucket brigade.

An example can help to understand how the CS model works (see Fig. 4).
Consider AutonoMouse II (Figs. 1 and 3(a)) and the learning task approaching a

1 This technique is somewhat reminiscent of the approach taken by Mahadevan and Connell [36]. The
main difference is that we not only learn basic behaviors, but we also learn how to make them interact
(i.e., their coordination); in the work of Mahadevan and Connell, coordination is achieved by a
hardwired subsumption architecture. Another difference is that we use learning classifier systems
instead of Q-learning with statistical clustering.

330 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370

Rule discovery algorithm

Genetic algorithm .,f

New "Good" classifiers classifiers
. i

Set of Classifiers
I ,

con cond2 mess

,ll

Performance system

I Jconnict ~ Eff~¢t,,rs I :esol° ionj- '
essage List

"~t in t-mess-1 /

[i'ni'- r~ e-s {-k t
Messages J]env-mess'lL-I Detectors L,¢

- I ; I ' ' - < e'm7-fia~s~-

Strenlgth ~
changes Original

rtionment of b I
Q. L---] credit algorithm F ~

Apportionment of credit system

Reinforcements

Trainer J <

Fig. 4. The learning classifier system.

n I
V ::]
O

I

n I
I

m I

e

n

t
I
I

-7
Observations

l ight source . The learning system is initialized by a set of randomly generated
classifiers, each with the same strength. The CS receives four-bit input messages,
identifying the light position (see below and Fig. 5 for details), which are
appended to the message list, a data structure which is initially empty. Messages
in the message list are then matched against conditions of classifiers; matching
classifiers are activated for inclusion in the next stage. The auction module
chooses probabilistically within the set of activated classifiers those which are
allowed to append a message to the message list. (A classifier has a probability to
win the auction proportional to its strength.) Some of the messages appended can
be sent to effectors: they are proposing actions (e.g., robot moves). If the
proposed actions are not conflicting, then the actions are carried out. Otherwise a
conflict resolution mechanism is called. The conflict resolution mechanism could,

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 331

for example, choose one of the conflicting actions probabilistically, with a
probability proportional to the strength of the classifier that proposed the action.
This action is rewarded (or punished) by the trainer.

As the classifier set is randomly generated, with high probability it does not
contain all the rules necessary to accomplish satisfactorily the task. It is the duty
of the genetic algorithm to recombine classifiers and to substitute low strength
ones with new ones. The genetic algorithm (Holland [25]) will not be discussed
here as it is a well-established algorithm.

3.2. Basic and coordination behaviors in ALECSYS

With ALECSYS it is possible to define two classes of learning modules; we call
them basic behaviors and coordination behaviors. Both are implemented as
classifier systems.

Basic behaviors are directly interfaced with the environment. Each basic
behavior receives bit-strings as input from sensors and sends bit-strings to
actuators to propose actions. Basic behaviors inserted in a hierarchical architec-
ture occupy level 1; they send bit-strings to connected higher-level coordination
modules. Consider for example AutonoMouse II and the basic behavioral pattern
Chase. As all behaviors (both basic and coordination ones), it is implemented as a
CS. For ease of reference we call this classifier system CS-Chase. Fig. 5 shows the
input-output interface of CS-Chase. In this case the input pattern only says which
sensors see the predator. (AutonoMouse II has four binary sensors, see Figs. 1
and 3(a), which are set to 1 if light intensity is higher than a given threshold, to 0
otherwise.) The output pattern is composed of a proposed action, a direction o f
motion plus a move~do_not_move command, and of a bit-string (in this case of
length 1) for the coordinator; this bit-string is there to let the coordinator know
that CS-Chase was proposing an action. Note that the value of this bit-string is not
designed, but must also be learned by CS-Chase.

Coordination behaviors receive input from lower-level behavioral modules and

position of chased
object

11ooi111
~j ~ to the

~ - ~ ~ ' coordinator
direction x move /
of motion do_not_move

input pattern

I CS-C" se I

11oo1111
output pattern

z) b) c)
Fig. 5. (a) Example of input message. (b) Example of output message. (c) Example of input-output
interface for the CS-Chase behavior.

332 M. Dorigo, M. Colornbetti / Artificial Intelligence 71 (1994) 321-370

Coordination ('Composition [CS-Coordinator I action "lk" Rule

I I I -Fee I I L
Basic actions proposed

E
n

v

i
r

Action I On
m
e

n
t

Fig. 6. Example of innate architecture for a three-behavior learning task.

produce an output action that, with different modalities depending on the
composition rule used, influences the degree of application of actions proposed by
basic behaviors. Fig. 6 shows one possible innate architecture of an agent that has
the following learning task (which we call the Chase/Feed/Flee behavior):

If there is a predator
then Flee
else if hungry

then Feed (i.e., search for food}
else Chase the moving object.

In our simulated environment predators appear at random time intervals; the
agent becomes hungry whenever it sees a food source; the moving object is always
present (this means that at least one basic behavioral module is always active).

In this example, a basic behavior has been designed for each of the three
behavioral patterns used to describe the learning task. In order to coordinate
basic behaviors in situations in which two or more of them propose actions
simultaneously, a coordination module is used. It receives a bit-string from each
connected basic behavior (in this case a one-bit string, the bit indicating whether
the sending CS wants to do something or not) and proposes a coordination action.
This coordination action goes into the composition rule module, which imple-
ments the composition mechanism. In this example the composition rule used is
suppression, and therefore only one of the basic actions proposed is applied.

4. Interdependence between the environment, the learning agent, and the
trainer

Our scenario includes an environment, a learning agent, and a trainer in charge
of shaping agent-environment interactions. Even if our agents and environments
are very simple, to characterize their interactions is by no means trivial. First, the

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 333

agent's architecture is not given a priori, but is at least partially designed in order
to fit a given situation. Also the environment is not completely "natural", in that
it contains artificial objects that can be exploited in order to make the intended
interactions possible. Moreover, there are many different ways in which one may
attempt to shape the agent's behavior.

In general, we start with some intuitive idea of a target behavior in mind. We
consider whether the natural characteristics of the environment are likely to suit
such behavior, or whether we need to enrich the environment with appropriate
artificial objects, like moving lights and special surfaces. Then we design a
sensorimotor interface and an internal architecture that allows the agent to gather
enough information from the environment, and to act back on the environment so
that the desired interaction can emerge. Finally, we ask ourselves what shaping
policy (i.e., strategy in providing reinforcements) can actually steer the agent
toward the target behavior. This process is iterative, in that difficulties in finding,
say, an appropriate shaping policy may compel us to backtrack and modify
previous design decisions.

In the following, we discuss the relevant aspects of all entities involved in
making a pattern of interaction emerge.

4.1. Properties of actions

Consider the five basic responses introduced in Section 2. Four of them are
objectual, in that they involve the agent's relationship with an external object;
these responses are the approaching, chasing, avoidance, and fleeing behaviors.
One response, namely the mimetic behavior, is not objectual, in that it involves
only states of the agent's body.

Objectual responses are:
• type-sensitive, in that agent-object interactions are sensitive to the type to

which the object belongs (prey, obstacle, predator, etc.);
• location-sensitive, in that agent-object interactions are sensitive to the

relative location of the object with respect to the agent.
Type-sensitivity is interesting because it allows for fairly complex patterns of

interaction, which are however within the capacity of an S -R agent. In fact, it
requires only that the agent be able to discriminate some object feature
characteristic of the type. Clearly, the types of objects an S -R agent can tell apart
depend on the physical interactions between external objects and the agent's
sensory apparatus. Note that an S -R agent is not able to identify an object, which
means discerning two identical but distinct objects of the same type.

The interactions we consider do not depend on the absolute location of the
objects and of the agent; in fact, they depend only on the relative angular
position, and sometimes on the relative distance, of the object with respect to the
agent. Again, this requirement is within the capacities of an S -R agent.

It is important to note that an agent's behavior can only be understood in
relation with the environment. For example, the difference between the avoid-
ance behavior and the fleeing behavior cannot be understood by considering the

334 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

agent in isolation from its environment. In both behaviors, the agent's task is just
to increase the distance between itself and some external object. However,
external observers understand the agent to avoid obstacles (i.e., still or at most
"blindly" moving objects), while they understand it to flee from predators (i.e.,
objects that may actively try to chase it).

In the context of shaping, differences that appear to an external observer can
be relevant even if they are not perceived by the agent. The reason is that trainers
will in general base their reinforcing activity on an observation of the agent's
interaction with the environment, and not on the agent's internal states alone.
Clearly, from the point of view of the agent a single move of the avoidance or of
the fleeing behavior are exactly the same. However, in complex behavior
patterns, avoidance and fleeing relate differently to other behaviors. In general,
avoidance should modulate some other movement response; on the contrary,
fleeing will be more successful if it suppresses all competing responses. As we
shall see in the following sections, this fact influences both the architectural design
and the shaping policy for the agent.

4.2. Properties of the environment

For learning to be successful, the environment must have a number of
properties. Given the kind of agent we have in mind, the interaction of a physical
object with the agent depends only on the object's type and on its relative
position with respect to the agent. Therefore, sufficient information about object
types and relative positions must be available to the agent. This problem can be
solved in two ways: either the natural objects existing in the environment have
sufficient distinctive features that allow them to be identified and located by the
agent, or else artificial objects must be designed so that they can be identified and
located. For example, if we want the agent to approach light L 1 and avoid light
L 2, the two lights must be of different color, or have a different polarization
plane, to be distinguished by appropriate sensors. In any case, recognition will be
possible only if the rest of the environment cooperates. For example, if light
sensing is involved, environmental lighting must be almost constant during the
agent's life.

In order for a suitable response to depend on an object's position, objects must
be still, or move slowly enough with respect to the agent's speed (this aspect will
be further discussed below). This does not mean that a sufficiently smart agent
could not evolve a successful interaction pattern with very fast objects: however,
such a pattern could not depend on the instantaneous relative position of the
object, but would involve some kind of extrapolation of the object's trajectory,
which is beyond the present capacities of the AutonoMice.

4.3. Properties of the learning system

The learning system we use is based on the metaphor of biological evolution.
This raises the question of whether evolution theory provides the right technical
language to characterize the learning process.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 335

We think we should resist this temptation. There are various reasons why the
language of evolution cannot literally apply to our agents. First, we use an
evolutionary mechanism to implement individual learning rather than philogenetic
evolution. Second, the distinction between phenotype and genotype, which is
essential in evolution theory, in our case is rather confused; in fact, individual
rules within a CS play both the role of a single chromosome and of the phenotype
undergoing natural selection. In our experiments, we found that we tend to
consider the learning system as a black box, able to produce S -R associations and
categorizations of stimuli into relevant equivalence classes. More precisely, we
expect the learning system:

• to discover useful associations between sensory input and responses;
• to categorize input stimuli so that precisely those categories will emerge,

which are relevantly associated to responses.
Given these assumptions, the sole preoccupation of the designer is that the
interactions between the agent and the environment can produce enough relevant
information for the target behavior to emerge. As it will appear from the
experiments reported in the following sections, this concern influences the design
of artificial environment objects and of the agent's sensory interface.

4.4. The trainer as an agent

In principle, the trainer is an agent, with own sensors, effectors and control.
Sensors allow the trainer to observe the behavior of the robot to be shaped,
effectors are used to provide reinforcements, and the control system implements a
given shaping policy. Note that the trainer's environment includes both the
robot's environment and the robot itself.

As we have already said, in the experiments reported in this paper the role of
the trainer is played by the reinforcement program (RP). For the implementation
of the RP, the only nontrivial function is the observation of the agent's behavior.
In fact, previous research in robot shaping has solved this problem by identifying
the RP's sensors with the agent's sensors, that is by providing the trainer exactly
with the same input information that is fed to the robot (see [36]). This approach
has some shortcomings. First, it does not allow the trainer to gather more
information about the environment than the agent does, which seems to be an
unnecessary limitation. Second, and more important, it binds the shaping policy
to depend on low-level details of the agent's physical structure. As a consequence,
the RP will in general be as complex as a program directly implementing the
target behavior, and this greatly limits the effectiveness of learning as an
alternative to robot programming; moreover, any low-level change to the agent's
physical architecture makes it necessary to write a new RP.

In our opinion, RPs should be easier to write than control programs, and
should be portable from agent to agent, at least when the differences are not too
large. To achieve this result, an RP must be abstract enough and independent of
the agent's internal structure. Often, this involves providing the RP with own
sensors, able to extract information from the environment independently of the
agent.

336 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370

To give a concrete example, in the experiments with AutonoMouse II (see
Section 7), the robot used only binary information from its four directional eyes,
while the RP used the two central eyes (Fig. 1) placed on the robot to evaluate
the increase or decrease of light intensity, which is related to the distance from
the light source. In other words, the robot carried the trainer's sensors on board.
In the experiment with AutonoMouse IV (also reported in Section 7) we have
followed a different strategy: the same hardware devices are used both as the
sensors of the agent and as the sensors of the RP; however, while the eight-bit
output of such devices is used directly by the RP, it is transformed into simpler
on/off signals before being input to the robot. In this way, the agent receives
enough information to implement the target behavior, but its learning speed
profits from the reduction of the search space size.

As a consequence of these design decisions, the very same RP can be used to
shape a variety of different agents, provided their sensory apparatus is fine
enough to support the relevant discriminations in the given environment. The
conceptual analysis of the target behavior necessary for writing the RP can be
highly independent of the agent to be shaped, thus making the RP portable from
agent to agent. This is coherent with our claim that reinforcement learning can be
seen as a kind of situated translation of a high level specification of the target
behavior (see end of Section 2). The learning mechanism, regarded as a
translator, is machine-independent in that it need not embed a model of the device
for which the control program is produced. And trainers, regarded as robot
programmers, can concentrate on their own view of the interaction, neglecting the
agent's architecture as far as the agent is sufficiently powerful to discriminate
relevant world states.

4.5. Beyond reactive behavior

In one of our experiments, we tried to go beyond simple S-R behavior. As
remarked by Beer [5], this implies that the agent is endowed with some form of
internal state (which need not be regarded as a "representation" of anything).
The most obvious candidate for an internal state is a memory of the agent's past
(Whitehead and Lin [52]). Of course, the designer has to decide what has to be
remembered, how to remember it, and for how long. Such decisions cannot be
taken without a prior understanding of relevant properties of the environment.

In an experiment reported in Section 6, we added a memory of the past state of
the agent's sensors, allowing the learning system to exploit regularities of the
environment. The idea is that if physical objects are still or move slowly with
respect to the agent, their current position is strongly correlated with their
previous position. Therefore, how an object was sensed in the past is relevant to
the actions to be performed now, even if the object is not currently perceived.

In fact, suppose that at cycle N the agent senses a light in the leftmost area of its
visual field, and that at cycle N + 1 the light is no longer sensed. This piece of
information is useful to approach the light, because at cycle N + 1 the light is
likely to be out of the agent's visual field on its left. The experiments showed that

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 337

a memory of past perceptions initially makes the learning process harder, but
eventually increases the performance of the approaching behavior.

By running a number of such experiments, we confirmed an obvious expecta-
tion, namely that the memory of past perceptions is useful only if the relationship
between the agent and its environment changes slowly enough to preserve a high
correlation between subsequent states. In other words, agents with memory are
favored only in predictable environments.

4.6. Learning versus design

As we have already remarked, successful learning presupposes a careful design
of the agent's interface, and possibly of artificial world objects. A further design
issue regards the controller's architecture, that is the overall structure of the
system in charge of producing actual behavior. This issue is particularly relevant
when the target behavior is not a basic response, but a complex behavior pattern.

In principle, also complex behavior patterns, like the ones presented in Section
2, can be learned by a single classifier system. However, learning might be very
slow, because more complex behaviors correspond to larger search spaces for
both credit apportionment and rule discovery. It is therefore interesting to see
whether a search space can be factored into a number of smaller spaces. This
question brings in the issue of architecture: intuitively, when a complex behavior
pattern can be decomposed into simpler elements, some kind of hierarchical
architecture is expected to speed up learning as a result of narrowing search. In
fact, the use of a prewired architecture is also suggested by results obtained by
other researchers in the field of autonomous systems (e.g., [35, 36]).

As we shall see in Sections 6 and 7, the experiments carried out to sys-
tematically compare different types of architectures confirm this expectation.
Different kinds of complex behavior do profit from different types of architec-
tures; at the same time, each type of architecture constrains the shaping
procedure, that is the strategy adopted to drive learning. These issues are dealt
with in the next section.

5. Types of architectures and shaping policies

In ALECSYS, an agent can be implemented by a network of different CSs. The
issue of architecture is therefore the problem of designing the network that best
fits some predefined class of behaviors. So far, we have experimented with
different types of architectures, that can be broadly classified in two classes:

• monoli thic architectures, built by one CS directly connected to the agent's
sensors;

• distributed architectures, built by many CSs; in this case we distinguish
between two subclasses:
- f lat architectures, built by more than one CS, in which all CSs are at "level

1", i.e. directly connected to the agent's sensors;

338 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

(~) (b)
Fig. 7. Monolithic architectures.

- hierarchical architectures, built by a hierarchy of levels.
Within such classes, there are still a number of possible choices, described below.

5.1. Monolithic architectures

The simplest choice is, of course, the monolithic architecture, with only one CS
in charge of controlling the whole behavior 2 (Fig. 7). If the target behavior is
made up of several basic responses, there is a further choice to be made: the state
of all sensors can be wrapped up in a single message (Fig. 7(a)), or distributed
into a set of independent messages (Fig. 7(b)). We call the latter case monolithic
architecture with distributed input. The idea is that inputs relevant to different
responses can go into distinct messages; in such a way, input messages are
shorter, and the overall learning effort can be reduced (see Section 6.3.2).

5.2. Flat architectures

A distributed architecture is made up of more than one CS. If all CSs are
directly connected to the agent's sensors, then we use the term flat architecture
(Fig. 8). The idea is that distinct CSs implement the different basic responses that
make up a complex behavior pattern. There is a further issue, here, regarding the
way in which the agent's response is built up from the moves proposed by the
distinct CSs. If such moves are independent, they can be realized by different
effectors at the same time (Fig. 8(a)); those moves that are not independent,
however, have to be integrated into a single response before they are realized
(Fig. 8(b)).

I environment]

(a) (b)
Fig. 8. Flat architectures.

2 Mahadevan and Connell [36] first proposed the term monolithic architecture for this kind of structure.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 339

5.3. Hierarchical architectures

In a fiat architecture, all CSs receive input only from the sensors. In a
hierarchical architecture, the set of all CSs can be partitioned into a number of
levels. By definition, a CS belongs to level N if it receives input from systems of
level N - 1 at most, where level 0 is defined as the level of sensors. An N-level
hierarchical architecture is a hierarchy of CSs having level N as the highest one;
Fig. 9 shows two different two-level hierarchical architectures. First-level CSs
implement basic behaviors described in Section 3, higher-level CSs implement
coordination behaviors.

With a CS in a hierarchical architecture we have two problems; first, how to
receive input from a lower-level CS; second, what to do with the output.
Receiving input from a lower-level CS is easy: remember that all messages are
bit-strings of some fixed length; therefore, an output message produced by CS 1
can be treated as an input message by a different CS 2. In a sense, lower-level CSs
are viewed by higher-level ones as virtual sensors.

The problem of deciding what to do with the output of CSs is more complex. In
general, the output messages from the lower levels go to higher-level CSs, while
the output messages from the higher levels can go directly to the effectors to
produce the response (Fig. 9(a)), or be used to control the composition of
responses proposed by lower CSs (Fig. 9(b)). In this paper, most of the
experiments were carried out using suppression as composition rule; we dub the
resulting hierarchical systems switch architectures. In Fig. 10 we show an example
of a three-level switch architecture implementing an agent which should learn the
Chase/Feed/Flee behavior introduced in Section 3. In this example the coor-
dinator of level two (SWl) should learn to suppress the Chase behavior whenever
the Feed behavior proposes an action, while the coordinator of level three (SW2)
should learn to suppress SW1 whenever the Flee behavior proposes an action.

5.4. How to design an architecture: qualitative criteria

The most general criterion for choosing an architecture is to make the
architecture naturally match the structure of the target behavior. This means that

4

Z
(a) (b)

Fig. 9. Two-level hierarchical architectures.

340 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370

Fig. 10. An example of a three-level switch architecture for the Chase/Feed/Escape behavior.
Besides the three basic behaviors can be seen the two switches, SWl and SW2.

each basic response should be assigned a CS, and that such CSs should be
connected in the most natural way to obtain the global behavior.

Suppose the agent should normally follow a light, while being ready to reach its
nest if a specific noise is sensed (revealing the presence of a predator). This
behavior pattern is made up of two basic responses, namely following a light and
reaching the nest, and the relationship between the two is one of suppression (see
Section 2). In such a case, the switch architecture is a natural choice.

In general, the four mechanisms for building complex behaviors defined in
Section 2 map onto different types of architecture in the following way:

• Independent sum: flat architecture with independent outputs (Fig. 8(a)).
• Combination: flat architecture with integrated outputs (Fig. 8(b)), or

hierarchical architecture.
• Suppression: switch architecture (remember that the switch architecture is a

special kind of hierarchical architecture).
• Sequence (not treated in this paper; see [16]): hierarchical architecture.

5.5. How to design an architecture: quantitative criteria

In Section 4 we stressed that the main reason for introducing architecture is
speeding up learning of complex behavior patterns. Clearly, speed-up is the result
of factoring a large search space into smaller ones; therefore, a distributed
architecture will be useful only if the component CSs have smaller search spaces
than a single CS able to perform the same task.

We can turn this consideration into a quantitative criterion, by observing that
the size of a search space grows exponentially with the length of messages. This
implies that a hierarchical architecture can be useful only if the lower-level CSs
realize some kind of informational abstraction, thus transforming the input
messages into shorter ones; an example of this is provided by the experiment on
the two-level switch architecture in Section 6. Consider for example an architec-

M. Dorigo, M. Colornbetti / Artificial Intelligence 71 (1994) 321-370 341

ture in which a basic behavioral module receives from its sensors four-bit
messages saying where the light is. If this basic behavioral module sends to the
upper level four-bit messages indicating the proposed direction of motion, then
the upper level could have used the sensorial information directly, by-passing the
basic module. In fact, even if this basic behavioral module learns the correct
input-output mapping, it does not operate any information abstraction and, as it
sends to the upper level the same number of bits it receives from it sensors, it
makes the hierarchy computationally useless.

5.6. Shaping policies

The use of a distributed system, either fiat or hierarchical, brings in the new
problem of deciding a shaping policy, that is the order in which the various tasks
are to be learned. There are two extreme choices:

• holistic shaping: the whole network of CSs is treated as a single system, with
all components being trained together;

• modular shaping: each component is trained separately.
Intermediate choices are possible.

In principle, training different CSs separately makes learning easier; however,
the shaping policy must be designed in a sensible way. Hierarchical architectures
are particularly sensitive to the shaping policy; indeed, it seems reasonable that
the coordination modules be shaped after the lower modules have learnt to
produce the simple behaviors. The experiments on two-level and three-level
switch architectures (Section 6) show that in fact good results are obtained by:
shaping the lower CSs, then "freezing" them and shaping the coordinators, and
finally letting all components free to go on learning together.

6. Experiments in simulated worlds

In this and in the next section we present some results obtained with simulated
and real agents. The desire to give an answer to the following questions has
guided the choice of which experiments to discuss:

• Architecture: does decomposition in subtasks help the learning process?
• Shaping policy: how must shaping be structured? Can basic behaviors and

coordination of behaviors be learned at the same time, or is it better to split
the learning process into several distinct phases?

• Architecture~shaping: is there any relation between the agent's architecture
and the shaping policy to be used?

• Architecture~learning: can an inappropriate architecture impede learning?
• Architecture's scalability: can the different architectural approaches we used

in the first experiments be composed themselves to build more complex
hierarchical structures?

• Memory: how can the agent solve problems that require it to remember what
happened in the past?

342 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370

• Simulation~real world: are there major differences between the real and
simulated worlds?

Some other important questions, like the learning of basic behaviors, were
discussed in a previous paper [22].

This section is organized as follows. First, we explain our experimental
methodology. Second, we illustrate the simulated environments we used to carry
out our experiments. Third, we report experiments that try to answer the first
four questions (about architecture, shaping and learning). Fourth we show the
result of a first experiment about the scalability of our approach: a two-level
switch architecture whose basic behavioral modules are monolithic architectures
with distributed input. Fifth, we illustrate the results of the "find hidden object"
experiment in the simulated world. This experiment has also been run with the
physical robot (see Section 7). Last, we report some experiments about memory
management. Real-world experiments will be discussed in the next section.

6.1. Experimental methodology

Experiments in the simulated worlds were run at least until there was some
evidence that the performance was unlikely to improve further; this evidence was
collected automatically by a steady-state-monitor routine, checking whether in the
last k cycles the performance had significantly changed. In experiments involving
multi-phase shaping strategies, a new phase was started when the steady-state-
monitor routine signaled that learning had reached a steady state. In the real
world, experiments were run until either the goal was achieved or the experimen-
ter was convinced that the robot was not going to achieve the goal (at least in a
reasonable time). Simulation experiments were repeated several times (typically
five), and we report the graphs of typical results. In fact, the use of the
steady-state-monitor routine made it difficult to show averaged graphs, as new
phases started at different cycles in different experiments. Nevertheless, all the
graphs obtained were very similar, which makes us confident that the typical
result we present is a good approximation of the average behavior of our learning
system. Experiments with the real robots were repeated only occasionally, as they
are highly time-consuming. Also in this case, the experiments which were
repeated showed that the differences between different runs were marginal.

In all the experiments in simulated worlds, we used the quantity

P Number of correct responses
= ~<1 Total number of responses

as performance measure. That is, performance was measured as the ratio of
correct moves to total moves performed from the beginning of the simulation.
Note that the notion of "correct" response is implicit in the RP: a response is
correct if and only if it receives a positive reward. Therefore, we call the above
defined ratio the cumulative performance measure induced by the RP.

We usually plot the performance of the basic behaviors, of the coordination

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 343

behaviors (when applicable) and of the global system. For basic and coordination
behaviors only the moves in which they were active are considered; instead, the
global performance is computed as the ratio of globally correct moves to total
moves from the beginning of the simulation, where at every cycle a globally
correct move is a move correct with respect to the current goal (we call cycle the
interval between two sensors readings). So, for example, if after ten cycles the
Chase behavior has been active for 6 cycles proposing a correct move 4 times, and
the Flee behavior has been active for 4 cycles proposing a correct move 3 times,
then the Chase behavior performance is 4/6, the Flee behavior performance 3/4,
and the global performance (4 + 3)/(6 + 4) = 7/10.

6.2. Simulation environments

From Section 5 it is clear that, in order to test all the proposed architectures,
we need many different simulated worlds. As we need a basic task for each basic
behavior, in designing the experimental environments we were guided, besides
the desire of investigating pieces of the Animat problem, by the necessity of
building environments in which basic tasks, and their coordination, could be
learned by the tested agent architecture. We used the following environments.

• Chase an object environment (single-behavior environment, with and with-
out memory);

• Chameleon~Chase environment (two-behavior environment);
• Chase ~Feed~ Flee environment (three-behavior environment);
• Find_hidden object environment (two-behavior environment).

In the Chase an object environment (see Fig. ll(a)), the task is to learn to
follow a moving object. This environment was studied primarily to test the
learning classifier system capabilities and as a test-bed to propose improvements
in the CS model. These aspects and results have been presented and discussed for
example in [19, 21, 23]. Here it is sufficient to say that the analysis of this and
related tasks led to the introduction of some new operators that improved the
learning performance, and that the resulting system was powerful enough to allow
the real-time learning of simple behaviors like light approaching (see the
experiments with the AutonoMouse in Section 7). Moreover, we have used this
environment to test whether the addition of sensor memory could improve the
performance of the agent. As we show at the end of this section, the results are
promising.

The Chameleon/Chase environment was introduced to study the composition
of two independent behaviors. In this environment the agent learns to follow a
light source and to change its color according to the background color (see Fig.
l l(b)) . Results obtained in this environment were quite satisfactory (see [19]);
using the flat architecture (Fig. 8(a)) the agent was able to learn to follow the light
source and to change its color correctly. (After 80,000 iterations, in one typical
experiment the average performance in the last 1,000 iterations was: 0.97 for the
Chase behavior, 0.95 for the Chameleon behavior, and 0.92 for the global system.
These results may give the impression that the learning algorithm is rather slow.

344 M, Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

Light

4
Simulated
robot

a)

Light

4
Simulated
robot

Q
Predator

c)

b)

Simul
robot

~::' ~i."

d)
Fig. 11. Simulated environment setup: (a) Chase an object environment. (b) Chameleon/Chase
environment; the environment was partitioned into eight sectors of four different colors. (c) Chase/
Feed/Escape environment. (d) Findhidden_object environment: the agent does not see the light
when it is in the shaded area.

On the contrary, a very good performance, higher than 0.8, was obtained after
7,000 iterations.) Details about these experiments will not be further discussed in
this paper.

In the Chase /Feed /F lee environment, already partially introduced in Section 3,
there are three objects: a light, a food source and a predator. Basically, the robot
is predisposed to follow the moving light source. When its distance from the food
source is less than a threshold, then the robot feels hungry and thus focuses on
feeding. When a predator appears, then the main goal is to run away from the
predator . The maximum speed of the robot is the same as the speed of the light
source and of the predator. The light source and the food are always present (but
the food can be seen only when closer than a threshold). The predator appears at
random time intervals, remains in the environment for a random number of
cycles, and then disappears. The environment dimensions are 640 x 480 pixels and
the food distance threshold was set to 45 pixels (a robot 's step was set to 3 pixels).
In Fig. l l (c) a snapshot of the environment is shown.

In the Find_hidden_object environment the agent's goal, as in the Chase an

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 345

object environment, is to follow a moving light source. The task is complicated by
the presence of a wall. Whenever it is interposed between the light and the agent
(see Fig. l l (d)) , the agent cannot see the light any longer, and must activate a
new behavioral pattern, namely a Search for object behavior.

6.3. The issues o f architecture, shaping and learning

Our experiments show that a factorization of the learning task into several
simpler learning tasks helps. This is obvious, though it is still interesting to see to
what extent cooperat ion among the modules comprising the learning system can
itself be learned. As discussed in Section 5, two architectural decisions must be
taken by the system designer: how to decompose the learning problem, and how
to make the resulting modules interact. The first issue is a matter of efficiency: a
basic behavior should not be too difficult to learn. In our system, this means that
classifiers should be no longer than about 30 bits (and therefore messages cannot
be longer than 10 bits). The second issue is both a matter of efficiency,
comprehensibili ty, and learnability. We feel, though this was not proved ex-
perimentally because we did not reach the complexity required by such an
experiment , that a coordination module is constrained by the same limitations in
complexity as basic modules. The longer the message 3 received, the longer the
t ime required to learn. Comprehensibility means that by examination of the
architecture a human observer should be able to understand why certain
connections occur. Learnability refers to the fact, already discussed in Section 5,
that not every architecture allows the system to learn any behavior.

6.3.1. Monolithic architecture
The monolithic architecture is the most straightforward way to apply CSs to our

learning problem; just have a single CS learn the whole thing. With this approach
the machinery provided by ALECSYS is redundant. Results obtained with the
monolithic architecture will therefore be used as a reference to evaluate whether
by decomposing the overall task into simpler subtasks, and /o r by using a
hierarchical architecture, we obtain improved performance. In an attempt to be
fair in comparing the different approaches, we adopted the same number of
transputers in every experiment. 4

Fig. 12 shows the typical result for the Chase /Feed /F lee environment. An
important observation is that the performance of the Flee behavior is higher than
the performance of the Chase behavior, which in turn is higher than that of the
Feed behavior. This result holds for all the experiments with all the architectures.

3 The length of a message received by a coordination module is proportional to the number of
lower-level modules coordinated and to the quantity of information each lower level sends to it.
4 For a given number of processors, the system performance is dependent on the way the physical
processors are interconnected, that is on the hardware architecture. The hardware architecture we use
was chosen after a careful experimental investigation presented elsewhere (see Piroddi and Rusconi
[39], and Camilli, Meglio, Baiardi, Vanneschi, Montanari and Serra [13]).

346 M. Dorigo. M. Colombetti / Artificial Intelligence 71 (1994) 321-370

Performance

0.19 .

0 . 8 ~-

0.7

0.6

0.5

0.4

0.3

Number of cycles
(thousands)

10 20 30 40 50 60 70 80

................... Chase

. Feed

- - Escape

- - Global

Fig. 12. Cumulative performance of the typical experiment with the monolithic architecture.

The reason is two-fold. The Flee behavior is easier to learn because our agent
must learn to choose the fleeing movement among 5 out of 8 possible directions,
while the correct directions to Chase an object are, for our agent, 3 out of 8 (see
Fig. 13).

The lower performance of the Feed behavior is explained by the fact that, in
our experiments, the agent could see the object to be chased and the predator
from any distance, while the food could be seen only when closer than a given
threshold. This caused a much lower frequency of activation of Feed, that
resulted in a slower learning rate for that behavior.

Lig ~ h t Light approaching
Predator direct ions

Predator escaping
direct ions

Fig. 13. Difference between approaching and escaping behaviors.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 347

Another observation is that, after an initial very quick improvement of
performance, both basic and global performances set to an approximately
constant value, far from optimality. In a typical experiment, the global per-
formance after 80,000 cycles reached the value 0.72 and did not change any more
(we ran the experiment up to 300,000 cycles without observing any improvement).
In fact, as classifiers are 51 bits long, the search space, i.e., the cardinality of the
set of possible different classifiers, in this architecture has dimension 3 34. 217 . The
genetic algorithm, together with the apportionment of credit system, appears
unable to search such a huge space in a reasonable time.

6.3.2. Monolithic architecture with distributed input
With this architecture environmental messages are shorter (5 bits long) than in

the previous case, and we expect therefore a better performance. More than one
message can be appended to the message list at each cycle (maximum three
messages, one for each basic behavior).

The results, shown in Fig. 14, appeared to confirm our expectations: global
performance settled to 0.86 after 80,000 cycles and both the Chase and Flee
behaviors reached higher performance levels than with the previous monolithic
architecture. Only the Feed behavior did not improve its performance. This was
partially due to the early stop of the experiment. In fact, in longer experiments, in
which it could be tested adequately, the Feed behavior reached a higher level of
performance, comparable with that of the Chase behavior. It is also interesting to
note that the graph qualitatively differs from that of Fig. 12; after the initial steep
increase, performance slowly continues to improve, suggesting that the learning
algorithms are effectively searching the classifiers space.

Performance
1

0.9

(1.8

0.7 ,

0 . 6

0 . 5

0 , 4

0 . 3

_ - - ~ - - - - - - - - - - -
. - -

Number of cycles
' i i ~ i i " - " t t h o u s a n d s /

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

. C h a s e

. Feed

- - E s c a p e

G l o b a l

Fig. 14. Cumulative performance of the typical experiment with the monolithic architecture with
distributed input,

348 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

6.3.3. Two-level switch architecture
In this experiment we used a two-level switch architecture, in which the

coordination behavior implemented suppression. The results, reported in Figs. 15
and 16, give the following interesting information. First, as shown in Fig. 15
where we report the performance of the three basic behaviors and of the
coordinator (switch) in the first 50,000 cycles and the global performance from
cycle 50,000 to the end of the experiment, the use of the holistic shaping policy
results in a final performance that is comparable to that obtained with the
monolithic architecture. This is probably due to the fact that with holistic shaping
rewards obtained by each individual CS are very noisy. In fact, with this shaping
policy we give each CS composing the agent the same reward, computed
observing the global behavior. This means that there are occasions in which a
double mistake results in a correct, and therefore rewarded, final action. Consider
for example the situation in which Flee is active and proposes a (wrong) move
towards the predator, but the coordinator fails to choose the Flee module and
chooses instead the Chase module, which in turn proposes a move away from the
chased object (wrong move), say in the direction opposite to that of the predator.
The result is a correct move (away from the predator) obtained by the composi-
tion of a wrong selection of the coordinator with a wrong proposed move of two
basic behaviors. It is easy to understand that it is difficult to learn good strategies
with such a reinforcement program.

Second, using the modular shaping policy, performance improves, as expected.
The graph of Fig. 16 shows three different phases. In the first one, during the first
33,000 cycles, the three basic behaviors were independently learned. Between
cycles 33,000 and 48,000 they were "frozen", i.e., learning algorithms were
deactivated, and only the coordinator was learning. After cycle 48,000 all the

Performance
1

0 . 9

0 . 8

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

. J .

t ':~% . . . fTi
N ,,,,'"

0 10 2 0 3 0 4 0 5 0

Number of cycles
(t housands)

6 0 7 0 8 0

............... Chase

. Feed

- - Swi tch

- - Global

Fig. 15. Cumulative performance of the typical experiments with the two-level switch architecture.
Holistic shaping.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370 349

Performance
1

~ , (-:.-~.::~: 7.7.~. L?.L-"
.;,,

%fi

0.9

0.8

0 . 7

0.6

0 .5

0 . 4

0.3

Number of cycles

I - - i - - I . - ~ - - - I - - ¢ - - - - - - t (tr~ousands)= -

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

. Feed

m ~ 2 o o

Switch

- - Global

Fig. 16. Cumulative performance of the typical experiment with the two-level switch architecture.
Modular shaping.

components are free to learn, and we observe the global performance. The
maximum global performance value obtained with this architecture was 0.84.

As a help to the reader, we summarize in Table 1 the results about monolithic
and two-level architectures already presented in Figs. 12, 14, 15 and 16. A
problem in filling this table was that the experiments were not run using the same
number of iterations. This, as already said, is due to the steady-state-monitor
routine, which automatically decided when to shift to a new phase of the
experiment or when to stop it. Still, the first four experiments are comparable, as
they all run for about 80,000 iterations. Table 1 shows that, from the global
behavior point of view, the best results were obtained by the monolithic
architecture with d i s t r i b u t e d i n p u t and by the two-level switch architecture with

Table 1
A comparison of monolithic and two-level hierarchical architectures. Performance is measured as the
cumulative ratio of the number of correct moves to the total number of responses produced. As
experiments were run with different total numbers of iterations, the number of iterations used to
compute the performance is shown in parentheses under the performance value

Architecture Chase Feed Escape Switch I Global

Monolithic 0.71 0.56 0.75 - - 0.72
(80O0O) (80000) (80000) - - (800O0)

Monolithic with 0.86 0.56 0.92 - - 0.85
distributed input (80000) (80000) (80000) - - (80000)

Two-level switch 0.73 0.56 0.93 0.54 0.66
Holistic shaping (50000) (50000) (50000) (50000) (85000)

Two-level switch 0.93 0.92 0.98 0.84 0.82
Modular shaping (33000) (33000) (33000) (15000) (85000)

350 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

modular shaping. The performance of the basic behaviors in the second was
always better. In particular the Feed behavior achieved a much higher per-
formance level; in fact, using the two-level switch architecture with modular
shaping, each basic behavior is fully tested independently of the others, and
therefore the Feed behavior has enough time to learn its task. It is also interesting
to note that the monolithic architecture and the two-level switch architecture with
holistic shaping have roughly the same performance.

6.3.4. Three-level switch architecture
The three-level switch architecture (see Fig. 10) stretches to the limit the

hierarchical approach (a three-behavior task architecture with more than three
levels seems in fact to be senseless). Within this architecture the coordinator used
in the previous architecture was split into two simpler, binary, coordinators.
Using holistic shaping, results suggest that the two- and the three-level architec-
tures are equivalent (see Figs. 15 and 17, and Table 2). More interesting are the
results obtained with modular shaping. As we have three levels, we can organize
modular shaping in two or three phases. With two-phase modular shaping
basically we follow the same procedure as used with the two-level hierarchical
architecture; in the second phase basic behavioral modules are frozen and the two
coordinators learn at the same time. In three-phase modular shaping, the second
phase is devoted to shape the second-level coordinator (all the other modules are
frozen), while in the third phase the third-level coordinator alone learns.
Somewhat surprisingly, the results show that, given the same amount of resources
(computation time in seconds), two-phase modular shaping gave slightly better
results. The reason probably stems from the fact that, while with two-phase
modular shaping both coordination behaviors are learning for the whole learning

Performance
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

#a, ,

e

1 0 20 30 40 50 60 70 80

I
Number of cycles

(thousands)

90 100 110 120

. Chase

. Feed

- - Escape

Switch 1

. Switch 2

- - Global

Fig. 17. Cumulat ive performance of the typical experiment with the three-level switch architecture.
Holist ic shaping using the architecture of Fig. 10.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 351

Table 2
A comparison of two- and three-level hierarchical architectures. Performance is measured as the
cumulative ratio of the number of correct moves to the total number of responses produced. As
experiments were run with different total numbers of iterations, the number of iterations used to
compute the performance is shown in parentheses under the performance value

Architecture Chase Feed Escape Switch 1 Switch 2 Global

Two-level switch 0.73 0.56 0.93 0.54 - - 0.66
Holistic shaping (50000) (50000) (50000) (50000) (85000)

Two-level switch 0.93 0.92 0.98 0.84 - - 0.82
Modular shaping (33000) (33000) (33000) (15000) (85000)

Three-level switch 0.66 0.61 0.92 0.53 0.47 0.70
Holistic shaping (90000) (90000) (90000) (90000) (90000) (120000)

Three-level switch 0.94 0.92 0.98 0.97 0.86 0.99
Two-phase modular (33000) (33000) (33000) (56000) (56000) (120000)

shaping

Three-level switch 0.93 0.93 0.98 0.80 0.80 0.95
Three-phase modular (33000) (33000) (33000) (10000) (10000) (120000)

shaping

interval, with three-phase modular shaping the learning interval is split into two
parts during which only one of the two coordinators is learning, and therefore the
two switches cannot adapt to each other. The graph of Fig. 18 shows the very high
performance level obtained in this way.

For the reader's convenience, we compare in a table the results obtained with
the two- and three-level switch architectures. Table 2 reports the performance of

P e r f o r m a n c e

1

S
0.9

0.8

0 . 7

0.6

0.5

0 .4

0.3

Z !

I I I I
1 0 2 0 3 0

f+-

i i
. ,

I

i

4 0

. ~ ° r + . "

/

Number of cycles
~ ~ - ~ ' - "~th~usan~s)

5 0 6 0 7 0 80 90 100 110 120

.................. Chase

. Feed

- - E s c a p e

- - Switch 1

. Swi tch 2

- - Global

Fig. 18. Cumulative performance of the typical experiment with the three-level switch architecture.
Two-phase modular shaping using the architecture of Fig. 10.

352 M. Dorigo, M. Colornbetti / Artificial Intelligence 71 (1994) 321-370

basic behaviors, of switches, and of the global behavior, as measured after k
iterations, where k is the number in parentheses below each performance value.

We have run an experiment with the Chase/Feed/Flee behavior using the
three-level switch architecture of Fig. 19 to show that the choice of an agent
architecture which does not correspond naturally to the structure of the target
behavior leads to poor performance. This architecture differs from the architec-
ture of Fig. 10 because it was designed so that the distribution of tasks between
SWl and SW2 should impede learning. In fact, as SW2 does not know whether
SW1 is proposing a Chase or a Flee action, it cannot decide (and therefore learn)
whether to suppress SW1 or the Feed behavioral module.

Results are shown in Figs. 20 and 21. As in the preceding experiment,
two-phase shaping gave better results than three-phase. It is clear from Fig. 21
that the low level of global performance achieved was due to the impossibility for
SW2 to learn to coordinate the SWl and the Feed modules.

6.4. The issue of scalability

The experiment presented in this section regards the composition of the
monolithic architecture with multiple inputs with the two-level hierarchical
architecture. We used a Chase/Feed/Flee environment with four instances of each
class of objects (lights, food, predators). Only one instance in each class was
relevant for the learning agent (i.e., the agent likes only one of the four light
colors and one of the four kinds of food, and fears only one of the four potential
predators). Therefore, basic behaviors, in addition to the basic behavioral
pattern, had to learn also to discriminate between different objects of the same
class. For example, the Flee behavior, instead of receiving a single message
indicating the position of the predator (when present), now receives messages
regarding many different "animals", only one of which is a real predator.

enviro en]
Fig. 19. A three-level switch architecture with a wrong disposition of coordination modules.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 353

Performance
1

0.4 f ----+-----

0.3 -+---

................. Chase

. Feed

Escape

Switch 1

. Switch 2

- - Global

0 10 20 30 40 50 60 70 80 90 100 110 120

Fig. 20. Cumulative performance of the typical experiment with the three-level switch architecture.
Two-phase modular shaping using the "unnatural" architecture of Fig. 19.

Different "animals" are distinguished by a tag, and Flee must learn to run away
only from the real predator (it should be unresponsive to other animals). The
experiments have shown (see Fig. 22) that the agent learns the new, more
complex, task, although the performance level appears to be slightly lower than in
the previous experiment of Fig. 16.

Performance
1

/

/,,
:f
/

!i /

I - - t - - - - - -

0 10 20

0.9

0.8

0.7

0.6

0.5

0.4

0.3

i , f "
• ft= i

30 40 50

~ u m b e r of cycles
------,- '~thousands)

60 70 80

. C h a s e

. Feed

- - E s c a p e

Switch 1

. Switch 2

- - Global

Fig. 21. Cumulative performance of the typical experiment with the three-level switch architecture.
Three-phase modular shaping using the "unnatural" architecture of Fig. 19.

354 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

Performance

1

0 .9 ~ ~ '

o.a " - - ~ f ~ -

: ' 2
0.7 ~ ,, rd'.'

0 .6

0 .5

0 .4

0 .3 J I I - F b m -

40 80 120

Number of cycles

r i -~ ~t th°~san~ sJ " - J "

60 200 240 280

. Chase

. Feed

- - Escape

Switch

Global

Fig. 22. Cumulative performance of the typical experiment with a multi-input, two-level switch
architecture. Modular shaping.

6.5. Finding a hidden object

This experiment, whose environment is sketched in Fig. 11(d), has been run in
two different versions, one by simulation and one with a real robot (Au-
tonoMouse IV, see Figs. 2 and 3(b)). The aim was to see whether our system was
capable of learning a reasonably complex task, involving obstacle detection by
sonar and whiskers and searching for a hidden object. The target behavior was to
approach a light, walking around a wall when necessary. In these experiments we
paid no attention to the issue of architecture, and adopted a simple monolithic CS
throughout.

In both the simulated and the real experiment, the eyes and the sonar of the
robot (AutonoMouse IV in the real world) where used as on/of f sensors; the
input interface included:

• one bit for each of the two eyes (used as on/of f light sensors); each eye had a
visual cone of 180 degrees, with a 90 degrees overlapping in front;

• one bit for the sonar;
• one bit for each of the two side whiskers.

The output interface included two bits, coding the following four possible moves:
still, straight ahead, ahead with a left turn, and ahead with a right turn. In the
simulated experiments, the wall had a fixed position, while the light automatically
hid itself behind the wall each time it was reached by the agent. To shape the
agent, the reinforcement program was written with the following strategy in mind:

if a light is seen
then {Approach_the_light behavior)

Approach it

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 355

else {Search for object behavior}
if a distal obstacle is sensed (by sonar)

then
Approach it

else
if a proximal obstacle is sensed (by whiskers)

then
Move along it

else
Turn consistently (go on turning in the same direction, which-
ever it is).

The distances of the robot from the light and from the wall were computed from
the geometric coordinates of the simulated objects. The simulation was run for
50,000 cycles. In Fig. 23 we separately show the Approachthe_light performance
(when the light is visible), the Search for_object performance (when the light is
not visible) and the global performance for a typical experiment. Approaching the
light appears to be easier to learn than searching for it. This is easy to explain
given that searching for the light is a rather complex task, involving moving
toward the wall, moving along it and turning around when no obstacle is sensed.

6.6. Adding memory to ALECSYS

All the experiments described so far concern S-R behavior, i.e. direct
associations of stimuli and responses. Clearly, the production of more complex
behavior patterns crucially involves the ability to deal with dynamic behavior, that
is with input-output associations that exploit some kind of internal state. We have
only started moving in this direction, but a few experiments deserve reporting.

Performance

1

0.95

0.9

0.85

0.8

0,75

0.7

0,65

0.6

h~

?'

_

Number of cycles
(thousands)

50

Fig. 23. Cumulative performance for the "finding a hidden object" task.

approaching
....................... the light

searching
for the object

global

356 M. Dorigo, M. Colombetti / Artificial Intelligence 7I (1994) 321-370

In a dynamic system, a major function of the internal state is memory. Indeed,
the limit of S - R behavior is that it can relate a response only to the current state
of the environment. It must be noticed that ALECSYS is not completely memory-
less; in fact, both the strengths of classifiers and the internal messages appended
to the message list embody information about past events. However, it is easy to
think of target behaviors that require a more specific kind of memory.

In Section 4, we have already argued that following a light can be made easier
by a memory of past perceptions. We have endowed the learning system with a
sensor memory, that is a kind of short-term memory of the state of the agent's
sensors. In order to avoid an ad hoc solution to our problem, we have adopted a
sensor memory that functions uniformly for all sensors, independently of the task.
The idea was to provide the agent with a representation of the previous state of
each sensor, for a fixed period of time; that is, at any given time t the agent can
establish, for each sensor S, whether:

(i) the state of S has not changed during the last k cycles (where the memory
span k is a parameter to be set by the experimenter);

(ii) the state of S has changed during the last k cycles; in this case, enough
information is given so that the previous state of S can be reconstructed.

This design allows us to define a sensor memory that depends on the input
interface, but is independent of the target behavior (with the exception of k,
whose optimal value is in fact a function of the task). More precisely, the sensor
memory is made up of:

• a memory word, isomorphic to the input interface;
• an algorithm that updates the memory word at each cycle, in accordance to

the specifications (i) and (ii), on the basis of the current input, of the
previous memory word, and of the number of cycles elapsed from the last
change;

• a mechanism that appends the memory word to the message list, with a
specific tag identifying it as a memory message.

The memory process is described in more detail in Fig. 24. Note that, coherently
with our approach, the actual "meaning" of memory messages must be learnt by
the classifier systems. In other words, memory messages are just one more kind of
messages, whose correlation with the overall task has to be discovered by the
learning system.

The results obtained in a typical simulation are reported in Figs. 25-27, that
compare the performances of the agent with and without memory. The target
behavior was to track a moving light. The agent had two frontal eyes, each with a
visual cone of 60 degrees, overlapping for 30 degrees; as a result, the visual space
in front of the agent was 90 degrees, partit ioned into three sectors of 30 degrees
each. The memory span was set to 10.

The result reported in Fig. 25 suggests that the performance of the agent with
memory tends to become asymptotically better than that of the memoryless agent.
However , the learning process is slower. This is easy to explain: the "intellectual
task" of the agent with memory is harder, because the role of the memory
messages has to be learned; on the other hand, the agent can learn about the role

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370 357

S l s l l " I si I -.. I s N I

M I r o l l ... I mj I ' I m N I

S = environment message, coding the state of the sensors; each sensor is
represented by a bit sequence sj (N being the number of distinct sensors);

M = memory message; for each sj, there is an mj of equal length.

The memory message at time t, M(t), is computed from S(t), S(t-1), and M(t-1).
The following algorithm is applied at each non initial cycle t (at cycle t=O,
mj(O):=sj(O)):

for j from 1 to N do
delta_sj= sj(t) xor sj(t-1);
If delta_sj = iO ... 0 ... O]

then
mj(t) := delta_sj;
clock(j) := 0

else
mj(t) := mj(t-1);
clock(j) := clock(j) + 1

endif;
i f clock(j) > k

then
mj(t) := O;
clock(j) := 0

endif
endfor

for each sensor j,
compute the change of sj from t-1 to t;

i f there is a change,

set mj to i t
and set the clock of sensor j to O,

else set mj to its previous value,
and increment the clock of sensor j.

i f the memory span of sensor j has elapsed,

set mj to zero
and set the clock of sensor j to zero.

Fig. 24. The memory process.

of memory only when it becomes relevant, that is when the light disappears from
sight--and this is a relatively rare event. To show that the role of memory is
actually relevant, in Figs. 26 and 27 we have decomposed the agent's performance
into: (a) the performance produced when the light is not visible (and therefore
memory is relevant); (b) the performance when the light is visible (and thus
memory is superfluous). In the former case, the performance of the agent with
memory is now more clearly better.

We conclude that even a very simple memory system can improve the
performance of ALECSYS in those cases in which the target behavior is not
intrinsically S-R.

7. Experiments with the real robot

Moving from simulated to real environments is challenging. Not only do the
robot's sensors and actuators become noisy, but also the RP must rely on real,
and hence noisy, sensors to evaluate the learning robot moves. We ran some
experiments to see to what extent the real robot could use the ideas and the

358 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

Performance

1

0 . g 5

o . 9

0 . 8 5

0 . 8

1 i Number of cycles
0.6 I i (thousands)

O 90 1 50

Fig. 25. Following a moving light with and without sensor memory.

Performance

1

0.95

0.9

0.85

0.8

 t outmmo

0.65 | ~ Number of cydes
I I (thousands)

O. 6
O 15 150

Fig. 26. Light following performance when the light is not visible.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 359

Performance

1 i .,,ou, m.mo
0.95

0.9

0.85

0.8

0.75

0.7

0.65 1 Number otcydes
0.6 ~- (thousands)

0 150
Fig. 27. Light following performance when the light is visible.

software used in simulations. In this section we present results from experiments
in the real world using both AutonoMouse II and AutonoMouse IV.

7.1. Exper iments with A u t o n o M o u s e H

As we said in Section 2, this version of the AutonoMouse is rather unsophisti-
cated; essentially, it allows the design of very simple experiments, as the available
sensors are only the four binary eyes and one binary ear.

Nevertheless, it was possible to show: (i) that our approach works also in real
environments, where time constraints must be met and where sensor input and
actuator output are affected by noise; and (ii), that our system is adaptive, being
capable of graceful degradation of performance in presence of bad-working
sensors or actuators. In all the experiments with AutonoMouse II we used a
monolithic instantiation of ALECSYS, with characteristics (format of input and
output messages, internal parameters used by the learning system, etc.) that are
essentially the same as those used for the light approaching module of the
experiments in the preceding section (see Figs. 5 and ll(a)). In the experiments
with AutonoMouse II, performance was measured through the trainer's sensors
on board, that is by light intensity: when the robot approaches the light source,
light intensity increases.

360 M. Dorigo, M. Colombetfi / Artificial Intelligence 71 (1994) 321-370

7.1.1. Approaching the light source
In the first experiment we position the AutonoMouse II in a room and let it

move. The RP rewards the learning system whenever it approaches the light
source, and punishes it in case of wrong moves. In these experiments with the real
robot, the RP evaluates the approaching behavior using real sensors, namely the
two central eyes of Fig. 1. The graph of Fig. 28 shows the developing approaching
behavior in a typical experiment. Performance is measured through light intensity
(0 to 255). In the graph we also show the average reward (on the last 20 cycles)
received by the learning system; in this experiment rewards are +50 for a correct
move, -80 for a wrong one. The drop in performance at cycles 140 and 380 is due
to a movement of the light source; as the AutonoMouse had reached the lamp,
we moved it far away to continue the experiment. In this experiment 100 cycles
took about 60 seconds. At cycle 220 the AutonoMouse started moving away from
the light source because of some wrong classifiers; as the moves were wrong,
ALECSYS was punished by the reinforcement program, and therefore the clas-
sifiers responsible for the wrong actions lost importance and finally were
eliminated.

It is interesting that the number of cycles required to reach the light is lower
than the number of cycles required to reach a high performance in the simulation
experiments. This is easy to explain, if one thinks that the correct behavior is
more frequent than the wrong one as soon as performance is higher than 50%.
The AutonoMouse starts therefore to approach the light source much before it
has reached a high frequency of correct moves. Moreover, a comparison of the
average reward graph with the light intensity graph reveals an interesting property
of the real robot: its performance, measured through light intensity, shows some
kind of inertia (with respect to average reward). In fact, it takes time to move and

Light intensity or

2 8 0 average reward

120 Light
intensity
Average

~ .. • ~'/J [~\ i .~.,/'""'~ reward 40 ".,..,.,. ' . ~ , Number

0 ~ _ _ _ ~ - ~ - - - . - , ,~ • ~ _ _ ° f cycles
/ 100 200 : 300 400 500 6) 0

-40

-BO

Fig. 28. The A u t o n o M o u s e II learns to approach a light source. Light intensity and average reward
received.

turn, and it is necessary to make many wrong moves to start to move away from
the light source.

7.1.2. Approaching the light source with a blind eye
To test the adaptive capability we ran some experiments in which the

AutonoMouse II's capabilities were degraded. These were:
• AutonoMouse with inverted eyes;
• AutonoMouse with inverted motors;
• AutonoMouse with one blind eye;
• AutonoMouse with incorrect calibration of motors' speed (one motor is

slower than the other one).
All of the experiments suggested that the AutonoMouse, although with some
degraded performance, was still capable of achieving the goal of approaching the
light source. A thorough discussion of these experiments can be found in [18] (see
also [15]). As an example we report here in Fig. 29 the result of the "one blind
eye" experiment. The number of cycles required to reach the light was slightly
higher than before and at cycle 135 the AutonoMouse lost sight of the light, did a
360-degrees turn and started to approach the light again. Nevertheless, the
AutonoMouse achieved its goal in a reasonably short time.

7.2. Experiment with AutonoMouse IV

Light intensity

250

With AutonoMouse IV we ran the experiment on finding a hidden object,
whose simulated counterpart is described in Section 6. The environment consisted
of a large room containing an opaque wall, about 50 × 50 cm, and an ordinary
lamp (50 W). The wall was realized as a pleated surface, in order to reflect back
the sonar's beam coming from a wide range of directions (see Fig. 30). The input

200

150

100

50

0 I - - -

50 100 150 200 250

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994)321-370 361

)0

-50

Fig. 29. A "one blind eye" A u t o n o M o u s e II learns to approach a light source.

362 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

90 °

Fig. 30. Horizontal section of the pleated wall, and reflection of the sonar's beam.

and output interfaces were exactly the same as in the simulation, and so was the
RP. The input from the sonar was defined in such a way that a front obstacle was
detected within about 1.5 m from the robot.

There were three main differences between the real and the simulated
experiments. The first difference was that in the real environment the light was
moved by hand by the experimenter, hiding it behind the wall when the
AutonoMouse got very close to it (10-15 cm). In comparison with the simulated
environment , where the light was moved by the simulation program in a
systematic way, this procedure introduced an element of irregularity. From the
results of the experiment, it is not easy to understand whether this irregularity
affected the learning process.

Second difference: the distances of AutonoMouse IV from the light and from
the wall were estimated on the basis of the outputs of the light sensors and of the
sonar, respectively. More precisely, each of the two eyes and the sonar output an
eight-bit number ranging from 0 to 255, respectively coding the light intensity and
the distance from an obstacle. To estimate whether the robot got closer to the
light, the total light intensity (that is, the sum of the outputs of both eyes) at cycle
t was compared with the total light intensity at cycle t - 1. The sonar's output was
used in a similar way to estimate whether the robot got closer to the wall.

The eyes and the sonar were used in different ways by the agent and by the RP:
from the point of view of the agent, all these sensors behaved as on /o f f devices;
for the RP, the eyes and the sonar produced an output with higher discriminative
power. Therefore , the same hardware devices were used as the trainer's sensors
and, through a transformation of their outputs, as the sensors of the agent. The
rationale of this choice has been explained in Section 4; we remark here that the
main reason for providing the agent with a simplified binary input was to reduce
the size of the learning system's search space, thus speeding up learning.

By exploiting the full binary output of the eyes and of the sonar, it was possible
to estimate the actual effect of a movement toward the light or the wall.
However , given the present sensory apparatus of AutonoMouse IV, we could not
measure the physical effect of a left or right turn; for these cases, the RP based its
reward on the expected move, i.e. on the output message sent to the effectors,

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 363

and not on the actual move. (A detailed discussion of the difference between
rewarding the AutonoMouse according to estimated or real effects of actions can
be found in [18]).

Finally, the third difference: due to practical reasons, the experiment with the
real AutonoMouse was run for about 4 hours, covering only 5,000 cycles, while
the simulated experiment was run for 50,000 cycles.

The graph of Fig. 31 shows that the agent learned the target behavior
reasonably well, as was in fact intuitively clear by direct observation during the
experiment. There is however a main discrepancy between the results of the real
and the simulated experiment. In the simulation experiment reported here, after
5,000 cycles the light approaching, light searching and global performances had
respectively reached the approximate values of 0.92, 0.76 and 0.81; the three
corresponding values in the real experiment are lower (about 0.75) and very close
to each other. To put it differently, the real and the simulated light searching
performances are very similar; on the contrary, while in the simulated experiment
the light approaching behavior is much more effective than the light searching
behavior, in the real experiment they are about the same.

We interpret this discrepancy between the real and the simulated experiment as
an effect of the different way in which the distance between the robot and the
light was estimated. In fact, the total light intensity does not allow for a very
accurate discrimination of such a distance. Often, a move toward the light did not
result in an increase of total light intensity large enough to be detected; therefore,

Performance

1

0.9

0.8

0.75

0.7

0.65

0.6

Number of cycles
(thousands)

5

Fig. 31. Finding a hidden object by AutonoMouse IV.

approaching
. the light

searching
for the light

global

364 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

a correct move was not rewarded, because the RP did not understand that the
robot did get closer to the light. As a consequence, the rewards given by the RP
with respect to the light approaching behavior were not as consistent as in the
simulated experiments. To check whether this hypothesis is correct, more
systematic experiments need to be run.

8. Comparison with related work

We have already pointed out the relationships between our work and research
going on in the area of situated agents. In this section we relate our approach to
other limitrophe research fields. Most prominent is the work on learning classifier
systems [7, 8, 54]. We built on that work, introducing the idea of using a set of
communicating classifier systems, running in parallel on a MIMD architecture. We
also modified the basic learning algorithms to make them more efficient (a
technical discussion of the learning algorithms can be found in [18, 20, 21[). More
generally, the whole field of reinforcement learning is related to our work.
Reinforcement learning has recently been studied in many different algorithmic
frameworks, learning classifier systems being one. Notably, we have connectionist
reinforcement learning (e.g., [4, 53]), classifier systems reinforcements learning
(e.g., [7, 18, 26, 40]), and temporal differences reinforcement learning and
related algorithms, like the adaptive critic heuristics [45] and Q-learning [47, 48].
These different approaches to reinforcement learning are often overlapping. For
example, the adaptive critic heuristics and Q-learning have been implemented
through a connectionist system by Lin [33]; also, Compiani, Montanari, Serra and
Valastro [17] have shown the existence of tight structural relations between
classifier systems and neural networks.

Often the applications used to illustrate and compare the proposed algorithms
are taken from the realm of autonomous robotics. A major difference with our
work is that we do not investigate the temporal credit assignment problem, which
is often a main point in reinforcement learning applications. Another difference is
that only a few of the reinforcement learning applications deal with real robots.
For example, Singh [43], Lin [33], and Millan and Torras [38] use a point robot
moving in a two-dimensional simulated world; and Millan [37] uses a simulation
of a Nomad 200 robot. Grefenstette's SAMUEL, a learning system which uses
genetic algorithms [24], learns decision rules for a simulated task (a plane should
learn to avoid being hit by a missile). Booker's GOFER system deals with a
simulated robot living in a two-dimensional environment and whose goal is to
learn to find food and avoid poison. The choice of using a real robot makes things
very different, as the efficiency of the system becomes a major constraint. This
constraint has guided our choice of a hierarchical architecture in which different
modules can run in parallel (the same constraint has guided the subsumption
architecture choice of Mahadevan and Connell [36]).

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 365

Beside the mentioned work of Mahadevan and Connell, there are only a few
other applications of reinforcement learning to real robots.

Maes and Brooks [34] describe an algorithm to learn the coordination behavior
of a six-legged robot. Their algorithm is focused on learning coordination of
hardwired basic behaviors, whereas in our case both basic behaviors and their
coordination are learned. Brooks [11] has recently discussed the possibility to use
genetic algorithms to evolve programs written in GEN, a high-level language
especially designed to produce programs which can be easily evolved by the
genetic algorithm. GEN can then be compiled into the Behavior Language
(Brooks [9]), a rule-based parallel programming language which compiles into the
subsumption architecture. This idea is, to the authors' knowledge, still under
development [11] and no results have been published yet.

An approach similar to that proposed by Brooks was taken by Koza and Rice,
who used the Genetic Programming paradigm [31] to evolve Lisp programs to
control an autonomous robot [32]. Although they use genetic algorithms, their
approach is very different from ours (and is much closer to the proposal of
Brooks); in their case the genetic algorithm searches in the space of an
opportunely defined subset of Lisp programs, while in our case the genetic
algorithm is cast into the classifier system framework. They try to reproduce the
results obtained by Mahadevan and Connell [36], applying their learning robot to
the same problem. Nevertheless, their use of a simulated robot makes a fair
comparison very difficult.

Also Beer and Gallagher [6] have been using genetic algorithms to let a neural
net learn to coordinate the movements of their six-legged robot. Also in this case
the approach is rather different from ours, as they use the genetic algorithm to
develop neural net controllers.

In his Ph.D. dissertation, Kaelbling used reinforcement to let a robot---called
Spanky--learn to approach a light source and to avoid obstacles ([28]; but see
also [29]). She used a statistical technique to store an estimate of the expected
reinforcement for each action-input pair and some information of how precise
that estimate is. Unfortunately, only a qualitative description of the experiments
run in the real world is reported. Kaelbling's robots took from 2 to 10 minutes to
learn a good strategy, while AutonoMouse II after at most one minute was
already pointing towards the light. Still, it is very difficult to make a comparison,
as the experimental environment was not the same and Spanky's task was slightly
more complex. The strength of our approach is that it allows for an incremental
building of new capabilities; it is not clear whether this can be done with
Kaelbling's approach.

Finally, the idea of shaping a robot is related to the work by Shepanski and
Macy [42], who propose to train a neural net manually by interaction with a
human expert. In their work the human expert replaces our reinforcement
program. This approach is very interesting, but it seems difficult to use in a
nonsimulated environment; it is not clear therefore whether it can be adopted for
real robot shaping.

366 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

9. Conclusions and future work

In this paper, we have described a possible approach to the development of
situated agents through learning, and presented the results of experimental work
aimed at demonstrating the viability of classifier systems and genetic algorithms
for this purpose.

We view learning as a situated translation into a low-level control program of a
higherqevel conceptualization of a target behavior. Such a conceptualization is
reflected into the reinforcement program, in charge of guiding the learning system
through rewards and punishments. In our experiments, we have tried to enlighten
some relationships holding among the target behavior, the agent and the trainer.
In particular, we have shown that several aspects of the agent and of the RP are
sensitive to features of the environment the agent has to adapt to.

We ran both simulations and real-world experiments. Simulations have proved
very useful to test general design criteria, and our methodology resulted robust
enough to be portable from simulated to real worlds without major problems.
Even if the evidence collected through our experiments is anecdotal (in that we
performed no systematic statistical analysis of our data), the results obtained so
far allow us to make a few claims:

• Animat-like interactions in simple environments can be practically developed
through shaping. Fairly complex interaction can be developed even with
simple, reactive agents. In particular, behavior patterns that appear to follow
a sequential plan can be realized by a reactive agent when there is enough
information in the environment to determine the right sequencing of actions
(see the Chase/Feed/Flee behavior in Section 6). However, the addition of
nonreactive elements, like a memory of past perceptions, can improve the
level of adaptation to the dynamics of the environment.

• The genetic algorithm can be exploited to enforce adaptation of a physical
robot to its environment. In a modular architecture, both basic skills and
coordination can be learned.

• To develop a situated agent, both explicit design and machine learning have
an important role. In our approach, the main design choices involve: (i) the
sensors, actuators and controller's architecture of the agent; (ii) the artificial
objects in the environment; (iii) the sensors and the logic of the trainer; (iv)
the overall shaping policy. Learning is in charge of developing the functions
implemented by the various modules of the agent's controller.

• In shaping the agent's behavior, the trainer can assume a reasonably high-
level position, abstracting from the details of the agent's anatomy and
concentrating on agent-environment interactions.

• A careful design of the agent's architecture can speed up learning. The
designer should understand, at least at a coarse level, the dynamics of the
interaction between the agent and the environment and the relationships
among different basic behaviors. We showed through an experiment the
disastrous effects of a bad design (see Section 6, Figs. 20 and 21).

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 367

At present, we feel that we have not wholly exploited the power of ALECSYS. In
particular:

• Our Animat-like tasks make only soft requirements to the sensorial
capacities of the real robot. A major concern of our future research will be
to give the sensory apparatus some learning skills. In this way we hope to
have the possibility to work with a richer environmental information (at
present our sensors can do only little more than giving binary information
about the presence or absence of simple objects).

• Complex interactions in non-Markov situation (see [52]) will require a richer
memory mechanism. We are currently trying to exploit hierarchical architec-
tures to obtain proper sequential interactions (i.e., sequential behavior
patterns when the environment does not provide enough information for a
correct sequencing of actions; see [16]).

• To develop more interesting interactions, we are currently moving to
environments with richer dynamics. We are also considering the possibility of
developing multi-agent, cooperative behaviors.

• Recent results in reinforcement learning and training [14] suggest that the
design of the reinforcement program, which currently requires substantial
designer's effort, could be replaced by direct interaction with a human
trainer. In the future, this possibility will be compared with another
interesting option, that is the description of the target behavior through some
kind of high-level, symbolic language.

Our system has also a number of weak points; in particular, two of them must
be highlighted:

(i) Our learning modules do not address the temporal credit apportionment
problem: our RP only generates immediate reinforcements in response to
the actions of the learning agent. We do not know yet whether our learning
algorithm can manage tasks in which delayed reinforcement is a must. First
results are contradictory (see [22]) and further research is needed. Clearly,
this issue is fundamental for developing more complex dynamic behavior,
beyond the present limits of S -R responses.

(ii) Quite a large amount of work is to be put into the architectural design. It is
sometime sustained, for example by Koza and Rice [32], that the effort put
into architecture design plus the effort required to solve issues arising from
the use of reinforcement learning, can be greater than the effort required
to directly program the robot by hand. Nevertheless we believe that, at
least until efficient ways to automatically generate good and working
architectures are devised (and the approach taken by Koza and Rice [32],
seems to be promising), there is no way out: architecture has to be
designed. It is often said that, and it is also our position, architecture is the
result of a learning process on an evolutionary-time scale, while behavior is
the result of a learning process on a life-time scale. Obviously, the results
of the first learning process constrain the possible outcomes of the second
one. We are mainly interested in life scale learning; but we also recognize

368 M. Dorigo. M. Colornbetti / Artificial Intelligence 71 (1994) 321-370

the importance of putting not too much hardwired knowledge in our
agents. Comparing our work with that of Mahadevan and Connell, we
somewhat relax their constraints on the architecture: although we de-
compose the overall task by design, we do not impose any structure on the
coordination between learning modules. Coordination is learned, in the
same way as basic behaviors are.

As a whole, we believe that our work shows the importance of learning to
achieve a satisfactory level of adaptation between an artificial agent and its
environment. Clearly, much further research is needed to understand whether our
approach can scale up to a complexity comparable to the adaptive behavior of
living organisms.

Acknowledgments

This research has been partially funded by a M.U.R.S.T. 60% grant to Marco
Colombetti for the year 1992, by a grant from CNR, Progetto finalizzato sistemi
informatici e calcolo parallelo, Sottoprogetto 2, Tema: Processori dedicati, and by
CNR, Progetto finalizzato robotica, Sottoobiettivo 2, Tema: ALPI. We would like
to thank Sridhar Mahadevan, Mukesh Patel, Hans-Michael Voigt and Robert
Richards for helpful comments on a draft version of this paper. Graziano Ravizza
designed AutonoMouse II. Franco Dorigo designed and built AutonoMouse IV.
Franco Dorigo, Andrea Maesani, Stefano Michi, Roberto Pellagatti, Roberto
Piroddi, and Rino Rusconi participated in implementing and debugging ALECSYS.
They also ran many of the experiments presented in this paper. Emanuela
Prato-Previde discussed with us several conceptual and terminological issues
connected with experimental psychology.

References

[1] P.E. Agre and D. Chapman, Pengi: an implementation of a theory of activity, in: Proceedings
AAAI-87, Seattle, WA (1987) 268-272.

[2] R.C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation,
Rob. Autonomous Syst. 6 (1-2) (1990) 105-122.

[3] A.G. Barto, S.J. Bradtke and S.P. Singh, Learning to act using real-time dynamic programming,
Artif. Intell. 72 (1995), to appear.

[4] A.G. Barto, R.S. Sutton and C.W. Anderson, Neuronlike elements that can solve difficult
learning control problems, 1EEE Trans. Syst. Man Cybern. 13 (1983) 834-846.

[5] R.D. Beer, A dynamical systems perspective on agent-environment interaction, Artif. Intell. 72
(1995), to appear.

[6] R.D. Beer and J.C. Gallagher, Evolving dynamical neural networks for adaptive behavior,
Adaptive Behav. 1 (1) (1992) 92-122.

[7] L. Booker, Classifier systems that learn internal world models, Mach. Learn. 3 (2-3) (1988)
161-192.

[8] L. Booker, D.E. Goldberg and J.H. Holland, Classifier systems and genetic algorithms, Artif.
Intell. 40 (1-3) (1989) 235-282.

M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370 369

[9] R.A. Brooks, The behavior language: user's guide, Memo 1227, MIT AI Lab, Cambridge, MA
(1990).

[10] R.A. Brooks, Elephants don't play chess, Rob. Autonomous Syst. 6 (1-2) (1990) 3-16.
[11] R.A. Brooks, Artificial life and real robots, in: Proceedings 1st European Conference on Artificial

Life (ECAL) (MIT Press, Cambridge, MA, 1991) 3-10.
[12] R.A. Brooks, Intelligence without representation, Artif. lntell. 47 (1-3) (1991) 139-159.
[13] A. Camilli, R. Di Meglio, F. Baiardi, M. Vanneschi, D. Montanari and R. Serra, Classifier

systems parallelization on MIMD architectures, Technical Report 3-17, CNR, Italy (1990).
[14] J.A. Clouse and P.E. Utgoff, A teaching method for reinforcement learning, in: Proceedings 9th

Conference on Machine Learning, Aberdeen, Scotland (1992) 92-101.
[15] M. Colombetti and M. Dorigo, Learning to control an autonomous robot by distributed genetic

algorithms, in: Proceedings From Animals to Animats, 2nd International Conference on Simula-
tion of Adaptive Behavior (SAB92), Honolulu, HI (1992) 305-312.

[16] M. Colombetti and M. Dorigo, Training agents to perform sequential behavior, Adaptive
Behavior 2 (3) (1994) 247-275.

[17[M. Compiani, D. Montanari, R. Serra and G. Valastro, Classifier systems and neural networks,
in: E.R. Caianiello, ed., Parallel Architectures and Neural Networks (World Scientific, Singapore,
1989).

[18] M. Dorigo, ALECSVS and the AutonoMouse: learning to control a real robot by distributed
classifier systems, Mach. Learn., to appear. Politecnico di Milano, Milan, Italy (1992).

[19] M Dorigo, Optimization, learning, and natural algorithms, Ph.D. Thesis, Dipartimeto di
Elettronica e Informazione, Politecnico di Milano, Milan, Italy (1992).

[20] M. Dorigo, Using transputers to increase speed and flexibility of genetics-based machine learning
systems, Microprocess. Microprogram. 34 (1992) 147-152.

[21] M. Dorigo, Genetic and non-genetic operators in ALECSYS, Evolutionary Comput. J. 1 (2) (1993)
151-164.

[22] M. Dorigo and U. Schnepf, Genetics-based machine learning and behavior-based robotics: a new
synthesis, IEEE Trans. Syst. Man Cybern. 23 (1) (1993) 141-154.

[23] M. Dorigo and E. Sirtori, ALECSYS: a parallel laboratory for learning classifier systems, in:
Proceedings 4th International Conference on Genetic Algorithms (Morgan Kaufmann, San Diego,
CA, 1991) 296-302.

[24] J.J. Grefenstette, C.L. Ramsey and A.C. Schultz, Learning sequential decision rules using
simulation models and competition, Mach. Learn. 5 (4) (1990) 355-381.

[25] J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press,
Ann Arbor, MI, 1975).

[26] J.H. Holland and J.S. Reitman, Cognitive systems based on adaptive algorithms, in: D.A.
Waterman and F. Hayes-Roth, eds., Pattern-Directed Inference Systems (Academic Press, New
York, 1978).

[27] L.P. Kaelbling, An architecture for intelligent reactive systems, in: M.P. Georgeff and A.L.
Lansky, eds., Reasoning about Actions and Plans (Morgan Kaufmann, Los Altos, CA, 1987)
395-410.

[28] L.P. Kaelbling, Learning in embedded systems, Ph.D. Thesis, Stanford University, Stanford, CA
(1990).

[29] L.P. Kaelbling, An adaptable mobile robot, in: Proceedings 1st European Conference on
Artificial Life (ECAL) (MIT Press, Cambridge, MA, 1991) 41-47.

[30] L.P. Kaelbling and S.J. Rosenschein, Action and planning in embedded agents, Rob. Autonom-
ous Syst. 6 (1-2) (1991) 35-48.

[31] J.R. Koza, Genetic Programming: On Programming Computers by Means of Natural Selection
and Genetics (MIT Press, Cambridge, MA, 1992).

[32] J.R. Koza and J.P. Rice, Automatic programming of robots using genetic programming, in:
Proceedings AAAI-92, San Jose, CA (1992).

[33] L.J. Lin, Self-improving reactive agents based on reinforcement learning, planning and teaching,
Mach. Learn. 8 (3-4) (1992) 293-322.

370 M. Dorigo, M. Colombetti / Artificial Intelligence 71 (1994) 321-370

[34] P. Maes and R.A. Brooks, Learning to coordinate behaviors, in: Proceedings AAA1-90, Boston,
MA (1990) 796-802.

[35] S. Mahadevan, Enhancing transfer in reinforcement learning by building stochastic models of
robots actions, in: Proceedings 9th Conference on Machine Learning, Aberdeen, Scotland (1992)
290-299.

[36] S. Mahadevan and J. Connell, Automatic programming of behavior-based robots using re-
inforcement learning, Artif. Intell. 55 (2) 311-365.

[37] J.d.R. Millan, Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an
autonomous mobile robot, Rob. Autonomous Syst., in press.

[38] J.d.R. Millan and C. Torras, A reinforcement connectionist approach to robot path finding in
non maze-like environments, Mach. Learn. 8 (3-4) (1992) 363-395.

[39] R. Piroddi and R. Rusconi, A parallel classifier system to solve learning problems (in Italian),
Master Thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy
(1992).

[40] G.G. Robertson and R.L. Riolo, A tale of two classifier systems, Mach. Learn. 3 (2-3) (1988)
139-160.

[41] S.J. Rosenschein and L.P. Kaelbling, The synthesis of digital machines with provable epistemic
properties, in: Proceedings 1986 Conference on Theoretical Aspects of Reasoning about Knowl-
edge (Morgan Kaufmann, Los Altos, CA, 1986) 83-98.

[42] J.F. Shepanski and S.A. Macy, Manual training techniques of autonomous systems based on
artificial neural networks, in: Proceedings IEEE 1st Annual International Conference on Neural
Networks, San Diego, CA (1987) 697-704.

[43] S.P. Singh, Transfer of learning by composing solutions of elemental sequential tasks, Mach.
Learn. 8 (3-4) (1992) 323-339.

[44] B.F. Skinner, The Behavior of Organisms: An Experimental Analysis (D. Appleton Century,
New York, 1938).

[45] R.S. Sutton, Temporal credit assignment in reinforcement learning, Ph.D. Thesis, Department of
Computer and Information Science, University of Massachusetts, Amherst, MA (1984).

[46] R.S. Sutton, Learning to predict by the methods of temporal differences, Mach. Learn. 3 (1)
(1988) 9-44.

[47] C.J.C.H. Watkins, Learning with delayed rewards, Ph.D. Thesis, Psychology Department,
University of Cambridge, England (1989).

[48] C.J.C.H. Watkins and P. Dayan, Technical Note: Q-learning, Mach. Learn. 8 (3-4) (1992)
279-292.

[49] S.D. Whitehead, A complexity analysis of cooperative mechanisms in reinforcement learning, in:
Proceedings AAA1-91, Anaheim, CA (1991) 607-613.

[50] S.D. Whitehead, A study of cooperative mechanisms for faster reinforcement learning, Technical
Report CS-365, University of Rochester, Rochester, NY (1991).

[51] S.D. Whitehead and D.H. Ballard, Learning to perceive and act by trial and error, Mach. Learn.
7 (1) (1991) 45-83.

[52] S.D. Whitehead and L.-J. Lin, Reinforcement learning of non-Markov decision processes, Artif.
Intell. 73 (1995), to appear.

[53] R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement
learning, Mach. Learn. 8 (3-4) (1992) 229-256.

[54] S. Wilson, Classifier systems and the Animat problem, Mach. Learn. 2 (3) (1987) 199-228.

