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Abstract- Recently, a number off algorithms inspired by 
the foraging behavior of ant colonies have been applied to 
the solution of difficult discrete optimization problems. In 
this paper we put these algorithms in a common frame- 
work by defining the Ant Colony Optimization (ACO) 
meta-heuristic. A couple of paradigmatic examples of ap- 
plications of these novel meta-heuristic are given, as well 
as a brief overview of existing applications. 

1 Introduction 

In the early nineties an algorithm called ant system was 
proposed as a novel heuristic approach for the solution of 
combinatorial optimization problems (Dorigo et al., 199 1 ; 
Dorigo, 1992; Dorigo et al., 1996). Ant system (AS), which 
was first applied to the traveling salesman problem, was re- 
cently extended andor modified both to improve its perfor- 
mance and to apply it to other optimization problems. Im- 
proved versions of AS include, among others, ACS (Dorigo 
& Gambardella, 1997), MAX-MZN Ant System (Stutzle 
& Hoos, 1998b), and Asrank (Bullnheimer et al., 1997b). 
All these algorithms have been applied to the TSP with vary- 
ing degree of success, but always improving over AS perfor- 
mance. These improved versions, as well as the original AS, 
have also been applied to a diverse set of optimization prob- 
lems. Examples are quadratic assignment (Maniezzo er al., 
1994; Stutzle & Hoos, 1998a), vehicle routing (Bullnheimer 
et al., 1997a; Gambardella et al., 1999), connection oriented 
and connectionless network routing (Schoonderwoerd et al., 
1996; Di Caro & Dorigo, 1998; Di Car0 & Dorigo, 1998), 
sequential ordering (Gambardella & Dorigo, 1997), graph 
coloring (Costa & Hertz, 1997), shortest common superse- 
quence (Michel & Middendorf, 1998), single machine tardi- 
ness (Bauer er al., 1999), multiple knapsack (Leguizamh & 
Michalewicz, 1999), etc. For many of these problems, the re- 
sults obtained place the ant system based approaches among 
the best available heuristics. 

In this paper we present the Ant Colony Optimization 
(ACO) meta-heuristic, that is, the result of an effort to de- 
fine a common framework for all these versions of AS. The 
main motivations for defining the ACO meta-heuristic are the 
desire to provide a unitary view of the ongoing research in 
this growing field, as well as the hope that such a charac- 
terization will help to identify the most important aspects of 
these algorithms and therefore make the development of new 
applications easier. 
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2 The ACO meta-heuristic 

The ACO meta-heuristic can be applied to discrete optimiza- 
tion problems characterized as follows. 

C = { c l ,  cp, . . . , C N ~ }  is a finite set of components. 
L = { l c t c J  I ( c , , c3 )  E C}, ILI <_ N; is a finite set of 
possible connections/transitions among the elements of 
C, where C is a subset of the Cartesian product C x C. 
J,,,, = J(lczc, ,  t )  is a connection cost function associ- 
ated to each l C t c J  E L,  possibly parameterized by some 
time measure t .  
R = R(C, L,  t )  is a finite set of constraints assigned 
over the elements of C and L. 
s = (cz ,  c3,  . . . , C k ,  . . .) is a sequence over the elements 
of C (or, equivalently, of L). A sequence s is also 
called a state of the problem. If S is the set of all pos- 
sible sequences, the set S of all the (sub)sequences that 
are feasible with respect to the constraints R(C, L, t ) ,  
is a subset of S. The elements in 8 define the problem’s 
feasible states. The length of a sequence s, that is, the 
number of components in the sequence, is expressed by 

Given two states s1 and sp a neighborhood structure is 
defined as follows: the state s2 is said to be a neighbor 
of s1 if both s1 and s2 are in S ,  and the state sp can 
be reached from s1 in one logical step (that is, if c1 
is the last component in the sequence determining the 
state SI, it must exists cp E C such that l,,,, E L 
and sp = (sl, c2)) .  The neighborhood of a state s is 
denoted by Ns. 
+ is a solution if it is an element of 8 and satisfies all 
the problem’s requirements. A multi-dimensional solu- 
tion is a solution defined in terms of multiple distinct 
sequences over the elements of C. 
J+(L,t) is a cost associated to each solution +. 
J+(L,t) is a function of all the costs J,,,, of all the 
connections belonging to the solution $. 

14. 

Consider the graph G = (C, L )  associated to a given discrete 
optimization problem instance as defined above. The solu- 
tions to the optimization problem can be expressed in terms 
of feasible paths on the graph G. ACO algorithms can be used 
to find minimum cost paths (sequences) feasible with respect 
to the constraints R. For example, in the traveling salesman 
problem, C is the set of cities, L is the set of arcs connecting 
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cities, and a solution 1c, is an Hamiltonian circuit. 
ACO algorithms, that is, instances of the ACO meta- 

heuristic introduced in the following of this section, use a 
population of ants to collectively solve the optimization prob- 
lem under consideration by using the above defined graph 
representation. Information collected by the ants during the 
search process is stored in pheromone trails rij associated to 
connections l i j .  (Here and in the following, we simplify no- 
tation by referring to lCtcJ as l i j . )  Pheromone trails encode a 
long-term memory about the whole ant search process. De- 
pending on the problem representation chosen, pheromone 
trails can be associated to all problem’s arcs, or only to some 
of them. Arcs can also have an associated heuristic value qij 
representing a priori information about the problem instance 
definition or run-time information provided by a source dif- 
ferent from the ants. 

Ants of the colony have the following properties: 
An ant searches for minimum cost feasible solutions 
J$ = miq ,  J$(L,  t ) .  
An ant k has a memory M k  that it can use to store 
information on the path it followed so far. Memory 
can be used to build feasible solutions, to evaluate the 
solution found, and to retrace the path backward. 
An ant IC in state s, = (s,--lr i) can move to any node 
j in its feasible neighborhood N:, defined as N,” = 

An ant k can be assigned a start state sf and one or 
more termination conditions e‘. Usually, the start state 
is expressed as a unit length sequence, that is, a single 
component. 
Ants start from the start state and move to feasible 
neighbor states, building the solution in an incremen- 
tal way. The construction procedure stops when for at 
least one ant k at least one of the termination conditions 
ek is satisfied. 
An ant k located on node i can move to a node j chosen 
in N:. The move is selected applying a probabilistic 
decision rule. 
The ants’ probabilistic decision rule is a function of (i) 
the values stored in a node local data structure Ai = 
[aij] called ant-routing table, obtained by a functional 
composition of node locally available pheromone trails 
and heuristic values, (ii) the ant’s private memory stor- 
ing its past history, and (iii) the problem constraints. 
When moving from node i to neighbor node j the ant 
can update the pheromone trail ~ i j  on the arc (zlj). 
This is called online step-by-step pheromone update. 
Once built a solution, the ant can retrace the same path 
backward and update the pheromone trails on the tra- 
versed arcs. This is called online delayed pheromone 
update. 
Once it has built a solution, and, if the case, after it has 
retraced the path back to the source node, the ant dies, 

{ j  I ( j  E N )  A ( ( % , j )  E W. 

freeing all the allocated resources. 
Although each ant of the colony is complex enough to find 
a feasible solution to the problem under consideration, good 
quality solutions can only emerge as the result of the collec- 
tive interaction among the ants. Each ant makes use only 
of private information and of information local to the node 
it is visiting (note that we use the terms node and compo- 
nent, as well as arc and connectiodtransition, as synonyms), 
and communication among ants is indirect and is mediated 
by the information they readlwrite in the variables storing 
pheromone trail values. Ants adaptively modify the way the 
problem is represented and perceived by other ants, but they 
are not adaptive themselves. 

Informally, the behavior of ants in an ACO algorithm can 
be summarized as follows. A colony of ants concurrently and 
asynchronously move through adjacent states of the problem 
by moving through neighbor nodes of G. They move by ap- 
plying a stochastic local decision policy that makes use of 
the information contained in the node-local ant-routing ta- 
bles. By moving, ants incrementally build solutions to the 
optimization problem. Once an ant has built a solution, or 
while the solution is being built, the ant evaluates the (partial) 
solution and deposits information about its goodness on the 
pheromone trails of the connections it used. This pheromone 
information will direct the search of the future ants. 

Besides ants’ activity, an ACO algorithm includes two 
more procedures: pheromone trail evaporation and daemon 
actions. Pheromone evaporation is the process by means of 
which the pheromone trail intensity on the connections au- 
tomatically decreases over time. From a practical point of 
view, pheromone evaporation is needed to avoid a too rapid 
convergence of the algorithm towards a sub-optimal region. 
It implements a useful form of forgetting, favoring the explo- 
ration of new areas of the search space. 

Daemon actions, that are an optional component of the 
ACO meta-heuristic, can be used to implement centralized 
actions which cannot be performed by single ants. Examples 
are the activation of a local optimization procedure, or the 
collection of global information that can be used to decide 
whether it is useful or not to deposit additional pheromone 
to bias the search process from a non-local perspective. As a 
practical example, the daemon can observe the path found by 
each ant in the colony and choose to deposit extra pheromone 
on the arcs used by the ant that made the shortest path. 
Pheromone updates performed by the daemon are called 08- 
line pheromone updates. 

In Figure 1 the ACO meta-heuristic is described in pseudo- 
code. The main procedure of the ACO meta-heuristic 
manages, via the schedule-activi ties construct, the 
scheduling of the three above discussed components of an 
ACO algorithm: ants’ generation and activity, pheromone 
evaporation, and daemon actions. It is important to note 
that the schedule-activities construct does not spec- 
ify how these three activities are scheduled and synchronized 
and, in particular, whether they should be executed in a com- 
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i procedure ACOmeta-heuristic() 
e while (termination-criterionnot-satisf ied) 
s scheduleactivities 
4 ants-genemtion-and-actitnty(); 
5 phemmone_euaporation(); 
6 daemon-actions(); {optional} 
7 end scheduleactivities 
B end while 
I) end procedure 

I procedure antsgeneration_andactivity() 
e while (availableiesources) 
3 schedule-the_creation.of-a-new-u,nt(); 
4 new_active-ant(); 
5 end while 
6 end procedure 

I procedure new-active-ant() {ant lifecycle} 
e initialize.ant(); 
3 M = ,update_unt-meniory(); 
4 while (current-state # targetstate) 
5 .4 = rwd-locol_ont-routing_tuble(); 
G P = compute-tm~nsition_pmbabilaties(d, M ,  n); 
7 nextstate = appl~_ant.decision.polic~(P, Cl); 
n moue-to~iezt_state(next_state); 

if (online-step-by-step-pheromone-update) 
I) deposit.phemmone_onthe_oisited_orc(); 

I O  update_ont-routirig_ta,ble(); 

ii M = update-anternalAate(); 
re end while 

if (online-delayed-pheromone-update) 
1 3  foreach visited-arc E qh do 
14 deposit-pheromone-on.the-wisited-o~rc(); 
is update.ont-routing_to.ble(); 
16 end foreach 

17 die(); 
in end procedure 

end if 

end if 

Figure 1: The ACO meta-heuristic. In the ACOmetaheuristic ( )  
procedure, the procedure daemon-actions ( ) (line 6) is optional. When 
implemented, it refers to centralized actions executed by a daemon possess- 
ing global knowledge. In the new-active-ant ( ) procedure, the tar- 
get-state (line 4) refers to a complete solution built by the ant, while 
the step-by-step and delayed pheromone updating procedures at lines 9-10 
and 14-15 are often mutually exclusive. When both of them are absent the 
pheromone is deposited by the daemon. Comments are enclosed in braces. 

pletely parallel and independent way, or if some kind of syn- 
chronization among them is necessary. This leaves the de- 
signer the freedom to specify the way these three procedures 
should interact. 

Although ACO algorithms are suitable to find minimum 
cost (shortest) paths on a graph in general, it is important to 
note that they are an interesting approach only for those short- 
est path problems to which more classical algorithms like dy- 
namic programming or label correcting methods (Bertsekas, 
1995) cannot be efficiently applied. This is the case, for ex- 
ample, for the following types of shortest path problems: 

0 “-hard problems, for which the dimension of the full 
state-space graph is exponential in the dimension of the 
problem representation. In this case, ants make use of 
the much smaller graph G, built from the problem’s 
components, and use their memory to generate feasible 
solutions which in most ACO implementations are then 
taken to a local optimum by a problem specific local 
optimizer. 

0 Those shortest path problems in which the properties 
of the problem’s graph representation change over time 
concurrently with the optimization process, that has to 
adapt to the problem’s dynamics. In this case, the prob- 
lem’s graph can even be physically available (like in 
networks problems), but its properties, like the value of 
connection costs JcCc, ( t ) ,  can change over time. In this 
case we conjecture that the use of ACO algorithms be- 
comes more and more appropriate as the variation rate 
of costs J,,,, ( t )  increases and/or the knowledge about 
the variation process diminishes. 

0 Those problems in which the computational architec- 
ture is spatially distributed, as in the case of parallel 
and/or network processing. Here ACO algorithms, due 
to their intrinsically distributed and multi-agent nature 
that well matches these types of architectures, can be 
very effective. 

In the following section we will consider the application of 
the ACO-meta-heuristic to two paradigmatic problems be- 
longing to the above defined classes of problems: the trav- 
eling salesman problem (TSP) and adaptive routing in com- 
munications networks. TSP is the prototypical representative 
of NP-hard combinatorial optimization problems (Garey & 
Johnson, 1979) where the problem instance is statically as- 
signed and the information is globally available. On the con- 
trary, in the problem of adaptive routing in communications 
networks an exogenous process (the incoming data traffic) 
makes the problem instance change over time, and temporal 
constraints impose to solve the problem in a distributed way. 

3 ACO for the traveling salesman problem 

Using the terminology introduced in the previous section, the 
traveling salesman problem can be defined as follows. Let 
C be a set of components, representing cities, L be a set of 
connections fully connecting the elements in C,  and Jcac, be 
the cost (length) of the connection between c, and c3,  that is, 
the distance between cities z and j. The TSP is the problem 
of finding a minimal length Hamiltonian circuit on the graph 
G = (C, L) .  An Hamiltonian circuit of graph G is a closed 
tour + visiting once and only once all the NC nodes of G. Its 
length is given by the sum of the lengths JCtc, of all the arcs 
of which it is composed. Distances may be asymmetric: we 
have then an asymmetric TSP in which J,,,, can be different 
from Jc, . Also, the graph need not be fully connected: if it 
is not, the missing arcs can be added giving them a very high 
length. 

The traveling salesman problem plays a central role in ant 
colony optimization because it was the first problem to be at- 
tacked by these methods (see (Dorigo, 1992; Dorigo et al., 
1991; Dorigo et al., 1996)). Among the reasons the TSP was 
chosen we find the following ones: (i) it is relatively easy 
to adapt the ant colony metaphor to it, (ii) it is a very dif- 
ficult problem (NP-hard), (iii) it is one of the most studied 
problems in combinatorial optimization (Lawler et al., 1985; 
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Reinelt, 1994), and (iv) it is very easy to state and explain it, 
so that the algorithm behavior is not obscured by too many 
technicalities. 

In the following we will present Ant System, a paradig- 
matic example of how ACO algorithms can be applied to the 
TSP. Extensions of Ant System can be found, for example, 
in (Bullnheimer et al., 1997b; Dorigo & Gambardella, 1997; 
Stiitzle & Hoos, 1998b). 

Ant System (AS) can be informally described as follows. 
A number m of ants is positioned in parallel on m cities. The 
ants’ start state, that is, the start city, can be chosen randomly, 
and the memory M of each ant IC is initialized by adding the 
current start city to the set of already visited cities (initially 
empty). Ants then enter a cycle (Figure 1, lines 4 + 12 of the 
new-active-ant ( ) procedure) which lasts NC iterations, 
that is, until each ant has completed a tour. 

During each step an ant located on node i considers 
the feasible neighborhood, reads the entries atj’s of the 
ant-routing table Ai of node i (Figure 1, line 5 of the 
new-ac t ive-ant ( ) procedure), computes the transition 
probabilities (line 6), and then applies its decision rule to 
choose the city to move to (line 7), moves to the new city 
(line 8), and updates its memory (line 11). Note that, because 
in AS there is no online step-by-step pheromone update, in- 
structions at lines 9 and 10 of the new-active-ant ( ) pro- 
cedure of Figure 1 are not executed. 

Once ants have completed a tour (which happens syn- 
chronously, given that during each iteration of the while loop 
each ant adds a new city to the tour under construction), they 
use their memory to evaluate the built solution and to re- 
trace the same tour backward and increase the intensity of 
the pheromone trails 7-ij of visited connections 1ij (Figure 1, 
lines 13 + 16). This has the effect of making the visited con- 
nections become more desirable for future ants. Then the ants 
die, freeing all the allocated resources. In AS all the ants de- 
posit pheromone and no problem-specific daemon actions are 
performed. The triggering of pheromone evaporation hap- 
pens after all ants have completed their tours. Of course, it 
would be easy to add a local optimization daemon action, like 
a 3-opt procedure (Lin, 1965); this has been done in most of 
the ACO algorithms for the TSP that have been developed as 
extensions of AS (see for example (Dorigo & Gambardella, 
1997; Stutzle & Hoos, 1998a)). 

The amount of pheromone trail 7-ij ( t )  maintained on con- 
nection Zij is intended to represent the learned desirability of 
choosing city j when in city i (which also corresponds to the 
desirability that arc lij belongs to the tour built by an ant). 
The pheromone trail information is changed during prob- 
lem solution to reflect the experience acquired by ants during 
problem solving. Ants deposit an amount of pheromone pro- 
portional to the quality of the solutions 11, they produced: the 
shorter the tour generated by an ant, the greater the amount 
of pheromone it deposits on the arcs which it used to gener- 
ate the tour. This choice helps to direct search towards good 
solutions. 

The memory (or internal state) M k  of each ant contains 
the already visited cities. The memory M k  is used to define, 
for each ant IC, the set of cities that an ant located on city i still 
has to visit. By exploiting M k  an ant IC can build feasible so- 
lutions, that is, it can avoid to visit a city twice. Also, memory 
allows the ant to compute the length of the tour generated and 
to cover the same path backward to deposit pheromone on the 
visited arcs. 

The ant-routing table Ai = [aij ( t)]  of node i, where Ni is 
the set of all the neighbor nodes of node i, is obtained by the 
following functional composition of pheromone trails rij ( t )  
and local heuristic values qij : 

where a and ,B are two parameters that control the relative 
weight of pheromone trail and heuristic value. The heuristic 
values used are rli j  = 1/JCtc3, where Jcac, is the distance 
between cities i and j .  In other words, the shorter the distance 
between two cities i and j ,  the higher the heuristic value qij. 

The probability p f j  ( t )  with which at the t-th algorithm it- 
eration an ant k located in city i chooses the city j E @ to 
move to is given by the following probabilistic decision rule: 

1cN; 

where Mt C is the feasible neighborhood of node i 
for ant k (that is, the set of cities ant k has not yet visited) as 
defined by using the ant private memory M k  and the problem 
constraints. 

The role of the parameters a and ,B is the following. If 
a = 0, the closest cities are more likely to be selected: this 
corresponds to a classical stochastic greedy algorithm (with 
multiple starting points since ants are initially randomly dis- 
tributed on the nodes). If on the contrary p = 0, only 
pheromone amplification is at work: this method will lead 
to the rapid emergence of a stagnation, that is, a situation 
in which all ants make the same tour which, in general, is 
strongly sub-optimal (Dorigo et al., 1996). An appropriate 
trade-off has to be set between heuristic value and trail inten- 
sity. 

After all ants have completed their tour, each ant k de- 
posits a quantity of pheromone A7-’(t) = l /J$(t)  on each 
connection l i j  that it has used, where J$(t) is the length of 
tour +‘(t) done by ant IC at iteration t :  

7 - i j ( t )  + ~ i j ( t )   AT'(^), V l i j  E + k ( t ) ,  k = 1 , .  . . ,m  
(3) 

where the number m of ants at each iteration is maintained 
constant) and is set to m = Nc. These parameters settings, 
as well as the settings a = 1, ,D = 5 and p = 0.5, were 
experimentally found to be good by Dorigo (Dorigo, 1992). 
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This way of setting the value ATk(t) makes it a function of 
the ant’s performance: the shorter the tour done, the greater 
the amount of pheromone deposited. 

After pheromone updating has been performed by the 
ants’, pheromone evaporation is triggered: the following rule 
is applied to all the arcs Zij of the graph G 

Tij(t) +- (1 - P)Tij(t) (4) 

where p E (0,1] is the pheromone trail decay coefficient (the 
initial amount of pheromone T~~ (0) is set to a small positive 
constant value TO on all arcs). 

4 ACO for routing in communications networks 

The generic routing problem in communications networks 
can be informally stated as the problem of building and us- 
ing routing tables to direct data traffic so that some measure 
of network performance, function of the network type and of 
the services provided, is maximized. 

We can use the terminology introduced in Section 2 to give 
a formal definition of the routing problem. Let the sets C and 
L correspond respectively to the sets of processing nodes and 
of communication links of the real network. Let G = (C,  L )  
be a directed graph, where each node in the set C represents a 
network node with processinglqueuing and forwarding capa- 
bilities, and each oriented arc in L is a directional transmis- 
sion system (link). Each link has associated a cost measure 
defined by its physical properties and crossing traffic flow. 
Network applications generate data flows from source to des- 
tination nodes. For each node in the network, the local rout- 
ing component uses the local routing table to choose the best 
outgoing link to direct incoming data towards their destina- 
tion nodes. The routing table Ri = [ T i j d ]  of a generic node 
a,  where n/, is the set of neighbors of i, says to data pack- 
ets entering node i and directed towards destination node d 
which should be the next node j E Ni to move to. Routing 
tables are bi-dimensional because the choice of the neighbor 
node to which a data packet entering a generic node i should 
be forwarded is a function of the packet destination node d. 
Ant-routing tables possess the same bi-dimensional structure: 
pheromone trails associated to each connection are vectors of 
N c  - 1 values. In fact, ant-routing tables, in all the ACO 
implementations for routing, are used to build the routing ta- 
bles by means of implementation-dependent transformations. 
These vectorial pheromone trails are the natural extension of 
the scalar trails used for the TSP. 

Other important differences with the TSP implementation 
arise from the different nature of the two problems: (i) each 
ant is assigned a defined pair ( s ,  d)  of start-destination nodes 
and, discovering a path between s and d, the ant builds only a 

‘It should be noted that in the original ant system (Dorigo, 1992; Dorigo 
et al., 1991) pheromone evaporation was performed before pheromone up- 
dating. The algorithm presented here and the original one are exactly 
the same if the values  AT^(^) used in Equation 3 are set to  AT'((^) = 
1/((1 - P )  ’ .$(W. 

part of the whole problem solution, defined in terms of paths 
between all the pairs (i, j )  in the network, (ii) the costs asso- 
ciated to the connections are not statically assigned: they de- 
pend on the connection’s physical properties and on the traf- 
fic crossing the connection, that interacts recursively with the 
routing decisions. 

In the following subsection we present a simplified version 
of the AntNet algorithm. A full description of AntNet can be 
found in (Di Car0 & Dorigo, 1998). 

4.1 AntNet 

In AntNet, each ant searches for a minimum cost path be- 
tween a pair of nodes of the network. Ants are launched from 
each network node towards destination nodes randomly se- 
lected to match the traffic patterns. Each ant has a source 
node s and a destination node d, and moves from s to d hop- 
ping from one node to the next till node d is reached. When 
ant IC is in node i, it chooses the next node j to move to ac- 
cording to a probabilistic decision rule which is a function of 
the ant’s memory M k  and of the local ant-routing table ,Ai. 

Pheromone trails are still connected to arcs, but are mem- 
orized in variables associated to arc-destination pairs. That is, 
each directed arc (i, j )  has NC - 1 trail values T i j d  E [o, 11 
associated, one for each possible destination node d an ant 
located in node i can have (therefore, in general, T i j d  # T j i d ) .  

Each arc has also associated an heuristic value q i j  E [0, 11 
independent of the final destination. The heuristic values are 
set to the following values: 

where qij is the length (in bits waiting to be sent) of the 
queue of the link connecting node i with its neighbor j .  

In AntNet, as well as in most other implementations of 
ACO algorithms for routing problems, the daemon compo- 
nent (line 6 of the ACO meta-heuristic of Figure 1) is not 
present. 

The local ant-routing table Ai is obtained by a functional 
composition of the local pheromone trails T i j d  and heuristic 
values qij. While building the path to the destination, ants 
move using the same link queues as data. In this way ants 
experience the same delays as data packets and the time T s d  

elapsed while moving from the source node s to the destina- 
tion node d can be used as a measure of the path quality. The 
overall “goodness” of a path can be evaluated by an heuristic 
function of the trip time Tsd and of a local adaptive statisti- 
cal model maintained in each node. In fact, paths need to be 
evaluated relative to the network status because a trip time T 
judged of low quality under low congestion conditions could 
be an excellent one under high traffic load. Once the generic 
ant k has completed a path, it deposits on the visited nodes an 
amount of pheromone ATk(t)  proportional to the goodness 
of the path it built. To this purpose, after reaching its desti- 
nation node, the ant moves back to its source nodes along the 
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same path but backward and using high priority queues, to 
allow a fast propagation of the collected information. 

During this backward path from d to s the ant k increases 
the pheromone trail value - r i j d ( t )  of each connection 1, previ- 
ously used while it was moving from s to d. The pheromone 
trail intensity is increased by applying the following rule: 

The reason the ant updates the pheromone trails during its 
backward trip is that, before it can compute the amount of 
pheromone Ark( t )  to deposit on the visited arcs it needs to 
complete a path from source to destination to evaluate it. 

After the pheromone trail on the visited arc has been up- 
dated, the pheromone value of all the outgoing connections 
of the same node i, relative to the destination d, evaporates:’ 

(7) 

where n/, is the set of neighbors of node z. 

As we said, AntNet’s ant-routing table Ai = [aijd(t)] 

of node i is obtained, as usual, by the composition of the 
pheromone trail values with the local heuristic values. This is 
done as follows: 

where j E Ni, d is the destination node, w E [0, 11 is a 
weighting factor and the denominator is a normalization term. 

The ants decision rule is then defined as follows. Let, at 
time t ,  ant k be located on node i and be directed towards 
node d. If Ni M k ,  that is, if there is at least one city 
in the ant’s current location neighborhood that ant k has not 
visited yet, then the ant chooses the next node j E Ni with 
probability 

otherwise, the ant chooses a city j E n/i with uniform prob- 
ability: &(t) = l/(lNil). (Note that in AntNet, differently 
from what happens in Ant System, the neighborhood and the 
feasible neighborhood are the same, that is, N! 

In other words, ants try to avoid cycles (Equation 9) but, 
in the case all the nodes in 2’s neighborhood have already 
been visited by the ant, the ant has no choice and it has to 
re-visit a node, generating in this way a cycle. In this case 
the generated cycle is deleted from the ant memory, that for- 
gets completely about it. Considering the stochasticity of the 
decision rule and the evolution in the traffic conditions, it is 
very unlikely that the ant repeats the same cycle over and over 
again. 

Ni.) 

*In this case the decay factor is chosen so that it operates a normalization 
of the pheromone values which continue therefore to be usable as probabili- 
ties. 

5 Other ACO meta-heuristic applications 

There are now available numerous successful implementa- 
tions of the ACO meta-heuristic applied to a number of dif- 
ferent combinatorial optimization problems. 

The most widely studied problems using ACO algorithms 
are the traveling salesman problem and the quadratic assign- 
ment problem (QAP). 

Results obtained by the application of ACO algorithms to 
the TSP are very encouraging (see (Stiitzle & Dorigo, 1999b) 
for an overview of applications of ACO algorithms to the 
TSP): they are often better than those obtained using other 
general purpose heuristics like evolutionary computation or 
simulated annealing. Also, when adding to ACO algorithms 
rather unsophisticated local search procedures based on 3- 
opt (Lin, 1965), the quality of the results obtained (Dorigo 
& Gambardella, 1997) is close to that obtainable by more so- 
phisticated methods. More research will be necessary to as- 
sess whether ACO algorithms can reach the performance of 
state-of-the-art algorithms like Iterated Lin-Kernighan (John- 
son & McGeoch, 1997). 

As in the TSP case, the first application of an ACO al- 
gorithm to the QAP has been that of Ant System (Maniezzo 
et al., 1994). In the last two years several ACO algorithms 
for the QAP have been presented by Maniezzo and Colorni 
(Maniezzo & Colorni, 1999, in press), Maniezzo (Maniezzo, 
1998), and Stiitzle (Stiitzle & Hoos, 1998a). Currently, ACO 
algorithms are among the best heuristics for attacking real- 
life QAP instances3. We refer to (Stiitzle & Dorigo, 1999a) 
for an overview of these approaches. 

The sequential ordering problem is closely related to the 
asymmetric TSP, but additional precedence constraints be- 
tween the nodes have to be satisfied. Gambardella and Dorigo 
have tackled this problem by an extension of ACS enhanced 
by a local search algorithm (Gambardella & Dorigo, 1997). 
They obtained excellent results and were able to improve the 
best known solutions for many benchmark instances. 

A first application of AS to the job-shop scheduling prob- 
lem has been presented in (Colorni et al., 1994). Despite 
showing the viability of the approach, the computational 
results are not competitive with state-of-the-art algorithms. 
More recently, M M A S  has been applied to the flow shop 
scheduling problem (FSP) in (Stutzle, 1998). The computa- 
tional results have shown that M M A S  outperforms earlier 
proposed Simulated Annealing algorithms, while it performs 
comparably to Tabu Search. Another very recent applica- 
tion is that to the single machine total tardiness problem, dis- 
cussed in a paper published in these same proceedings (Bauer 
et al., 1999). Again, the results obtained are very promising. 

Costa and Herz (Costa & Hertz, 1997) have proposed an 
extension of AS to assignment type problems and present 
an application of their approach to the graph coloring prob- 

3Another very good algorithm inspired by the ant colony metaphor is 
HAS-QAP (Gambardella et al., 1997). It is not listed with the others above 
because it doesn’t follow the ACO meta-heuristic. 
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lem obtaining results comparable to those obtained by other 
heuristic approaches. 

An application of AS,,k to the capacitated vehicle 
routing problem is presented by Bullnheimer, Hartl, and 
Strauss (Bullnheimer et al., 1997a). They obtained good 
computational results for standard benchmark instances, 
slightly worse than the best performing Tabu Search algo- 
rithms. A recent application by Gambardella, Taillard, and 
Agazzi to vehicle routing problems with time windows im- 
proves the best known solutions for some benchmark in- 
stances (Gambardella et al., 1999). 

Michel and Middendorf (Michel & Middendorf, 1998; 
Michel & Middendorf, 1999) have proposed an application 
of AS to the shortest common supersequence. They introduce 
the use of a lookahead function during the solution construc- 
tion by the ants. They also present a parallel version of their 
algorithm based on the island model typical of many parallel 
genetic algorithms implementations. 

M M A S  has recently been applied to the generalized 
assignment problem by Ramalhinho LourenGou and Serra 
(Lourengo & Serra, 1998), obtaining very promising com- 
putational results. In particular, their algorithm is shown to 
find optimal and near optimal solutions faster than a GRASP 
algorithm which was used for comparison. 

Another very recent application of the ACO meta-heuristic 
is the one to the multiple knapsack problem proposed in 
one of the articles published in these same proceedings 
(Leguizam6n & Michalewicz, 1999). Also in this case the 
obtained results are very promising. 

Perhaps the currently most active research area in ACO 
algorithms is the study of their application to telecommu- 
nication network problems, in particular to network routing 
(Schoonderwoerd et al., 1996; Di Car0 & Dorigo, 1998). 
The application of ACO algorithms to network optimization 
problems is appealing because these problems have character- 
istics like distributed information, non-stationary stochastic 
dynamics, and asynchronous evolution of the network status 
which well match some of the properties of ACO algorithms 
like the use of local information to generate solutions, indi- 
rect communication via the pheromone trails and stochastic 
state transitions. A detailed overview of routing applications 
of ACO algorithms can be found in (Dorigo et al., 1998). 

6 Conclusions 

In this paper we have given a formal description of the Ant 
Colony Optimization meta-heuristic, as well as of the class of 
problems to which it can be applied. We have then described 
two paradigmatic applications of ACO algorithms to the trav- 
eling salesman problem and to routing in packet-switched 
networks, and concluded with a short overview on the cur- 
rently available applications. Ongoing work follows three 
main directions: the study of the formal properties of a sim- 
plified version of ant system, the development of AntNet for 
Quality of Service applications, and the development of fur- 
ther applications to combinatorial optimization problems. 
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