Ant Algorithms for Discrete
Optimization

Abstract This article presents an overview of recent work
on ant algorithms, that is, algorithms for discrete optimization
that took inspiration from the observation of ant colonies’
foraging behavior, and introduces the ant colony optimization
(ACO) metaheuristic. In the first part of the article the basic
biological findings on real ants are reviewed and their
artificial counterparts as well as the ACO metaheuristic are

Marco Dorigo

Gianni Di Caro

IRIDIA CP 194/6

Université Libre de Bruxelles
Avenue Franklin Roosevelt 50
B-1050 Brussels

Belgium

mdorigo@ulb.ac.be
gdicaro@iridia.ulb.ac.be

Luca M. Gambardella
IDSIA

Corso Elvezia 36
CH-6900 Lugano
Switzerland
luca@idsia.ch

defined. In the second part of the article a number of
applications of ACO algorithms to combinatorial optimization
and routing in communications networks are described. We
conclude with a discussion of related work and of some of
the most important aspects of the ACO metaheuristic.

Keywords

ant algorithms, ant colony optimiza-
tion, swarm intelligence, metaheuris-
tics, natural computation

I Introduction

Ant algorithms were first proposed by Dorigo and colleagues (33, 40] as a multi-agent
approach to difficult combinatorial optimization problems such as the traveling sales-
man problem (TSP) and the quadratic assignment problem (QAP). There is currently
much ongoing activity in the scientific community to extend and apply ant-based al-
gorithms to many different discrete optimization problems [5, 21]. Recent applications
cover problems such as vehicle routing, sequential ordering, graph coloring, routing in
communications networks, and so on.

Ant algorithms were inspired by the observation of real ant colonies. Ants are social
insects, that is, insects that live in colonies and whose behavior is directed more to the
survival of the colony as a whole than to that of a single individual component of the
colony. Social insects have captured the attention of many scientists because of the
high structuration level their colonies can achieve, especially when compared to the
relative simplicity of the colony’s individuals. An important and interesting behavior of
ant colonies is their foraging behavior, and, in particular, how ants can find the shortest
paths between food sources and their nest.

While walking from food sources to the nest and vice versa, ants deposit on the
ground a substance called pheromone, forming in this way a pheromone trail. Ants can
smell pheromone, and when choosing their way, they tend to choose, in probability,
paths marked by strong pheromone concentrations. The pheromone trail allows the
ants to find their way back to the food source (or to the nest). Also, it can be used by
other ants to find the location of the food sources found by their nestmates.

It has been shown experimentally that this pheromone trail following behavior can
give rise, once employed by a colony of ants, to the emergence of shortest paths. That
is, when more paths are available from the nest to a food source, a colony of ants
may be able to exploit the pheromone trails left by the individual ants to discover the
shortest path from the nest to the food source and back.

© 1999 Massachusetts Institute of Technology Artificial Life 5: 137-172 (1999)

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

15¢cm —e—9% Passages upper branch -s—% Passages lower branch

100

Upper Branch ///—\/‘—‘\,
75

Nest Food

@
S

of passa ges

%

25

N e

Lower Branch 0 5 10 15 20 25 30
Time (minutes)

(@) ()

Figure |. Single bridge experiment. (a) Experimental setup. (b) Results for a typical single trial, showing the
percentage of passages on each of the two branches per unit of time as a function of time. Eventually, after an initial
short transitory phase, the upper branch becomes the most used. After Deneubourg et al., 1990 [25].

To study in controlled conditions the ants’ foraging behavior, the binary bridge ex-
periment has been set up by Deneubourg et al. [25] (see Figure 1a). The nest of a colony
of ants of the species Linepithema bumile and a food source have been separated by
a double bridge in which each branch has the same length. Ants are then left free to
move between the nest and the food source and the percentage of ants that choose
one or the other of the two branches is observed over time. The result (see Figure 1b)
is that after an initial transitory phase in which some oscillations can appear, ants tend
to converge on a same path.

In the above experiment initially there is no pheromone on the two branches, which
are therefore selected by the ants with the same probability. Nevertheless, random
fluctuations, after an initial transitory phase, cause a few more ants to select one branch
randomly, the upper one in the experiment shown in Figure 1a, over the other. Because
ants deposit pheromone while walking, the greater number of ants on the upper branch
determines a greater amount of pheromone on it, which in turn stimulates more ants
to choose it, and so on. The probabilistic model that describes this phenomenon,
which closely matches the experimental observations, is the following [60]. We first
make the assumption that the amount of pheromone on a branch is proportional to
the number of ants that used the branch in the past. This assumption implies that
pheromone evaporation is not taken into account. Given that an experiment typically
lasts approximately one hour, it is plausible to assume that the amount of pheromone
evaporated in this time period is negligible. In the model, the probability of choosing
a branch at a certain time depends on the total amount of pheromone on the branch,
which in turn is proportional to the number of ants that used the branch until that time.
More precisely, let U, and L,, be the numbers of ants that have used the upper and
lower branch after m ants have crossed the bridge, with U,, + L,, = m. The probability
Py (m) with which the (m + 1)-th ant chooses the upper branch is

B (Un+ R)"
P = e o ¥ (L + W

while the probability P;(m) that it chooses the lower branch is P (m) = 1 — Py(m).
This functional form of the probability of choosing one branch over the other was
obtained from experiments on trail following [83]; the parameters b and £ allow us to
fit the model to experimental data. The ant choice dynamics follows from the above

138 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

% of experiments
0 20 40 60 80 100

Foraging Foraging 0-20
area area

20-40

40-60

°6 27 ANIS WhIC™ heSe The Shortest path

60-80 l]

©

Figure 2. Double bridge experiment. (a) Ants start exploring the double bridge. (b) Eventually most of the ants
choose the shortest path. (c) Distribution of the percentage of ants that selected the shorter path. After Goss et
al. 1989 [60].

equation: Uy = Uy + 1, if ¥ < Py, Uy = Uy, otherwise, where ¢ is a random
variable uniformly distributed over the interval [0,1].

Monte Carlo simulations were run to test the correspondence between this model
and the real data: Results of simulations were in agreement with the experiments with
real ants when parameters were set to k &~ 20 and b ~ 2 [83].

It is easy to modify the experiment above to the case in which the bridge’s branches
are of different length [60], and to extend the model of Equation 1 so that it can describe
this new situation. In this case, because of the same pheromone-laying mechanism as
in the previous situation, the shortest branch is most often selected: The first ants to
arrive at the food source are those that took the two shortest branches, so that, when
these ants start their return trip, more pheromone is present on the short branch than
on the long branch, stimulating successive ants to choose the short branch. In this
case, the importance of initial random fluctuations is much reduced, and the stochastic
pheromone trail following behavior of the ants coupled to differential branch length
is the main mechanism at work. In Figure 2 are shown the experimental apparatus
and the typical result of an experiment with a double bridge with branches of different
lengths.

It is clear that what is going on in the above-described process is a kind of distributed
optimization mechanism to which each single ant gives only a very small contribution.
It is interesting that, although a single ant is in principle capable of building a solution
(i.e., of finding a path between nest and food reservoir), it is only the ensemble of ants,
that is, the ant colony, that presents the “shortest path-finding” behavior.! In a sense,
this behavior is an emergent property of the ant colony. It is also interesting to note that
ants can perform this specific behavior using a simple form of indirect communication
mediated by pheromone laying, known as stigmergy [62].

The above-described experiments have been run in strongly constrained conditions. A formal proof of the pheromone-driven
shortest path-finding behavior in the general case is missing. Bruckstein et al. [9, 10] consider the shortest path-finding problem
in absence of obstacles for ants driven by visual clues and not by pheromones and prove the convergence of the ants’ path to the
straight line.

Artificial Life Volume 5, Number 2 139

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

As defined by Grassé in his work on Bellicositermes Natalensis and Cubitermes
[62], stigmergy is the “stimulation of the workers by the very performances they have
achieved” (p. 79).?

In fact, Grassé [61] observed that insects are capable of responding to so-called
“significant stimuli” that activate a genetically encoded reaction. In social insects, of
which termites and ants are some of the best known examples, the effects of these
reactions can act as new significant stimuli for both the insect that produced them
and for other insects in the colony. The production of a new significant stimulus as a
consequence of the reaction to a significant stimulus determines a form of coordination
of the activities and can be interpreted as a form of indirect communication. For
example, Grassé [62] observed that Bellicositermes Natalensis as well as Cubitermes,
when building a new nest, start by a random, noncoordinated activity of earth pellet
depositing. But once the earth pellets reach a certain density in a restricted area they
become a new significant stimulus that causes more termites to add earth pellets so
that pillar and arches, and eventually the whole nest, are built.

What characterizes stigmergy from other means of communication is (a) the physical
nature of the information released by the communicating insects, which corresponds to
a modification of physical environmental states visited by the insects, and (b) the local
nature of the released information, which can only be accessed by insects that visit the
state in which it was released (or some neighborhood of that state).

Accordingly, in this article we take the stance that it is possible to talk of stig-
mergetic communication whenever there is an indirect communication mediated by
physical modifications of environmental states which are only locally accessible by the
communicating agents.

One of the main tenets of this article is that the stigmergetic model of communi-
cation in general, and the one inspired by ants’ foraging behavior in particular, is an
interesting model for artificial multi-agent systems applied to the solution of difficult
optimization problems. In fact, the above-mentioned characteristics of stigmergy can
easily be extended to artificial agents by (a) associating with problem states appropriate
state variables, and (b) giving the artificial agents only local access to these variables’
values.

For example, in the above-described foraging behavior of ants, stigmergetic commu-
nication is at work via the pheromone that ants deposit on the ground while walking.
Correspondingly, our artificial ants will simulate pheromone laying by modifying appro-
priate “pheromone variables” associated with problem states they visit while building
solutions to the optimization problem to which they are applied. Also, according to
the stigmergetic communication model, our artificial ants will have only local access to
these pheromone variables.

Another important aspect of real ants’ foraging behavior that is exploited by artificial
ants is the coupling between the autocatalytic (positive feedback) mechanism [40] and
the implicit evaluation of solutions. By implicit solution evaluation we mean the fact
that shorter paths (which correspond to lower cost solutions in artificial ants) will be
completed earlier than longer ones, and therefore they will receive pheromone rein-
forcement more quickly. Implicit solution evaluation coupled with autocatalysis can
be very effective: The shorter the path, the sooner the pheromone is deposited by the
ants, the more the ants that use the shorter path. If appropriately used, autocatalysis
can be a powerful mechanism in population-based optimization algorithms (e.g., in
evolutionary computation algorithms [45, 66, 85, 91] autocatalysis is implemented by
the selection/reproduction mechanism). In fact, it quickly favors the best individuals,

2 Workers are one of the castes in termite colonies. Although Grassé introduced the term stigmergy to explain the behavior of
termite societies, the same term has been used to describe indirect communication mediated by modifications of the environment
that can also be observed in other social insects.

140 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

so that they can direct the search process. When using autocatalysis some care must
be taken to avoid premature convergence (stagnation), that is, the situation in which
some not very good individual takes over the population just because of a contingent
situation (e.g., because of a local optimum, or just because of initial random fluctu-
ations that caused a not very good individual to be much better than all the other
individuals in the population) impeding further exploration of the search space. We
will see that pheromone trail evaporation and stochastic state transitions are the needed
complements to autocatalysis drawbacks.

In the remainder of this article we discuss a number of ant algorithms based on
the above ideas. We start by defining, in Section 2, the characterizing aspects of ant
algorithms and the ant colony optimization (ACO) metaheuristic.> Section 3 is an
overview of most of the applications of ACO algorithms. In Section 4 we briefly discuss
related work, and in Section 5 we discuss some of the characteristics of implemented
ACO algorithms. Finally, we draw some conclusions in Section 6.

2 The Ant Colony Optimization Approach

In the ant colony optimization (ACO) metaheuristic a colony of artificial ants cooperates
in finding good solutions to difficult discrete optimization problems. Cooperation is a
key design component of ACO algorithms: The choice is to allocate the computational
resources to a set of relatively simple agents (artificial ants) that communicate indirectly
by stigmergy. Good solutions are an emergent property of the agents’ cooperative
interaction.

Artificial ants have a double nature. On the one hand, they are an abstraction of those
behavioral traits of real ants that seemed to be at the heart of the shortest path-finding
behavior observed in real ant colonies. On the other hand, they have been enriched
with some capabilities that do not find a natural counterpart. In fact, we want ant
colony optimization to be an engineering approach to the design and implementation
of software systems for the solution of difficult optimization problems. It is therefore
reasonable to give artificial ants some capabilities that, although not corresponding to
any capacity of their real ant counterparts, make them more effective and efficient. In
the following we discuss first the nature-inspired characteristics of artificial ants, and
then how they differ from real ants.

2.1 Similarities and Differences with Real Ants

Most of the ideas of ACO stem from real ants. In particular, the use of: (a) a colony of
cooperating individuals, (b) an (artificia) pheromone trail for local stigmergetic com-
munication, (¢) a sequence of local moves to find shortest paths, and (d) a stochastic
decision policy using local information and no lookahead.

Colony of cooperating individuals. As real ant colonies, ant algorithms are composed
of a population, or colony, of concurrent and asynchronous entities globally cooperat-
ing to find a good “solution” to the task under consideration. Although the complexity
of each artificial ant is such that it can build a feasible solution (as a real ant can some-
how find a path between the nest and the food), high quality solutions are the result of
the cooperation among the individuals of the whole colony. Ants cooperate by means
of the information they concurrently read/write on the problem’s states they visit, as
explained in the next item.

3 It is important here to clarify briefly the terminology used. We talk of ACO metaheuristic to refer to the general procedure
presented in Section 2. The term ACO algorithm will be used to indicate any generic instantiation of the ACO metaheuristic.
Alternatively, we will also talk more informally of ant algorithms to indicate any algorithm that, while following the general
guidelines set above, does not necessarily follow all the aspects of the ACO metaheuristic. Therefore, all ACO algorithms are also
ant algorithms, though the converse is not true (e.g., we will see that HAS-QAP is an ant, but not strictly an ACO algorithm).

Artificial Life Volume 5, Number 2 141

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

Pheromone trail and stigmergy. Artificial ants modify some aspects of their envi-
ronment as the real ants do. While real ants deposit on the world’s state they visit a
chemical substance, the pheromone, artificial ants change some numeric information
locally stored in the problem’s state they visit. This information takes into account
the ant’s current history or performance and can be read/written by any ant access-
ing the state. By analogy, we call this numeric information artificial pheromone trail,
pheromone trail for short in the following. In ACO algorithms local pheromone trails
are the only communication channels among the ants. This stigmergetic form of com-
munication plays a major role in the utilization of collective knowledge. Its main effect
is to change the way the environment (the problem landscape) is locally perceived by
the ants as a function of all the past history of the whole ant colony. Usually, in ACO
algorithms an evaporation mechanism, similar to real pheromone evaporation, modi-
fies pheromone information over time. Pheromone evaporation allows the ant colony
slowly to forget its past history so that it can direct its search toward new directions
without being over-constrained by past decisions.
Shortest path searching and local moves. Artificial and real ants share a common
task: to find a shortest (minimum cost) path joining an origin (nest) to destination
(food) sites. Real ants do not jump; they just walk through adjacent terrain’s states, and
so do artificial ants, moving step-by-step through “adjacent states” of the problem. Of
course, exact definitions of state and adjacency are problem specific.
Stochastic and myopic state transition policy. Artificial ants, as real ones, build so-
lutions applying a probabilistic decision policy to move through adjacent states. As for
real ants, the artificial ants’ policy makes use of local information only and it does not
make use of lookahead to predict future states. Therefore, the applied policy is com-
pletely local, in space and time. The policy is a function of both the a priori information
represented by the problem specifications (equivalent to the terrain’s structure for real
ants), and of the local modifications in the environment (pheromone trails) induced by
past ants.

As we said, artificial ants also have some characteristics that do not find their coun-
terpart in real ants.

o Artificial ants live in a discrete world and their moves consist of transitions from
discrete states to discrete states.

e Artificial ants have an internal state. This private state contains the memory of the
ants’ past actions.

o Artificial ants deposit an amount of pheromone that is a function of the quality of
the solution found.*

e Artificial ants’ timing in pheromone laying is problem dependent and often does
not reflect real ants’ behavior. For example, in many cases artificial ants update
pheromone trails only after having generated a solution.

e To improve overall system efficiency, ACO algorithms can be enriched with extra
capabilities such as lookahead, local optimization, backtracking, and so on that
cannot be found in real ants. In many implementations ants have been hybridized
with local optimization procedures (see, e.g., [38, 51, 98]), while, so far, only Michel
and Middendorf [78] have used a simple one-step lookahead function and there are
no examples of backtracking procedures added to the basic ant capabilities, except
for simple recovery procedures used by Di Caro and Dorigo [26, 29].

4 In reality, some real ants have a similar behavior: They deposit more pheromone in case of richer food sources.
5 Usually, backtracking strategies are suitable to solve constraint satisfaction problems, (e.g., n-queens) and lookahead is very useful

142 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

In the following section we will show how artificial ants can be put to work in
an algorithmic framework so that they can be applied to discrete optimization
problems.

2.2 The ACO Metaheuristic

In ACO algorithms a finite-size colony of artificial ants with the above-described char-
acteristics collectively searches for good-quality solutions to the optimization prob-
lem under consideration. Each ant builds a solution, or a component of it® starting
from an initial state selected according to some problem-dependent criteria. While
building its own solution, each ant collects information on the problem character-
istics and on its own performance and uses this information to modify the repre-
sentation of the problem, as seen by the other ants. Ants can act concurrently and
independently, showing a cooperative behavior. They do not use direct communica-
tion: It is the stigmergy paradigm that governs the information exchange among the
ants.

An incremental constructive approach is used by the ants to search for a feasi-
ble solution. A solution is expressed as a minimum cost (shortest) path through
the states of the problem in accordance with the problem’s constraints. The com-
plexity of each ant is such that even a single ant is able to find a (probably poor
quality) solution. High-quality solutions are only found as the emergent result of the
global cooperation among all the agents of the colony concurrently building different
solutions.

According to the assigned notion of neighborhood (problem-dependent), each ant
builds a solution by moving through a (finite) sequence of neighbor states. Moves
are selected by applying a stochastic local search policy directed (a) by ant private
information (the ant internal state, or memory) and (b) by publicly available pheromone
trails and a priori problem-specific local information.

The ant’s internal state stores information about the ant past history. It can be
used to carry useful information to compute the value/goodness of the generated so-
lution and/or the contribution of each executed move. Moreover it can play a fun-
damental role to manage the feasibility of the solutions. In some problems, in fact,
typically in combinatorial optimization, some of the moves available to an ant in a
state can take the ant to an infeasible state. This can be avoided by exploiting the
ant’s memory. Ants therefore can build feasible solutions using only knowledge about
the local state and about the effects of actions that can be performed in the local
state.

The local, public information comprises both some problem-specific heuristic infor-
mation and the knowledge, coded in the pheromone trails, accumulated by all the ants
from the beginning of the search process. This time-global pheromone knowledge built
up by the ants is a shared local long-term memory that influences the ants’ decisions.
The decisions about when the ants should release pheromone on the “environment”
and how much pheromone should be deposited depend on the characteristics of the
problem and on the design of the implementation. Ants can release pheromone while
building the solution (online step-by-step), or after a solution has been built, moving
back to all the visited states (online delayed), or both. As we said, autocatalysis plays

when the cost of making a local prediction about the effect of future moves is much lower than the cost of the real execution of
the move sequence (e.g., mobile robotics). To our knowledge, until now ACO algorithms have not been applied to these classes
of problems.

To make more intuitive what we mean by component of a solution, we can consider, as an example, a transportation routing
problem: Given a set of n cities, {¢;},i € {I, ..., n}, and a network of interconnection roads, we want to find all the shortest paths
sj connecting each city pair ¢;¢;. In this case, a complete solution is represented by the set of all the n(n — I) shortest path pairs,
while a component of a solution is a single path s;.

o

Artificial Life Volume 5, Number 2 143

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

an important role in ACO algorithms functioning: The more ants choose a move, the
more the move is rewarded (by adding pheromone) and the more interesting it be-
comes for the next ants. In general, the amount of pheromone deposited is made
proportional to the goodness of the solution an ant has built (or is building). In this
way, if a move contributed to generating a high-quality solution its goodness will be
increased proportionally to its contribution.

A functional composition of the locally available pheromone and heuristic values
defines ant-decision tables, that is, probabilistic tables used by the ants’ decision policy
to direct their search toward the most interesting regions of the search space. The
stochastic component of the move choice decision policy and the previously dis-
cussed pheromone evaporation mechanism prevent a rapid drift of all the ants to-
ward the same part of the search space. Of course, the level of stochasticity in the
policy and the strength of the updates in the pheromone trail determine the bal-
ance between the exploration of new points in the state space and the exploitation
of accumulated knowledge. If necessary and feasible, the ants’ decision policy can
be enriched with problem-specific components such as backtracking procedures or
lookahead. Once an ant has accomplished its task, consisting of building a solution
and depositing pheromone information, the ant “dies,” that is, it is deleted from the
system.

The overall ACO metaheuristic, besides the two above-described components acting
from a local perspective (i.e., ants’ generation and activity, and pheromone evapora-
tion), can also comprise some extra components that use global information and that
go under the name of daemon_actions in the algorithm reported in Figure 3. For
example, a daemon can be allowed to observe the ants’ behavior and to collect useful
global information to deposit additional pheromone information, biasing, in this way,
the ant search process from a nonlocal perspective. Or, it could, on the basis of the
observation of all the solutions generated by the ants, apply problem-specific local op-
timization procedures and deposit additional pheromone “offline” with respect to the
pheromone the ants deposited online.

The three main activities of an ACO algorithm (ant generation and activity, pheromone
evaporation, and daemon actions) may need some kind of synchronization, performed
by the schedule _activities construct of Figure 3. In general, a strictly sequential
scheduling of the activities is particularly suitable for nondistributed problems, where
the global knowledge is easily accessible at any instant and the operations can be
conveniently synchronized. On the contrary, some form of parallelism can be easily
and efficiently exploited in distributed problems such as routing in telecommunications
networks, as will be discussed in Section 3.2.

In Figure 3, a high-level description of the ACO metaheuristic is reported in pseudo-
code. As pointed out above, some described components and behaviors are optional,
such as daemon activities, or strictly implementation dependent, such as when and how
the pheromone is deposited. In general, the online step-by-step pheromone update
and the online delayed pheromone update components (respectively, lines 24—27 and
30-34 in the new_active _ant() procedure) are mutually exclusive and only in a few
cases are they both present or both absent (when both components are absent, the
pheromone is deposited by the daemon).

ACO algorithms, as a consequence of their concurrent and adaptive nature, are
particularly suitable for distributed stochastic problems where the presence of exoge-
nous sources determines a nonstationarity in the problem representation (in terms of
costs and/or environment). For example, many problems related to communications
or transportation networks are intrinsically distributed and nonstationary and it is often
not possible to have an exact model of the underlying variability. On the contrary,
because stigmergy is both the only inter-ant communication method and it is spatially

144 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

1 procedure ACO_Meta_heuristic()
2 while (termination_criterion not_satisfied)
3 schedule_activities

4 ants_generation_and_activity();

5 pheromone_evaporation();

6 daemon_actions(); {optional}

7 end schedule_activities

s end while

9 end procedure

10 procedure ants_generation_and_activity()
11 while (available_resources)

12 schedule_the_creation_of-a_new_ant();
13 new_active_ant();

14 end while

15 end procedure

16 procedure new_active_ant() {ant lifecycle}
17 indtialize_ant();

18 M = update_ant_memory();

19 while (current_state # target_state)
20 A = read_local_ant-routing_table();

21 P = compute_transition_probabilities(A, M, problem_constraints);
22 next_state = apply-ant_decision_policy(P, problem_constraints);
23 move_to_next_state(next_state);

24 if (online_step-by-step_pheromone_update)

25 deposit_pheromone_on_the_visited_arc();

26 update_ant-routing-table();

27 end if

28 M = update_internal_state();
29 end while
30 if (online_delayed _pheromone_update)

31 evaluate_solution();

32 deposit_pheromone_on_all_visited_arcs();
33 update_ant-routing_table();

3 end if

35 die();

36 end procedure

Figure 3. The ACO metaheuristic in pseudo-code. Comments are enclosed in braces. All the procedures at the first
level of indentation in the statementin _parallel are executed concurrently. The procedure daemon_actions()

at line 6 is optional and refers to centralized actions executed by a daemon possessing global knowledge. The
target _state (line 19) refers to a complete solution, or to a component of a complete solution, built by the
ant. The step-by-step and delayed pheromone updating procedures at lines 24-27 and 30-34 are often mutually
exclusive. When both of them are absent the pheromone is deposited by the daemon.

localized, ACO algorithms could perform not at their best in problems where each state
has a large-sized neighborhood. In fact, an ant that visits a state with a large-sized
neighborhood has a huge number of possible moves among which to choose. There-
fore, the probability that many ants visit the same state is very small, and consequently
there is little, if any, difference between using or not using pheromone trails. A more
formal definition of the ACO metaheuristic, as well as of the class of problems to which
it can be applied, can be found in [35].

Artificial Life Volume 5, Number 2 145

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

3 Applications of ACO Algorithms

There are now available numerous successful implementations of the ACO metaheuris-
tic (Figure 3) applied to a number of different combinatorial optimization problems.
Looking at these implementations it is possible to distinguish among two classes of ap-
plications: those to static combinatorial optimization problems, and those to dynamic
ones.

Static problems are those in which the characteristics of the problem are given once
and for all when the problem is defined and do not change while the problem is being
solved. A paradigmatic example of such problems is the classic traveling salesman
problem [67, 71, 806], in which city locations and their relative distances are part of the
problem definition and do not change at run time. On the contrary, dynamic problems
are defined as a function of some quantities whose value is set by the dynamics of
an underlying system. The problem changes therefore at run time and the optimiza-
tion algorithm must be capable of adapting online to the changing environment. The
paradigmatic example discussed in the remainder of this section is network routing.

Topological modifications (e.g., adding or removing a node), which are not consid-
ered by the above classification, can be seen as transitions between problems belonging
to the same class.

Tables 1 and 2 list the available implementations of ACO algorithms. The main
characteristics of the listed algorithms are discussed in the following two subsections.
We then conclude with a brief review of existing parallel implementations of ACO
algorithms.

3.1 Applications of ACO Algorithms to Static Combinatorial Optimization
Problems

The application of the ACO metaheuristic to a static combinatorial optimization problem

is relatively straightforward, once a mapping of the problem that allows the incremental

construction of a solution, a neighborhood structure, and a stochastic state transition

rule to be locally used to direct the constructive procedure is defined.

A strictly implementation-dependent aspect of the ACO metaheuristic regards the
timing of pheromone updates (lines 24-27 and 30-34 of the algorithm in Figure 3). In
ACO algorithms for static combinatorial optimization the way ants update pheromone
trails changes across algorithms: Any combination of online step-by-step pheromone
updates and online delayed pheromone updates is possible.

Another important implementation-dependent aspect concerns the daemon.
actions() component of the ACO metaheuristic (line 6 of the algorithm in Figure 3).
Daemon actions implement actions that require some kind of global knowledge about
the problem. Examples are offline pheromone updates and local optimization of solu-
tions built by ants.

Most of the ACO algorithms presented in this subsection are strongly inspired by
Ant System (AS), the first work on ant colony optimization [33, 40]. Many of the
successive applications of the original idea are relatively straightforward applications
of AS to the specific problem under consideration. We therefore start the description
of ACO algorithms with AS. Following AS, for each ACO algorithm listed in Table 1
we give a short description of the algorithm’s main characteristics and of the results
obtained.

3.1.1 Traveling Salesman Problem

The first application of an ant colony optimization algorithm was done using the trav-
eling salesman problem as a test problem. The main reasons why the TSP, one of the
most studied NP-hard [71, 86] problems in combinatorial optimization, was chosen are

146 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

Table I. List of applications of ACO algorithms to static combinatorial optimization problems. Classification by
application and chronologically ordered.

Problem Authors Year Main Algorithm
name references name
Traveling Dorigo, Maniezzo, & Colorni 1991 [33, 40, 41] AS
salesman Gambardella & Dorigo 1995 (49] Ant-Q
Dorigo & Gambardella 1996 (37, 38, 501 ACS &
ACS-3-opt
Stiitzle & Hoos 1997 [98, 971 MMAS
Bullnheimer, Hartl, & Strauss 1997 [12] AS,ank
Quadratic Maniezzo, Colorni, & Dorigo 1994 (77 AS-QAP
assignment Gambardella, Taillard, & Dorigo 1997 [53, 54] HAS-QAP?
Stiitzle & Hoos 1998 [99] MMAS-QAP
Maniezzo & Colorni 1998 [76] AS-QAPP
Maniezzo 1998 [75] ANTS-QAP
Job-shop Colorni, Dorigo, & Maniezzo 1994 [20] AS-JSP
scheduling
Vehicle Bullnheimer, Hartl, & Strauss 1996 [15, 11, 13] AS-VRP
routing Gambardella, Taillard, & Agazzi 1999 (52] HAS-VRP
Sequential Gambardella & Dorigo 1997 (51] HAS-SOP
ordering
Graph Costa & Hertz 1997 [22] ANTCOL
coloring
Shortest common Michel & Middendorf 1998 [78, 791 AS-SCS
supersequence

2 HAS-QAP is an ant algorithm that does not follow all the aspects of the ACO
metaheuristic.

b This is a variant of the original AS-QAP.

Table 2. List of applications of ACO algorithms to dynamic combinatorial optimization problems. Classification by
application and chronologically ordered.

Problem name Authors Year Main Algorithm
references name
Connection-oriented Schoonderwoerd, Holland, 1996 [90, 89] ABC
network routing Bruten, & Rothkrantz
White, Pagurek, & Oppacher 1998 [105] ASGA
Di Caro & Dorigo 1998 (30] AntNet-FS
Bonabeau, Henaux, Guérin, 1998 (o] ABC-smart
Snyers, Kuntz, & Theraulaz ants
Connectionless Di Caro & Dorigo 1997 (26, 29, 32] AntNet &
network routing AntNet-FA
Subramanian, Druschel, 1997 (100] Regular ants
& Chen
Heusse, Guérin, Snyers, 1998 [64] CAF
& Kuntz

van der Put & Rothkrantz 1998 [102, 103] ABC-backward

Artificial Life Volume 5, Number 2 147

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

that it is a shortest path problem to which the ant colony metaphor is easily adapted
and that it is a didactic problem (i.e., it is very easy to understand and explanations of
the algorithm behavior are not obscured by too many technicalities).

A general definition of the traveling salesman problem is the following. Consider a
set V of nodes, representing cities, and a set E of arcs fully connecting the nodes N.
Let dj; be the length of the arc (4, j) € E, that is, the distance between cities i and j,
with 4, j € N. The TSP is the problem of finding a minimal length Hamiltonian circuit
on the graph G = (I, E), where a Hamiltonian circuit of graph G is a closed tour
visiting once and only once all the 7 = |N| nodes of G, and its length is given by the
sum of the lengths of all the arcs of which it is composed.”

In the following we will briefly overview the ACO algorithms that have been pro-
posed for the TSP, starting with Ant System. A more complete overview can be found
in [96].

Ant System (AS). Ant System was the first (1991) [33, 40] ACO algorithm. Its impor-
tance resides mainly in being the prototype of a number of ant algorithms that have
found many interesting and successful applications.

In AS, artificial ants build solutions (tours) of the TSP by moving on the problem
graph from one city to another. The algorithm executes 4,y iterations, in the following
indexed by ¢. During each iteration m ants build a tour executing 7 steps in which
a probabilistic decision (state transition) rule is applied. In practice, when in node ¢
the ant chooses the node j to move to, and the arc (4, j) is added to the tour under
construction. This step is repeated until the ant has completed its tour.

Three AS algorithms have been defined [19, 33, 40, 41] that differ by the way
pheromone trails are updated. These algorithms are called ant-density, ant-quantity,
and ant-cycle. In ant-density and ant-quantity ants deposit pheromone while building
a solution,® while in ant-cycle ants deposit pheromone after they have built a complete
tour.

Preliminary experiments run on a set of benchmark problems [33, 40, 41] have
shown that ant-cycle’s performance was much better than that of the other two al-
gorithms. Consequently, research on AS was directed toward a better understanding
of the characteristics of ant-cycle, which is now known as Ant System, while the other
two algorithms were abandoned.

As we said, in AS after ants have built their tours, each ant deposits pheromone on
pheromone trail variables associated to the visited arcs to make the visited arcs become
more desirable for future ants (i.e., online delayed pheromone update is at work).
Then the ants die. In AS no daemon activities are performed, while the pheromone
evaporation procedure, which happens just before ants start to deposit pheromone, is
interleaved with the ants’ activity.

The amount of pheromone trail 7;(#) associated to arc (4, j) is intended to represent
the learned desirability of choosing city j when in city 7 (which also corresponds to the
desirability that the arc (4, j) belongs to the tour built by an ant). The pheromone trail
information is changed during problem solution to reflect the experience acquired by
ants during problem solving. Ants deposit an amount of pheromone proportional to
the quality of the solutions they produced: The shorter the tour generated by an ant,
the greater the amount of pheromone it deposits on the arcs that it used to generate
the tour. This choice helps to direct search toward good solutions. The main role of
pheromone evaporation is to avoid stagnation, that is, the situation in which all ants
end up doing the same tour.

7 Note that distances need not be symmetric: In an asymmetric TSP (ATSP) d; # d;. Also, the graph need not be fully connected.
If it is not, it suffices to add the missing arcs, giving them a very high length.

8 These two algorithms differ by the amount of pheromone ants deposit at each step: In ant-density ants deposit a constant amount
of pheromone, while in ant-quantity they deposit an amount of pheromone inversely proportional to the length of the chosen arc.

148 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

The memory (or internal state) of each ant contains the already visited cities and is
called tabu list (in the following we will continue to use the term tabu list to indicate
the ant’'s memory). The memory is used to define, for each ant &, the set of cities that
an ant located on city 7 still has to visit. By exploiting the memory, therefore, an ant £
can build feasible solutions by an implicit state-space graph generation (in the TSP this
corresponds to visiting a city exactly once). Also, memory allows the ant to cover the
same path to deposit online delayed pheromone on the visited arcs.

The ant-decision table A; = [a;;(t)]}n;) of node i is obtained by the composition of
the local pheromone trail values with the local heuristic values as follows:

[T (D)1 [n;17

PLGIN UG
leN;

ol,:/(t) = V] € ./\/1 (2)

where 7;;(#) is the amount of pheromone trail on arc (4,) at time ¢, n; = 1/d; is the
heuristic value of moving from node i to node j, N; is the set of neighbors of node
i, and o and B are two parameters that control the relative weight of pheromone trail
and heuristic value.

The probability with which an ant & chooses to go from city i to city j € N* while
building its tour at the #th algorithm iteration is

a;;(1)

k

(D = —=———

Py > au()
leNF

(€))

where /\ff C N is the set of nodes in the neighborhood of node i that ant & has
not visited yet (nodes in N¥ are selected from those in N; by using the ant private
memory M¥).

The role of the parameters o and B is the following. If @ = 0, the closest cities are
more likely to be selected: This corresponds to a classical stochastic greedy algorithm
(with multiple starting points since ants are initially randomly distributed on the nodes).
If, on the contrary, § = 0, only pheromone amplification is at work: This method will
lead to the rapid emergence of a stagnation situation with the corresponding generation
of tours that, in general, are strongly suboptimal [41]. A trade-off between heuristic
value and trail intensity therefore appears to be necessary.

After all ants have completed their tour, pheromone evaporation on all arcs is trig-
gered, and then each ant & deposits a quantity of pheromone Ari’j(t) on each arc that
it has used:

1/1%() if (4, j) € T*(b)

0 if (i, j) ¢ TA(1) @

At[j(t) = {

where 7*(#) is the tour done by ant k at iteration ¢, and L*(7) is its length. Note that
in the symmetric TSP arcs are considered to be bidirectional so that arcs (4, j) and
(j, i) are always updated contemporaneously (in fact, they are the same arc). Different
is the case of the asymmetric TSP, where arcs have a directionality, and for which the
pheromone trail level on the arcs (4, j) and (J, 7) can be different. In this case, therefore,
when an ant moves from node i to node j only arc (4, j), and not (J, 7), is updated.

9 The term tabu list is used here to indicate a simple memory that contains the set of already visited cities and has no relation with
tabu search [57, 58].

Artificial Life Volume 5, Number 2 149

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

It is clear from Equation 4 that the value Ati’j(t) depends on how well the ant has
performed: The shorter the tour done, the greater the amount of pheromone deposited.

In practice, the addition of new pheromone by ants and pheromone evaporation are
implemented by the following rule applied to all the arcs:

(1) < (1 = p)7i(1) + Aty(2) &)

where At;(1) =Y /L, Arﬁ(z‘), m is the number of ants at each iteration (maintained
constant), and p € (0, 1] is the pheromone trail decay coefficient. The initial amount
of pheromone 7;;(0) is set to a same small positive constant value 7y on all arcs, and
the total number of ants is set to m = n, while «, B8, and p are respectively set to
1, 5, and 0.5; these values were experimentally found to be good by Dorigo [33].
Dorigo et al. [40] introduced also elitist ants, that is, a daemon action by which the arcs
used by the ant that generated the best tour from the beginning of the trial get extra
pheromone.

Ant System was compared with other general purpose heuristics on some relatively

small TSP problems (these were problems ranging from 30 to 75 cities). The results
[40, 41] were very interesting and disappointing at the same time. AS was able to find
and improve the best solution found by a genetic algorithm for Oliver30 [106], a 30-city
problem, and it had a performance similar or better than that of some general-purpose
heuristics with which it was compared. Unfortunately, for problems of growing dimen-
sions AS never reached the best-known solutions within the allowed 3,000 iterations,
although it exhibited quick convergence to good solutions. These encouraging, al-
though not exceptional, results stimulated a number of researchers to study further the
ACO approach to optimization. These efforts have resulted in numerous successful
applications, listed in the following sections.
Others AS-like approaches. Stiitzle and Hoos [98, 97] have introduced Max-Min AS
(MMAS), which is the same as AS, but (a) pheromone trails are only updated offline
by the daemon (the arcs that were used by the best ant in the current iteration re-
ceive additional pheromone), (b) pheromone trail values are restricted to an interval
[Tmins Tmax), and (¢) trails are initialized to their maximum value Tpx.

Putting explicit limits on the trail strength restricts the range of possible values for
the probability of choosing a specific arc according to Equation 3. This helps avoid
stagnation, which was one of the reasons why AS performed poorly when an elitist
strategy, such as allowing only the best ant to update pheromone trails, was used.
To avoid stagnation, which may occur when some pheromone trails are close to Tpax
while most others are close to T, Stlitzle and Hoos have added what they call a “trail
smoothing mechanism”; that is, pheromone trails are updated using a proportional
mechanism: ATj; o (Tmax — 7;(#)). In this way the relative difference between the
trail strengths gets smaller, which obviously favors the exploration of new paths. They
found that, when applied to the TSP, MMAS finds significantly better tours than AS,
although comparable to those obtained with ACS. (ACS is an extension of AS discussed
in the next subsection.)

Bullnheimer, Hartl, and Strauss [12] proposed yet another modification of AS, called
ASpnk. In ASpnk, as was the case in MMAS, the only pheromone updates are per-
formed by the daemon, which implements the following activities: (a) the m ants
are ranked by tour length (Z;(t), L,(?), ..., L,(#)) and the arcs that were visited by
one of the first 0 — 1 ants in the ranking receive an amount of pheromone propor-
tional to the visiting ant rank, and (b) the arcs used by the ant that generated the
best tour from the beginning of the trial also receive additional pheromone (this is
equivalent to AS’s elitist ants’ pheromone updating). These are both forms of off-
line pheromone update. In their implementation the contribution of the best tour so

150 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

far was multiplied by o. The dynamics of the amount of pheromone 7;(#) is given
by

(1) < (1 —p)r; (1) + aAt;;(t) + Ar,;(t) 6

where Ar; (f) = 1/L7(¢), L' being the length of the best solution from beginning of
the trial, and At/(f) = ZZ;} Atfi(1), with Atf(t) = (o — pu)1/1*(1) if the ant with
rank p has used arc (4, j) in its tour and Arf;(t) = 0 otherwise. I*(t) is the length of
the tour performed by the ant with rank p at iteration ¢. Equation 6 is applied to all
arcs and implements therefore both pheromone evaporation and offline pheromone
updating. They found that this new procedure improves significantly the quality of the
results obtained with AS.
Ant Colony System (ACS), ACS-3-opt, and Ant-Q. The Ant Colony System (ACS)
algorithm has been introduced by Dorigo and Gambardella [37, 38, 50] to improve the
performance of AS, which was able to find good solutions within a reasonable time
only for small problems. ACS is based on AS but presents some important differences.
First, the daemon updates pheromone trails offline: At the end of an iteration of the
algorithm, once all the ants have built a solution, pheromone trail is added to the arcs
used by the ant that found the best tour from the beginning of the trial. In ACS-3-opt
the daemon first activates a local search procedure based on a variant of the 3-opt local
search procedure [73] to improve the solutions generated by the ants and then performs
offline pheromone trail update. The offline pheromone trail update rule is

7;;(8) < (1 — p)7i(H) + pATy;(0) @

where p € (0, 1] is a parameter governing pheromone decay, At;(f) = 1/L", and LT
is the length of 7", the best tour since the beginning of the trial. Equation 7 is applied
only to the arcs (i, j) belonging to 7.

Second, ants use a different decision rule, called pseudo-random-proportional rule,
in which an ant % on city i chooses the city j € N to move to as follows. Let
A; = la;(Dln, be the ant-decision table:

[(D)l ,)°
Y ren (Dl ilf

a;(t) = VieN;: ®

Let g be a random variable uniformly distributed over [0, 1], and ¢, € [0, 1] be a
tunable parameter. The pseudo-random-proportional rule, used by ant % located in
node i to choose the next node j € N¥, is the following: If ¢ < gy then

eon 1 if j =argmax a;;
Py = {O otherwise ©)
otherwise, when g > ¢

& a;; (1)

(=== ao
Py = S

This decision rule has a double function: When g < ¢y the decision rule exploits the
knowledge available about the problem, that is, the heuristic knowledge about distances
between cities and the learned knowledge memorized in the form of pheromone trails,

Artificial Life Volume 5, Number 2 151

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

while when g > ¢ it operates a biased exploration (equivalent to AS’s Equation 3). Tun-
ing qo allows us to modulate the degree of exploration and to choose whether to con-
centrate the activity of the system on the best solutions or to explore the search space.

Third, in ACS, ants perform only online step-by-step pheromone updates. These
updates are performed to favor the emergence of other solutions than the best so far.
The pheromone updates are performed by applying the rule

ti;(1) < (1 = @)7;;(1) + 970 an

where 0 < ¢ < 1.

Equation 11 says that an ant moving from city i to city j € N* updates the pheromone
trail on arc (4, j). The value 1y is the same as the initial value of pheromone trails and
it was experimentally found that setting 7y = (12L,,)"", where n is the number of
cities and L,, is the length of a tour produced by the nearest neighbor heuristic [56],
produces good results. When an ant moves from city i to city j, the application of the
local update rule makes the corresponding pheromone trail 7;; decrease. The rationale
for decreasing the pheromone trail on the path an ant is using to build a solution is the
following. Consider an ant k, starting in city 2 and moving to city 3, 4, and so on, and
an ant k; starting in city 1 and choosing city 2 as the first city to move to. Then, there
are good chances that ant k; will follow ant &, with one step delay. The trail-decreasing
effect obtained by applying the local update rule reduces the risk of such a situation.
In other words, ACS’s local update rule has the effect of making the visited arcs less
and less attractive as they are visited by ants, indirectly favoring the exploration of
not-yet-visited arcs. As a consequence, ants tend not to converge to a common path.
This fact, which was observed experimentally [38], is a desirable property given that
if ants explore different paths, then there is a higher probability that one of them will
find an improving solution than in the case when they all converge to the same tour
(which would make the use of m ants pointless).

Last, ACS exploits a data structure called candidate list, which provides additional
local heuristic information. A candidate list is a list of preferred cities to be visited from
a given city. In ACS when an ant is in city i, instead of examining all the unvisited
neighbors of i, it chooses the city to move to among those in the candidate list; only if
no city in candidate list has unvisited status are other cities examined. The candidate list
of a city contains c/ cities ordered by increasing distance (c/ is a parameter), and the list
is scanned sequentially and according to the ant tabu list to avoid already visited cities.

ACS was tested (see [37, 38] for detailed results) on standard problems, both sym-
metric and asymmetric, of various sizes and compared with many other metaheuristics.
In all cases, its performance, both in terms of quality of the solutions generated and of
CPU time required to generate them, was the best one.

ACS-3-opt’s performance was compared to that of the genetic algorithm (with local
optimization) [47, 48] that won the First International Contest on Evolutionary Optimiza-
tion [2]. The two algorithms showed similar performance with the genetic algorithm
behaving slightly better on symmetric problems and ACS-3-opt on asymmetric ones.

To conclude, we mention that ACS was the direct successor of Ant-Q [36, 49], an
algorithm that tried to merge AS and Q-learning [104] properties. In fact, Ant-Q differs
from ACS only in the value 7y used by ants to perform online step-by-step pheromone
updates. The idea was to update pheromone trails with a value that was a prediction
of the value of the next state. In Ant-Q, an ant 4 implements online step-by-step
pheromone updates by the following equation, which replaces Equation 11:

7;(1) < (1 — @)1;5(1) + @y - max 1 (12)
le/\/}."

152 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

Unfortunately, it was later found that setting the complicate prediction term to a small
constant value, as it is done in ACS, resulted in approximately the same performance.
Therefore, although having a good performance, Ant-Q was abandoned for the equally
good but simpler ACS.

Also, other versions of ACS were studied that differ from the one described above
because of (a) the way online step-by-step pheromone updates were implemented (in
[38] experiments were run disabling it, or by setting the update term in Equation 11
to the value 7o = 0), (b) the way the decision rule was implemented (in [49] the
pseudo-random-proportional rule of Equations 9 and 10 was compared to the random-
proportional rule of Ant System, and to a pseudo-random rule that differs from the
pseudo-random-proportional rule because random choices are done uniformly ran-
domly), and (c) the type of solution used by the daemon to update the pheromone
trails (in [38] the use of the best solution found in the current iteration was compared
with ACS’s use of the best solution found from the beginning of the trial). ACS as
described above is the best performing of all the algorithms obtained by combinations
of the above-mentioned choices.

3.1.2 Quadratic Assignment Problem

The quadratic assignment problem is the problem of assigning 7 facilities to 7 locations
so that the cost of the assignment, which is a function of the way facilities have been
assigned to locations, is minimized [69]. The QAP was, after the TSP, the first problem
to be attacked by an AS-like algorithm. This was a reasonable choice, since the QAP
is a generalization of the TSP.!'® Maniezzo, Colorni, and Dorigo [77] applied exactly
the same algorithm as AS using the QAP-specific min-max heuristic to compute the
n values used in Equation 3. The resulting algorithm, AS-QAP, was tested on a set of
standard problems and turned out to be of the same quality as metaheuristic approaches
such as simulated annealing and evolutionary computation. More recently, Maniezzo
and Colorni [76] and Maniezzo [75] developed two variants of AS-QAP and added to
them a local optimizer. The resulting algorithms were compared with some of the best
heuristics available for the QAP with very good results: Their versions of AS-QAP gave
the best results on all the tested problems.

Similar results were obtained by Stiitzle and Hoos with their MMAS-QAP algorithm
[99] (M MAS-QAP is a straightforward application of MMAS, see Section 3.1.1, to the
QAP), and by Gambardella, Taillard, and Dorigo [53] with their HAS-QAP.}* MMAS-
QAP and HAS-QAP were compared with some of the best heuristics available for the
QAP on two classes of QAP problems: random and structured QAPs, where structured
QAPs are instances of problems taken from real-world applications. These ant algo-
rithms were found to be the best performing on structured problems [53, 54]. A detailed
overview of applications of ACO algorithms to the QAP can be found in [95].

3.1.3 Job-Shop Scheduling Problem

Colorni, Dorigo, and Maniezzo (1994) [20] applied AS to the job-shop scheduling prob-
lem (JSP), which is formulated as follows. Given a set M of machines and a set J
of jobs consisting of an ordered sequence of operations to be executed on these ma-
chines, the job-shop scheduling problem is that of assigning operations to machines
so that the maximum of the completion times of all operations is minimized and no
two jobs are processed at the same time on the same machine. JSP is NP-hard [55].

10 In fact, the TSP can be seen as the problem of assigning to each of n cities a different number chosen between | and n. QAP, as
the TSP, is NP-hard [92].

Il HAS-QAP is an ant algorithm that, although initially inspired by AS, does not strictly belong to the ACO metaheuristic because
of some peculiarities, such as ants that modify solutions as opposed to build them, and pheromone trail used to guide solution
modifications and not as an aid to direct their construction.

Artificial Life Volume 5, Number 2 153

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

The basic algorithm they applied was exactly the same as AS, where the n heuristic
value was computed using the longest remaining processing time heuristic. Due to
the different nature of the constraints with respect to the TSP they also defined a new
way of building the ant’s tabu list. AS-JSP was applied to problems of dimensions up
to 15 machines and 15 jobs always finding solutions within 10% of the optimal value
[20, 41]. These results, although not exceptional, are encouraging and suggest that fur-
ther work could lead to a workable system. Also, a comparison with other approaches
iS necessary.

3.1.4 Vehicle Routing Problem

There are many types of vehicle routing problems (VRPs). Bullnheimer, Hartl, and
Strauss [11, 13, 15] applied an AS-like algorithm to the following instance. Let G =
(N, A, d) be a complete weighted directed graph, where N = (ny, ..., n,) is the set of
nodes, A = {(4, j): i # j} is the set of arcs, and each arc (4, j) has an associated weight
di; > 0 that represents the distance between #n; and #;. Node 7, represents a depot,
where M vehicles are located, each one of capacity D, while the other nodes represent
customers’ locations. A demand d; > 0 and a service time §; > 0 are associated to each
customer 7; (dy = 0 and 8, = 0). The objective is to find minimum cost vehicle routes
such that (a) every customer is visited exactly once by exactly one vehicle, (b) for
every vehicle the total demand does not exceed the vehicle capacity D, (¢) the total
tour length of each vehicle does not exceed a bound Z, and (d) every vehicle starts
and ends its tour in the depot.!? AS-VRP, the algorithm defined by Bullnheimer, Hartl,
and Strauss for the above problem, is a direct extension of AS based on their AS;,uy
algorithm discussed in Section 3.1.1. They used various standard heuristics for the VRP
[18, 82] and added a simple local optimizer based on the 2-opt heuristic [24]. They also
adapted the way the tabu list is built by taking into consideration the constraints on the
maximum total tour length L of a vehicle and its maximum capacity D. Comparisons
on a set of standard problems showed that AS-VRP performance is at least interesting:
It outperforms simulated annealing and neural networks, while it has a slightly lower
performance than tabu search.

Gambardella, Taillard, and Agazzi [52] have also attacked the VRP by means of an
ACO algorithm. They first reformulate the problem by adding to the city set M — 1
depots, where M is the number of vehicles. Using this formulation, the VRP problem
becomes a TSP with additional constraints. Therefore they can define an algorithm,
called HAS-VRP, which is inspired by ACS: Each ant builds a complete tour without
violating vehicle capacity constraints (each vehicle has associated a maximum trans-
portable weight). A complete tour comprises many subtours connecting depots, and
each subtour corresponds to the tour associated to one of the vehicles. Pheromone
trail updates are done offline as in ACS. Also, a local optimization procedure based
on edge exchanges is applied by the daemon. Results obtained with this approach
are competitive with those of the best-known algorithms and new upper bounds have
been computed for well-known problem instances. They also study the vehicle routing
problem with time windows (VRPTW), which extends the VRP by introducing a time
window [b;, e;] within which a customer 7 must be served. Therefore, a vehicle visiting
customer i before time b; will have to wait. In the literature the VRPTW is solved
considering two objectives functions: The first one is to minimize the number of vehi-
cles and the second one is to minimize the total travel time. A solution with a lower
number of vehicles is always preferred to a solution with a higher number of vehicles
but lower travel time. To optimize both objectives simultaneously, a two-colony ant

12 Also in this case it can be easily seen that the VRP is closely related to the TSP: A VRP consists of the solution of many TSPs with
common start and end cities. As such, VRP is an NP-hard problem.

154 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

algorithm has been designed. The first colony tries to minimize the number of vehicles,
while the other one uses V vehicles, where V is the number of vehicles computed by
the first colony, to minimize travel time. The two colonies work using different sets of
pheromone trails, but the best ants are allowed to update the pheromone trails of the
other colony. This approach has been proved to be competitive with the best-known
methods in the literature.

3.1.5 Shortest Common Supersequence Problem

Given a set L of strings over an alphabet ¥, find a string of minimal length that is a
supersequence of each string in L, where a string S is a supersequence of a string A
if § can be obtained from A by inserting in 4 zero or more characters.!> This is the
problem known as the shortest common supersequence problem (SCS) that Michel and
Middendorf [78, 79] attacked by means of AS-SCS. AS-SCS differs from AS in that it uses
a lookabead function that takes into account the influence of the choice of the next
symbol to append at the next iteration. The value returned by the lookahead function
takes the place of the heuristic value 5 in the probabilistic decision rule (Equation 3).
Also, in AS-SCS the value returned by a simple heuristic called LM [7] is factorized in the
pheromone trail term. Michel and Middendorf [78,79] further improved their algorithm
by the use of an island model of computation (i.e., different colonies of ants work on
the same problem concurrently using private pheromone trail distributions; every fixed
number of iterations they exchange the best solution found).

AS-SCS-LM (i.e., AS-SCS with LM heuristic, lookahead, and island model of computa-
tion) was compared in [78] with the MM [46] and LM heuristics, as well as with a recently
proposed genetic algorithm specialized for the SCS problem. On the great majority of
the test problems AS-SCS-LM turned out to be the best-performing algorithm.

3.1.6 Graph-Coloring Problem

Costa and Hertz [22] have proposed the AS-ATP algorithm for assignment type prob-
lems.'* The AS-ATP algorithm they define is basically the same as AS except that ants
need to make two choices: First they choose an item, then they choose a resource
to assign to the previously chosen item. These two choices are made by means of
two probabilistic rule functions of two distinct pheromone trails t; and 1, and of two
appropriate heuristic values n; and n,. In fact, the use of two pheromone trails is
the main novelty introduced by AS-ATP. They exemplify their approach by means of
an application to the graph-coloring problem (GCP). Given a graph G = (V, E), a
g-coloring of G is a mapping ¢: N — {1, ..., g} such that c(i) = c()) if (4, j) € E. The
GCP is the problem of finding a coloring of the graph G so that the number g of colors
used is minimum. The algorithm they propose, called ANTCOL, makes use of well-
known graph-coloring heuristics such as recursive large first (RLF) [72] and DSATUR
[8]. Costa and Hertz tested ANTCOL on a set of random graphs and compared it with
some of the best available heuristics. Results have shown that ANTCOL performance
is comparable to that obtained by the other heuristics: On 20 randomly generated
graphs of 100 nodes with any two nodes connected with probability 0.5 the average
number of colors used by ANTCOL was 15.05, whereas the best known result [23, 44]
is 14.95. More research will be necessary to establish whether the proposed use of two
pheromone trails can be a useful addition to ACO algorithms.

13 Consider for example the set L = {bcab, bceb, baab, acca}. The string baccab is a shortest supersequence. The shortest common
supersequence (SCS) problem is NP-hard even for an alphabet of cardinality two [84].
14 Examples of assignment type problems are the QAP, the TSP, graph coloring, set covering, and so on.

Artificial Life Volume 5, Number 2 155

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

3.1.7 Sequential Ordering Problem

The sequential ordering problem (SOP) [42] consists of finding a minimum weight
Hamiltonian path on a directed graph with weights on the arcs and on the nodes,
subject to precedence constraints among nodes. It is very similar to an asymmetric TSP
in which the end city is not directly connected to the start city. The SOP, which is NP-
hard, models real-world problems such as single-vehicle routing problems with pick-up
and delivery constraints, production planning, and transportation problems in flexible
manufacturing systems and is therefore an important problem from an applications
point of view.

Gambardella and Dorigo [51] attacked the SOP by HAS-SOP, an extension of ACS.
In fact, HAS-SOP is the same as ACS except for the set of feasible nodes, which is
built taking into consideration the additional precedence constraints, and for the local
optimizer, which was a specifically designed variant of the well-known 3-opt proce-
dure. Results obtained with HAS-SOP are excellent. Tests were run on a great number
of standard problems!> and comparisons were done with the best available heuristic
methods. In all cases HAS-SOP was the best-performing method in terms of solution
quality and of computing time. Also, on the set of problems tested it improved many
of the best known results.

3.2 Applications of ACO Algorithms to Dynamic Combinatorial Optimization
Problems

Research on the applications of ACO algorithms to dynamic combinatorial optimization
problems has focused on communications networks. This is mainly because network
optimization problems have characteristics, such as inherent information and compu-
tation distribution, nonstationary stochastic dynamics, and asynchronous evolution of
the network status, that well match those of the ACO metaheuristic. In particular, the
ACO approach has been applied to routing problems.

Routing is one of the most critical components of network control and concerns
the network-wide distributed activity of building and using routing tables to direct
data traffic. The routing table of a generic node 7 is a data structure that tells data
packets entering node i which should be the next node to move to among the set N;
of neighbors of i. In the applications presented in this section routing tables for data
packets are obtained by some functional transformation of ant-decision tables.

Let G = (I, A) be a directed weighted graph, where each node in the set N repre-
sents a network node with processing/queuing and forwarding capabilities, and each
oriented arc in A is a transmission system (link) with an associated weight defined
by its physical properties. Network applications generate data flows from source to
destination nodes. For each node in the network, the local routing component uses
the local routing table to choose the best outgoing link to direct incoming data toward
their destination nodes.

The generic routing problem can be informally stated as the problem of building
routing tables so that some measure of network performance is maximized. !¢

Most of the ACO implementations for routing problems well match the general guide-
lines of the metaheuristic shown in Figure 3. Ants are launched from each network
node toward heuristically selected destination nodes (launching follows some random
or problem-specific schedule). Ants, like data packets, travel across the network and

15 In fact, on all the problems registered in the TSPLIB, a well-known repository for TSP-related benchmark problems available on
the Internet at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.

16 The choice of what particular measure of network performance to use depends on the type of network considered and on which
aspects of the provided services are most interesting. For example, in a telephone network, performance can be measured by the
percentage of accepted calls and by the mean waiting time to setup or refuse a call, while in an Internet-like network, performance
can be scored by the amount of correctly delivered bits per time unit (throughput), and by the distribution of data packet delays.

156 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

build paths from source to destination nodes by applying a probabilistic transition rule
that makes use of information maintained in pheromone trail variables associated to
links and, in some cases, of additional local information. Algorithm-specific heuristics
and information structures are used to score the discovered paths and to set the amount
of pheromone ants deposit.

A common characteristic of ACO algorithms for routing is that the role of the daemon
(line 6 of the ACO metaheuristic of Figure 3) is much reduced: In the majority of the
implementations it simply does not perform any actions.

ACO implementations for communications networks are grouped in two classes,
those for connection-oriented and those for connectionless networks. In connection-
oriented networks all the packets of a same session follow a common path selected by
a preliminary setup phase. On the contrary, in connectionless, or datagram, networks
data packets of a same session can follow different paths. At each intermediate node
along the route from the source to the destination node a packet-specific forwarding
decision is taken by the local routing component. In both types of networks best-
effort routing, that is, routing without any explicit network resource reservation, can be
delivered. Moreover, in connection-oriented networks an explicit reservation (software
or hardware) of the resources can be done. In this way, services requiring specific
characteristics (in terms of bandwidth, delay, etc.) can be delivered.!’

3.2.1 Connection-Oriented Network Routing

The work by Schoonderwoerd, Holland, Bruten, and Rothkrantz [89, 90] has been, to
our knowledge, the first attempt to apply an ACO algorithm to a routing problem. Their
algorithm, called ant-based control (ABC), was applied to a model of the British Telecom
(BD) telephone network. The network is modeled by a graph G = (N, A), where
each node 7 has the same functionalities as a crossbar switch with limited connectivity
(capacity) and links have infinite capacity (i.e., they can carry a potentially infinite
number of connections). Each node i has a set A; of neighbors and is characterized
by a total capacity C;, and a spare capacity S;. C; represents the maximum number of
connections node 7 can establish, while S; represents the percentage of capacity that
is still available for new connections. Each link (4, j) connecting node 7 to node j
has an associated vector of pheromone trail values 7,4, d =1,...,i—1,i+1,..., N.
The value 7;4 represents a measure of the desirability of choosing link (4, j) when the
destination node is d.

Because the algorithm does not make use of any additional local heuristics, only
pheromone values are used to define the ant-decision table values: a;,4(¢) = Tia(t).
The ant stochastic decision policy uses the pheromone values as follows: t;,,(#) gives
the probability that a given ant, the destination of which is node d, be routed at time
¢t from node i to neighbor node n. An exploration mechanism is added to the ant’s
decision policy: With some low probability ants can choose the neighbor to move to
following a uniformly random scheme over all the current neighbors. The ant internal
state keeps track only of the ant source node and launching time. No memory about
the visited nodes is maintained to avoid ant cycles. Routing tables for calls are obtained
using ant-decision tables in a deterministic way: At setup time a route from node s to
node d is built by choosing sequentially and deterministically, starting from node s, the
neighbor node with the highest probability value until node d is reached. Once the
call is set up in this way, the spare capacity S; of each node i on the selected route is
decreased by a fixed amount. If at call set-up time any of the nodes along the route
under construction has no spare capacity left, then the call is rejected. When a call

17 For example, telephone calls need connection-oriented networks able to guarantee the necessary bandwidth during the entire call
time.

Artificial Life Volume 5, Number 2 157

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

terminates, the corresponding reserved capacity of nodes on its route is made available
again for other calls. Ants are launched at regular temporal intervals from all the nodes
toward destination nodes selected in a uniformly random way. Ants deposit pheromone
only online, step-by-step, on the links they visit (they do not deposit pheromone after
the path has been built, that is, they do not implement the procedure of lines 30-34 of
the ACO metaheuristic of Figure 3). An ant k originated in node s and arriving at time #
in node j from node i adds an amount At*(¢) of pheromone to the value T;;5(t) stored
on link (7, 7). The updated value t;,(#), which represents the desirability to go from
node j to destination node s via node 7, will be used by ants moving in the opposite
direction of the updating ant. This updating strategy can be applied when the network
is (approximately) cost symmetric, that is, when it is reasonable to use an estimate of
the cost from node i to node j as an estimate of the cost from node j to node i. In
the network model used by Schoonderwoerd et al. [89, 90] cost symmetry is a direct
consequence of the assumptions made on the switches and transmission link structure.
The pheromone trail update formula is

Tjis(1) < Tiis(D) + ATH(D) (13)

After the visited entry has been updated, the pheromone value of all the entries relative
to the destination s decays. Pheromone decay, as usual, corresponds to the evaporation
of real pheromone.'® In this case the decay factor is set to 1/(1 + At*(¢)) so that it
operates a normalization of the pheromone values, which continue therefore to be
usable as probabilities:

rz‘ns(t)

Tins(t) <~

The value At*(7) is a function of the ant’s age. Ants move over a control network
isomorphic to the real one. They grow older after each node hop and they are virtually
delayed in nodes as a function of the node spare capacity. By this simple mechanism,
the amount of pheromone deposited by an ant is made inversely proportional to the
length and to the degree of congestion of the selected path. Therefore, the overall
effect of ants on pheromone trail values is such that routes that are visited frequently
and by “young” ants will be favored when building paths to route new calls.

In ABC no daemon actions are included in the algorithm. Each new call is accepted
or rejected on the basis of a setup packet that looks for a path with spare capacity by
probing the deterministically best path as indicated by the routing tables.

ABC has been tested on the above-described model of the British Telecom tele-
phone network (30 nodes) using a sequential discrete time simulator and compared,
in terms of percentage of accepted calls, to an agent-based algorithm developed by BT
researchers. Results were encouraging:'” ABC always performed significantly better
than its competitor on a variety of different traffic situations.

White, Pagurek, and Oppacher [105] use an ACO algorithm for routing in connection-
oriented point-to-point and point-to-multipoint networks. The algorithm follows a
scheme very similar to AS (see Section 3.1.1): The ant-decision table has the same
form as AS’s (Equation 2) and the decision rule (Equation 3) is identical. The heuristic
information 7 is locally estimated by link costs. From the source node of each incoming
connection, a group of ants is launched to search for a path. At the beginning of the

18 Schoonderwoerd et al. [89, 90] developed ABC independently from previous ant colony optimization work. Therefore, they do
not explicitly speak of pheromone evaporation, even if their probability renormalization mechanism plays the same role.

19 In the following we use the word “encouraging” whenever interesting results were obtained but the algorithm was compared only
on simple problems, or with no state-of-the-art algorithms, or under limited experimental conditions.

158 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

trip each ant k& sets to 0 a cost variable Cj, associated to its path, and after each link
crossing the path cost is incremented by the link cost /;;: Cp <= Cp+1;;. When arrived at
their destination, ants move backward to their source node and at each node they use
a simple additive rule to deposit pheromone on the visited links. The amount of de-
posited pheromone is a function of the whole cost C, of the path, and only this online
step-by-step updating is used to update pheromone. When all the spooled ants arrive
back at the source node, a simple local daemon algorithm decides whether to allocate
a path, based on the percentage of ants that followed a same path. Moreover, during
all the connection lifetime, the local daemon launches and coordinates exploring ants
to re-route the connection paths in case of network congestion or failures. A genetic
algorithm [59, 60] is used online to evolve the parameters « and B of the transition rule
formula, which determine the relative weight of pheromone and link costs (because of
this mechanism the algorithm is called ASGA, ant system plus genetic algorithm). Some
preliminary results were obtained testing the algorithm on several networks and using
several link cost functions. Results are promising: The algorithm is able to compute
shortest paths and the genetic adaptation of the rule parameters considerably improves
the algorithm’s performance.

Bonabeau, Henaux, Guérin, Snyers, Kuntz, and Theraulaz [6] improved the ABC
algorithm by the introduction of a dynamic programming mechanism. They update
the pheromone trail values of all the links on an ant path not only with respect to the
ant’s origin node, but also with respect to all the intermediate nodes on the subpath
between the origin and the ant’s current node.

Di Caro and Dorigo [30] are currently investigating the use of AntNet-FS to manage
fair-share best-effort routing in high-speed connection-oriented networks. AntNet-FS is
a derivation of AntNet, an algorithm for best-effort routing in connectionless networks
the same authors developed. Therefore, we postpone the description of AntNet-FS to
the next sub-subsection, where AntNet and its extensions are described in detail.

3.2.2 Connectionless Network Routing

Several ACO algorithms have been developed for routing in connectionless networks
taking inspiration both from AS (Section 3.1.1) in general and from ABC (Section 3.2.1)
in particular.

Di Caro and Dorigo [26-29, 31] developed several versions of AntNet, an ACO algo-
rithm for distributed adaptive routing in best-effort connectionless (Internet-like) data
networks. The main differences between ABC and AntNet are that (a) in AntNet real
trip times experienced by ants (ants move over the same, real network as data pack-
ets) and local statistical models are used to evaluate paths goodness, (b) pheromone
is deposited once a complete path is built (this is a choice dictated by a more general
assumption of cost asymmetry made on the network), and (c¢) the ant decision rule
makes use of local heuristic information 1 about the current traffic status.

In AntNet the ant-decision table A; = [dina(Dlin;,v—1 of node i is obtained by
the composition of the local pheromone trail values with the local heuristic values as
follows:

@Ting (1) + (1 — w)n,(0)
o+ -o)(N]|-1)

15

Ajng (1) =

where N; is the set of neighbors of node i, n € N, d is the destination node, 5, is
a [0,1]-normalized heuristic value inversely proportional to the length of the local link
queue toward neighbor n, w € [0, 1] is a weighting factor and the denominator is a
normalization term. The decision rule of the ant located at node i and directed toward
destination node d (at time #) uses the entry a;,,(t) of the ant-decision table as follows:

Artificial Life Volume 5, Number 2 159

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

ainq(t) is simply the probability of choosing neighbor 7. This probabilistic selection is
applied over all the not-yet-visited neighbors by the ant, or over all the neighbors if
all the neighbors have already been visited by the ant. While building the path to the
destination, ants move using the same link queues as data. In this way, ants experience
the same delays as data packets and the time T, elapsed while moving from the source
node s to the destination node d can be used as a measure of the path quality. The
overall “goodness” of a path is evaluated by a heuristic function of the trip time 7y,
and of local adaptive statistical models. In fact, paths need to be evaluated relative to
the network status because a trip time 7 judged of low quality under low congestion
conditions could be an excellent one under high traffic load. Once a path has been
completed ants deposit on the visited nodes an amount of pheromone proportional to
the goodness of the path they built. AntNet’s ants use only this online delayed way
to update pheromone, different from ABC, which uses only the online step-by-step
strategy (lines 30-34 and 24-27, respectively, of the ACO metaheuristic of Figure 3).
To this purpose, after reaching their destination nodes, ants move back to their source
nodes along the same path but backward and using high-priority queues, to allow a
fast propagation of the collected information (in AntNet the term “forward ant” is used
for ants moving from source to destination nodes, and the term “backward ant” for
ants going back to their source nodes). During the backward path, the pheromone
value of each visited link is updated with a rule similar to ABC’s. AntNet differs from
ABC also in a number of minor details, the most important of which are (a) ants are
launched from each node toward destinations chosen to match probabilistically the
traffic patterns, (b) all the pheromone values on an ant path are updated with respect
to all the successor nodes of the (forward) path (as is done also in [6]), (¢) cycles are
removed online from the ants’ paths,? and (d) data packets are routed probabilistically
using routing tables obtained by means of a simple functional transformation of the
ant-decision tables. AntNet was tested using a continuous time discrete events network
simulator, on a wide variety of different spatial and temporal traffic conditions, and
on several real and randomly generated network configurations (ranging from 8 to
150 nodes). State-of-the-art static and adaptive routing algorithms have been used for
comparison. Results were excellent: AntNet showed striking superior performance in
terms of both throughput and packet delays. Moreover, it appears to be very robust to
the ant production rate and its impact on network resources is almost negligible.

Di Caro and Dorigo [27, 30] recently developed an enhanced version of AntNet,
called AntNet-FA.>! AntNet-FA is the same as AntNet except for the following two
aspects. First, forward ants are substituted by so-called “flying ants”: While building
a path from source to destination node, flying ants make use of high-priority queues
and do not store the trip times 7". Second, each node maintains a simple local model
of the local link queue depletion process. By using this model, rough estimates of the
missing forward ant trip times are built. Backward ants read these estimates online
and use them to evaluate the path quality and consequently to compute the amount
of pheromone to deposit. AntNet-FA appears to be more reactive; the information
collected by ants is more up-to-date and is propagated faster than in the original AntNet.
AntNet-FA has been observed to perform much better than the original AntNet in best-
effort connectionless networks [32].

Starting from AntNet-FA, Di Caro and Dorigo [30] are currently developing AntNet-FS,
a routing and flow control system to manage multipath adaptive fair-share routing in
connection-oriented high-speed networks. In AntNet-FS, some ants have some extra

20 This is a simple form of backtracking.

21 In the original paper [32] the same algorithm was called AntNet-CO, because the algorithm was developed in the perspective
of connection-oriented routing, while here and in the future the authors choose to use the name AntNet-FA, to emphasize the
“flying ant” nature of forward ants.

160 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

functionalities to support the search and allocation of multipaths for each new incoming
user session. Forward setup ants fork to search for convenient multipaths (virtual
circuits) to allocate the session. A daemon component local to the session end-points
decides whether or not to accept the virtual circuits discovered by the forward setup
ants. Accepted virtual circuits are allocated by the backward setup ants, reserving at
the same time the session’s bandwidth in a fair-share [74] fashion over the circuit nodes.
The allocated bandwidth is dynamically redistributed and adapted after the arrival of
a new session or the departure of an old one. The AntNet-FS approach looks very
promising for high-speed networks (such as ATM), but needs more testing.

Subramanian, Druschel, and Chen [100] proposed the regular ants algorithm, which
essentially is an application of Schoonderwoerd et al.’s ABC algorithm [89, 90] to packet-
switched networks, where the only difference is the use of link costs instead of ants’
age. The way their ants use link costs requires the network to be (approximately) cost-
symmetric. They also propose uniform ants, that is, ants without a precise destination,
which live for a fixed amount of time in the network and explore it by using a uniform
probability scheme over the node neighbors. Uniform ants do not use the autocatalytic
mechanism that characterizes all ACO algorithms and therefore do not belong to the
ACO metaheuristic.

Heusse, Guérin, Snyers, and Kuntz [64] developed a new algorithm for general cost-
asymmetric networks, called Co-operative Asymmetric Forward (CAF). In CAF, each
data packet, after going from node i to node j, releases on node j the information
ci; about the sum of the experienced waiting and crossing times from node i. This
information is used as an estimate of the time distance to go from i to j and is read by
the ants traveling in the opposite direction to perform online step-by-step pheromone
updating (no online delayed pheromone updating is used in this case). The algorithm’s
authors tested CAF under some static and dynamic conditions, using the average num-
ber of packets waiting in the queues and the average packet delay as performance
measures. They compared CAF to an algorithm very similar to an earlier version of
AntNet. Results were encouraging; under all the test situations CAF performed better
than its competitors.

Van der Put and Rothkrantz [102, 103] designed ABC-backward, an extension of the
ABC algorithm applicable to cost-asymmetric networks. They use the same forward-
backward ant mechanism as in AntNet: Forward ants, while moving from the source to
the destination node, collect information on the status of the network, and backward
ants use this information to update the pheromone trails of the visited links during their
journey back from the destination to the source node. In ABC-backward, backward ants
update the pheromone trails using an updating formula identical to that used in ABC,
except for the fact that the ants’ age is replaced by the trip times experienced by the ants
in their forward journey. Van der Put and Rothkrantz have shown experimentally that
ABC-backward has a better performance than ABC on both cost-symmetric—because
backward ants can avoid depositing pheromone on cycles—and cost-asymmetric net-
works. They apply ABC-backward to a fax distribution problem proposed by the largest
Dutch telephone company (KPN Telecom).

3.3 Parallel Implementations
The very nature of ACO algorithms lends them to be naturally parallelized in the data
or population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to the ACO structure (e.g., migration and dif-
fusion models adopted in the field of parallel genetic algorithms; see, for example,
reviews in [16, 39]).

Early experiments with parallel versions of AS for the TSP on the Connection Machine
CM-2 [65] adopted the approach of attributing a single processing unit to each ant [4].

Artificial Life Volume 5, Number 2 161

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

Experimental results showed that communication overhead can be a major problem
with this approach on fine-grained parallel machines, since ants end up spending most
of their time communicating to other ants the modifications they made to pheromone
trails. In fact, the algorithm’s behavior was not impressive and scaled up very badly
when increasing the problem dimensions. Better results were obtained on a coarse-
grained parallel network of 16 transputers [4, 34]. The idea here was to divide the colony
into p subcolonies, where p is the number of available processors. Each subcolony
acts as a complete colony and therefore implements a standard AS algorithm. After
each subcolony has completed an iteration of the algorithm, a hierarchical broadcast
communication process collects the information about the tours of all the ants in all
the subcolonies and then broadcasts this information to all the p processors so that
a concurrent update of the pheromone trails can be done. In this case the speed-up
was nearly linear when increasing the number of processors, and this behavior did not
change significatively for increasing problem dimensions.

More recently, Bullnheimer, Kotsis, and Strauss [14] proposed two coarse-grained
parallel versions of AS. The first one, called Synchronous Parallel Implementation (SPD),
is basically the same as the one implemented by Bolondi and Bondanza [4], while the
second one, called Partially Asynchronous Parallel Implementation (PAPD), exchanges
pheromone information among subcolonies every fixed number of iterations done by
each subcolony. The two algorithms have been evaluated by simulation. The findings
show that the reduced communication due to the less frequent exchange of pheromone
trail information among subcolonies determines a better performance of the PAPI ap-
proach with respect to running time and speed-up. More experimentation is necessary
to compare the quality of the results produced by the SPI and the PAPI implementations.

Kriger, Merkle, and Middendorf [70] investigated which (pheromone trail) informa-
tion should be exchanged between the m subcolonies and how this information should
be used to update the subcolony’s trail information. They compared an exchange of
(a) the global best solution (every subcolony uses the global best solution to choose
where to add pheromone trail), (b) the local best solutions (every subcolony receives
the local best solution from all other subcolonies and updates pheromone trail on the
corresponding arcs), and (c) the total trail information (every colony computes the aver-

age over the trail information of all colonies); that is, if 7/ = [rf] is the trail information

ij
of subcolony /, 1 < [< m then every colony / sends t/ to the other colonies and
afterward computes ri’f = Z;"zl ri’; , 1 <4, j < n. The results indicate that methods (a)
and (b) are faster and give better solutions than method (c), but further investigations
are necessary.

Last, Stiitzle [94] presents computational results for the execution of parallel inde-
pendent runs on up to 10 processors of his MMAS algorithm [98, 97]. The execution
of parallel independent runs is the easiest way to obtain a parallel algorithm and, obvi-
ously, it is a reasonable approach only if the underlying algorithm, as is the case with
ACO algorithms, is randomized. Stitzle’s results show that the performance of MMAS
grows with the number of processors.

4 Related Work

ACO algorithms show similarities with some optimization, learning, and simulation
approaches such as heuristic graph search, Monte Carlo simulation, neural networks,
and evolutionary computation. These similarities are now briefly discussed.

Heuristic graph search. 1n ACO algorithms each ant performs a heuristic graph search
in the space of the components of a solution: Ants take biased probabilistic decisions to
choose the next component to move to, where the bias is given by a heuristic evaluation
function that favors components that are perceived as more promising. It is interesting

162 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

to note that this is different from what happens, for example, in stochastic hillclimbers
[81] or in simulated annealing [68], where (a) an acceptance criteria is defined and
only those randomly generated moves that satisty the criteria are executed, and (b) the
search is usually performed in the space of the solutions.

Monte Carlo simulation. ACO algorithms can be interpreted as parallel replicated
Monte Carlo systems [93]. Monte Carlo systems [87] are general stochastic simulation
systems, that is, techniques performing repeated sampling experiments on the model
of the system under consideration by making use of a stochastic component in the state
sampling and/or transition rules. Experiment results are used to update some statistical
knowledge about the problem, as well as the estimate of the variables the researcher is
interested in. In turn, this knowledge can also be iteratively used to reduce the variance
in the estimation of the desired variables, directing the simulation process toward the
most interesting regions of the state space. Analogously, in ACO algorithms the ants
sample the problem’s solution space by repeatedly applying a stochastic decision policy
until a feasible solution of the considered problem is built. The sampling is realized
concurrently by a collection of differently instantiated replicas of the same ant type.
Each ant “experiment” allows adaptive modification of the local statistical knowledge
on the problem structure (i.e., the pheromone trails). The recursive transmission of
such knowledge by means of stigmergy determines a reduction in the variance of the
whole search process: The so-far most interesting explored transitions probabilistically
bias future search, preventing ants from wasting resources in unpromising regions of
the search space.

Neural networks. Ant colonies, being composed of numerous concurrently and locally
interacting units, can be seen as “connectionist” systems [43], the most famous examples
of which are neural networks [3, 63, 88]. From a structural point of view, the parallel
between the ACO metaheuristic and a generic neural network is obtained by putting
each state i visited by ants in correspondence with a neuron i, and the problem-
specific neighborhood structure of state 7 in correspondence with the set of synaptic-like
links exiting neuron 7. The ants themselves can be seen as input signals concurrently
propagating through the neural network and modifying the strength of the synaptic-like
interneuron connections. Signals (ants) are locally propagated by means of a stochastic
transfer function and the more a synapse is used, the more the connection between
its two end neurons is reinforced. The ACO-synaptic learning rule can be interpreted
as an a posteriori rule: Signals related to good examples, that is, ants that discovered
a good quality solution, reinforce the synaptic connections they traverse more than
signals related to poor examples. It is interesting to note that the ACO-neural network
algorithm does not correspond to any existing neural network model.

The ACO-neural network is also reminiscent of networks solving reinforcement
learning problems [101]. In reinforcement learning the only feedback available to the
learner is a numeric signal (the reinforcement) that scores the result of actions. This is
also the case in the ACO metaheuristic: The signals (ants) fed into the network can be
seen as input examples with an associated approximate score measure. The strength
of pheromone updates and the level of stochasticity in signal propagation play the role
of a learning rate, controlling the balance between exploration and exploitation.

Finally, it is worth making a reference to the work of Chen [17], who proposed a
neural network approach to TSP that bears important similarities with the ACO ap-
proach. Like in ACO algorithms, Chen builds a tour in an incremental way, according
to synaptic strengths. It also makes use of candidate lists and 2-opt local optimization.
The strengths of the synapses of the current tour and of all previous tours are updated
according to a Boltzmann-like rule and a learning rate playing the role of an evapora-
tion coefficient. Although there are some differences, the common features are, in this
case, striking.

Artificial Life Volume 5, Number 2 163

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

Evolutionary computation. There are some general similarities between the ACO
metaheuristic and evolutionary computation (EC) [45]. Both approaches use a pop-
ulation of individuals that represent problem solutions, and in both approaches the
knowledge about the problem collected by the population is used to generate stochas-
tically a new population of individuals. A main difference is that in EC algorithms all
the knowledge about the problem is contained in the current population, while in ACO
a memory of past performance is maintained under the form of pheromone trails.

An EC algorithm that is very similar to ACO algorithms in general and to AS in
particular is Baluja and Caruana’s Population Based Incremental Learning (PBIL) [1].
PBIL maintains a vector of real numbers, the generating vector, which plays a role
similar to that of the population in genetic algorithms [59, 66]. Starting from this vector,
a population of binary strings is randomly generated: Each string in the population
will have the ith bit set to 1 with a probability that is a function of the ith value in the
generating vector. Once a population of solutions is created, the generated solutions
are evaluated and this evaluation is used to increase (or decrease) the probabilities
of each separate component in the generating vector so that good (bad) solutions in
the future generations will be produced with higher (lower) probability. It is clear
that in ACO algorithms the pheromone trail values play a role similar to Baluja and
Caruana’s generating vector, and pheromone updating has the same goal as updating
the probabilities in the generating vector. A main difference between ACO algorithms
and PBIL consists in the fact that in PBIL all the probability vector components are
evaluated independently, making the approach work well only when the solution is
separable into its components.

The (1, 1) evolution strategy is another EC algorithm that is related to ACO algorithms,

and in particular to ACS. In fact, in the (1, A) evolution strategy the following steps are
iteratively repeated: (a) a population of A solutions (ants) is initially generated, then
(b) the best individual of the population is saved for the next generation, while all
the other solutions are discarded, and (¢) starting from the best individual, A — 1 new
solutions are stochastically generated by mutation, and finally (d) the process is iterated
going back to step (b). The similitude with ACS is striking.
Stochastic learning automata. This is one of the oldest approaches to machine learn-
ing (see [80] for a review). An automaton is defined by a set of possible actions and a
vector of associated probabilities, a continuous set of inputs and a learning algorithm
to learn input-output associations. Automata are connected in a feedback configura-
tion with the environment, and a set of penalty signals from the environment to the
actions is defined. The similarity of stochastic learning automata and ACO approaches
can be made clear as follows. The set of pheromone trails available on each arc/link
is seen as a set of concurrent stochastic learning automata. Ants play the role of
the environment signals, while the pheromone update rule is the automaton learning
rule. The main difference lies in the fact that in ACO the “environment signals” (i.e.,
the ants) are stochastically biased, by means of their probabilistic transition rule, to
direct the learning process toward the most interesting regions of the search space.
That is, the whole environment plays a key, active role in learning good state-action
pairs.

5 Discussion

The ACO metaheuristic was defined a posteriori, that is, it is the result of a synthesis
effort effectuated on a set of algorithms inspired by a common natural process. Such a
synthesis can be very useful because () it is a first attempt to characterize this new class
of algorithms, and (b) it can be used as a reference to design new instances of ACO
algorithms. On the other hand, the a posteriori character of the synthesis determines a

164 Artificial Life Volume 5, Number 2

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

great variety in the way some aspects of the metaheuristic are implemented, as discussed
in the following.

Role of the local heuristic. Most of the ACO algorithms presented combine pheromone
trails with local heuristic values to obtain ant-decision tables. An exception are the
Schoonderwoerd et al. [89, 90] ABC algorithm and all the derived algorithms (ABC-
smart ants, ABC-backward, regular ants, and CAF) in which ant-decision tables are
obtained using only pheromone trail values. Current wisdom indicates that the use of
a heuristic value, whenever possible, improves ACO performance considerably. The
nature of the heuristic information differs between static and dynamic problems. In all
static problems attacked by ACO a simple heuristic value directly obtainable from the
problem definition was used. On the contrary, in dynamic problems the heuristic value
must be estimated by local statistical sampling of the dynamic system.

Step-by-step versus delayed online solution evaluation. In dynamic combinatorial
optimization problems some of the proposed ACO algorithms use step-by-step online
solution evaluation: ABC, ABC-smart, and regular ants, which take advantage of the
cost-symmetric nature of the network model, and CAF, which, although applied to a
cost-asymmetric network, can apply a step-by-step solution evaluation by exploiting
information deposited on nodes by data packets traveling in the opposite direction
of ants. The other algorithms applied to cost-asymmetric networks, AntNet and ABC-
backward, use delayed online solution evaluation. For the static optimization problems
considered, the use of a step-by-step online solution evaluation would be misleading
because problem constraints make the quality of partial solutions not a good estimate
of the quality of complete solutions.

Pheromone trail directionality. The pheromone trail can have directional properties.
This is true for all dynamic optimization problems considered. Differently, in all the
applications to static problems (Section 3.1) pheromone trail is not directional: An ant
using arc (7, j) will see the same pheromone trail values independent of the node it is
coming from. (It is the decision policy that can take into consideration the node, or
the series of nodes, the ant is coming from.)

Implicit solution evaluation. One of the interesting aspects of real ants’ shortest path-
finding behavior is that they exploit implicit solution evaluation: If an ant takes a
shorter path it will arrive at the destination before any other ant that took a longer
path. Therefore, shorter paths will receive pheromone earlier and they start to attract
new ants before longer paths. This implicit solution evaluation property is exploited by
the ACO algorithms applied to routing, and not by those applied to static optimization
problems. The reason for this is that implicit solution evaluation is obtained for free
whenever the speed with which ants move on the problem representation is inversely
proportional to the cost of each state transition during solution construction. While
this is the most natural way to implement artificial ants for network applications, it is
not an efficient choice for the considered static problems. In fact, in this case it would
be necessary to implement an extra algorithm component to manage each ant’s speed,
which would require extra computation resources without any guarantee of improved
performance.

6 Conclusions

In this article we have introduced the ant colony optimization (ACO) metaheuristic and
we have given an overview of ACO algorithms. ACO is a novel and very promising
research field situated at the crossing between artificial life and operations research. The
ant colony optimization metaheuristic belongs to the relatively new wave of stochastic
metaheuristics such as evolutionary computation [45], simulated annealing [68], tabu
search [57, 58], neural computation [3, 63, 88], and so on, which are built around some

Artificial Life Volume 5, Number 2 165

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

basic principles taken from the observation of a particular natural phenomenon. As
is very common in the practical usage of these heuristics, ACO algorithms often end
up at some distance from their inspiring natural metaphor. Often ACO algorithms are
enriched with capacities that do not find a counterpart in real ants, such as local search
and global-knowledge-based actions, so that they can compete with more application-
specific approaches. ACO algorithms so enriched are very competitive and in some
applications they have reached world-class performance. For example, on structured
quadratic assignment problems AS-QAP, HAS-QAP, and MMAS-QAP are currently the
best available heuristics. Other very successful applications are those to the sequential
ordering problem, for which HAS-SOP is by far the best available heuristic, and to data
network routing, where AntNet resulted in being superior to a whole set of state-of-
the-art algorithms.

Within the artificial life field, ant algorithms represent one of the most successful
applications of swarm intelligence.?? One of the most characterizing aspects of swarm
intelligent algorithms, shared by ACO algorithms, is the use of the stigmergetic model
of communication. We have seen that this form of indirect distributed communication
plays an important role in making ACO algorithms successful. There are, however,
examples of applications of stigmergy based on social insect behaviors other than ants’
foraging behavior. For example, the stigmergy-mediated allocation of work in ant
colonies has inspired models of task allocation in a distributed mail retrieval system;
dead body aggregation and brood sorting, again in ant colonies, have inspired a data
clustering algorithm; and models of collective transport by ants have inspired transport
control strategies for groups of robot.?

In conclusion, we hope this paper has achieved its goal: To convince the reader that
ACO, and more generally the stigmergetic model of communication, are worth further
research.

Acknowledgments

We are grateful to Nick Bradshaw, Bernd Bullnheimer, Martin Heusse, Owen Holland,
Vittorio Maniezzo, Martin Middendorf, Ruud Schoonderwoerd, and Dominique Snyers
for critical reading of a draft version of this article. We also wish to thank Eric Bonabeau
and the two referees for their valuable comments. Marco Dorigo acknowledges sup-
port from the Belgian FNRS, of which he is a Research Associate. This work was
supported by a Marie Curie Fellowship awarded to Gianni Di Caro (CEC-TMR Contract
N. ERBFMBICT 961153).

References
1. Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic
algorithm. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International
Conference on Machine Learning, ML-95 (pp. 38-46). Palo Alto, CA: Morgan Kaufmann.

2. Bersini, H., Dorigo, M., Langerman, S., Seront, G., & Gambardella, L. M. (1996). Results of
the first international contest on evolutionary optimisation (1st ICEO). In Proceedings of
IEEE International Conference on Evolutionary Computation, IEEE-EC 96 (pp. 611-615).
Piscataway, NJ: IEEE Press.

3. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University
Press.

22 Swarm intelligence can be defined as the field that covers “any attempt to design algorithms or distributed problem-solving devices
inspired by the collective behavior of social insect colonies and other animal societies” ([5], p. 7).

23 These and other examples of the possible applications of stigmergetic systems are discussed in detail by Bonabeau, Dorigo, and
Theraulaz [5].

166 Artificial Life Volume 5, Number 2

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bolondi, M., & Bondanza, M. (1993). Parallelizzazione di un algoritmo per la risoluzione
del problema del commesso viaggiatore. Unpublished master’s thesis, Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Italy.

. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). From natural to artificial swarm

intelligence. New York: Oxford University Press.

. Bonabeau, E., Hénaux, F., Guérin, S., Snyers, D., Kuntz, P., & Théraulaz, G. (1998).

Routing in telecommunications networks with “smart” ant-like agents. In S. Albayrak &
F. J. Garijo (Eds.), Proceedings of IATA '98, Second International Workshop on Intelligent
Agents for Telecommunication Applications (pp. 60-71). Lecture Notes in Al vol. 1437,
Springer-Verlag.

. Branke, J., Middendorf, M., & Schneider, F. (1998). Improved heuristics and a genetic

algorithm for finding short supersequences. OR-Spektrum, 20, 39—46.

. Brelaz, D. (1979). New methods to color vertices of a graph. Communications of the ACM,

22, 251-256.

. Bruckstein, A. M. (1993). Why the ant trails look so straight and nice. The Mathematical

Intelligencer, 15(2), 59-62.

Bruckstein, A. M., Mallows, C. L., & Wagner, I. A. (1997). Probabilistic pursuits on the grid.
American Matbematical Monthly, 104(4), 323-343.

Bullnheimer, B., Hartl, R. E.,, & Strauss, C. (1997). An improved Ant System algoritbm for
the vebicle routing problem. (Tech. Rep. POM-10/97). Vienna, Austria: University of
Vienna, Institute of Management Science. To appear in Dawid, Feichtinger, & Hartl (Eds.),
Annals of Operations Research: Nonlinear Economic Dynamics and Control.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank-based version of the Ant
System: A computational study. (Tech. Rep. POM-03/97). Vienna, Austria: University of
Vienna, Institute of Management Science. Also available in (1999). Central European
Journal for Operations Research and Economics, 7(1), 25-38.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1998). Applying the Ant System to the vehicle
routing problem. In S. Voss., S. Martello, I. H. Osman, & C. Roucairol (Eds.),
Meta-beuristics: Advances and trends in local search paradigms for optimization

(pp. 109-120). Boston: Kluwer.

Bullnheimer, B., Kotsis, G., & Strauss, C. (1997). Parallelization strategies for the Ant
System. (Tech. Rep. POM-9-97). Vienna, Austria: University of Vienna, Institute of
Management Science. Also available in (1998). R. De Leone, A. Murli, P. Pardalos, &

G. Toraldo (Eds.), High performance algorithms and software in nonlinear optimization
(pp. 87-100). (Series: Applied Optimization, vol. 24). Dordrecht: Kluwer.

Bullnheimer, B., & Strauss, C. (1996). Tourenplanung mit dem Ant System. (Tech. Rep. 6).
Vienna, Austria: Instituts fiir Betriebwirtschaftslehre, Universitit Wien.

Campanini, R., Di Caro, G., Villani, M., D’Antone, 1., & Giusti, G. (1994). Parallel
architectures and intrinsically parallel algorithms: Genetic algorithms. International
Journal of Modern Physics C, 5(1), 95-112.

Chen, K. (1997). A simple learning algorithm for the traveling salesman problem. Physical
Review E, 55, 7809-7812.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12, 568-581.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed optimization by ant colonies.
In F. J. Varela & P. Bourgina (Eds.), Proceedings of the First European Conference on
Artificial Life (pp. 134-142). Cambridge, MA: MIT Press/Bradford Books.

Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant System for job-shop
scheduling. Belgian Journal of Operations Research, Statistics and Computer Science
(JORBEL), 34, 39-53.

Corne, D., Dorigo, M., & Glover, F. (Eds.). (1999). New ideas in optimization.
Maidenhead, UK: McGraw-Hill.

Artificial Life Volume 5, Number 2 167

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

22.

23.

24.

25.

20.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

168

Costa, D., & Hertz, A. (1997). Ants can colour graphs. Journal of the Operational Research
Society, 48, 295-305.

Costa, D., Hertz, A., & Dubuis, O. (1995). Embedding of a sequential algorithm within an
evolutionary algorithm for coloring problems in graphs. Journal of Heuristics, 1, 105-128.

Croes, G. A. (1958). A method for solving traveling salesman problems. Operations
Research, 6, 791-812.

Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J.-M. (1990). The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Bebavior, 3, 159-168.

Di Caro, G., & Dorigo, M. (1997). AntNet: A mobile agents approach to adaptive routing.
(Tech. Rep. 97-12). Université Libre de Bruxelles, IRIDIA.

Di Caro, G., & Dorigo, M. (1998). An adaptive multi-agent routing algorithm inspired by
ants behavior. In Proceedings of PART9S—Fifth Annual Australasian Conference on
Parallel and Real-Time Systems (pp. 261-272). Springer-Verlag.

Di Caro, G., & Dorigo, M. (1998). Ant colonies for adaptive routing in packet-switched
communications networks. In A. E. Eiben, T. Bick, M. Schoenauer, & H.-P. Schwefel
(Eds.), Proceedings of PPSN-V, Fifth International Conference on Parallel Problem Solving

Jfrom Nature (pp. 673-682). Berlin: Springer-Verlag.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for
communications networks. journal of Artificial Intelligence Research (JAIR), 9, 317-365.
Available at http://www jair.org/abstracts/dicaro98a.html.

Di Caro, G., & Dorigo, M. (1998). Extending AntNet for best-effort Quality-of-Service
routing. Unpublished presentation at ANTS '908—From Ant Colonies to Artificial Ants: First
International Workshop on Ant Colony Optimization.
http://iridia.ulb.ac.be/ants98/ants98.html.

Di Caro, G., & Dorigo, M. (1998). Mobile agents for adaptive routing. In H. El-Rewini
(Ed.), Proceedings of the 31st International Conference on System Sciences (HICSS-31)
(Vol. 7, pp. 74-83). Los Alamitos, CA: IEEE Computer Society Press.

Di Caro, G., & Dorigo, M. (1998). Two ant colony algorithms for best-effort routing in
datagram networks. In Proceedings of the Tenth IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS '98) (pp. 541-546).
IASTED/ACTA Press.

Dorigo, M. (1992). Optimization, learning and natural algorithms (in Italian).
Unpublished doctoral dissertation, Politecnico di Milano, Dipartimento di Elettronica, Italy.

Dorigo, M. (1993). Parallel Ant System: An experimental study. Unpublished manuscript.

Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In D. Corne,
M. Dorigo, & F. Glover (Eds.), New ideas in optimization. Maidenhead, UK: McGraw-Hill.

Dorigo, M., & Gambardella, L. M. (1996). A study of some properties of Ant-Q. In

H.-M. Voight, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Proceedings of PPSN-IV,
Fourth International Conference on Parallel Problem Solving from Nature (pp. 656—605).
Berlin: Springer-Verlag.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the traveling salesman problem.
BioSystems, 43, 73-81.

Dorigo, M., & Gambardella, L. M. (1997). Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53-66.

Dorigo, M., & Maniezzo, V. (1993). Parallel genetic algorithms: Introduction and overview
of the current research. In J. Stender (Ed.), Parallel genetic algorithms: Theory &
applications (pp. 5—42). Amsterdam: 10S Press.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy.
(Tech. Rep. 91-016). Milan, Italy: Politecnico di Milano, Dipartimento di Elettronica.

Artificial Life Volume 5, Number 2

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

41.

42.

43

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

60.

61.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B,
26(1), 29-41.

Escudero, L. F. (1988). An inexact algorithm for the sequential ordering problem.
European Journal of Operations Research, 37, 232-253.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties.
Cognitive Science, 6, 205-254.

Fleurent, C., & Ferland, J. (1996). Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63, 437-461.

Fogel, D. B. (1995). Evolutionary computation. Piscataway, NJ: IEEE Press.

Foulser, D. E., Li, M., & Yang, Q. (1992). Theory and algorithms for plan merging.
Artificial Intelligence, 57, 143-181.

Freisleben, B., & Merz, P. (1996). Genetic local search algorithms for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of IEEE International
Conference on Evolutionary Computation, IEEE-EC "96 (pp. 616-621). Piscataway, NJ:
IEEE Press.

Freisleben, B., & Merz, P. (1996). New genetic local search operators for the traveling
salesman problem. In H.-M. Voigt, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.),
Proceedings of PPSN-IV, Fourth International Conference on Parallel Problem Solving
from Nature (pp. 890-899). Berlin: Springer-Verlag.

Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the
traveling salesman problem. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth
International Conference on Machine Learning, ML-95 (pp. 252-260). Palo Alto, CA:
Morgan Kauffman.

Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by ant
colonies. In Proceedings of the IEEE International Conference on Evolutionary
Computation, ICEC "96 (pp. 622-627). Piscataway, NJ: IEEE Press.

Gambardella, L. M., & Dorigo, M. (1997). HAS-SOP: An bybrid ant system for the
sequential ordering problem. (Tech. Rep. 11-97). Lugano, Switzerland: IDSIA.

Gambardella, L. M., Taillard, E., & Agazzi, G. (1999). MACS-VRPTW: A multiple Ant
Colony System for vehicle routing problems with time windows. In D. Corne, M. Dorigo,
& F. Glover (Eds.), New ideas in optimization. Maidenhead, UK: McGraw-Hill.

Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1997). Ant colonies for the QAP. (Tech.
Rep. 4-97). Lugano, Switzerland: IDSIA.

Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1999). Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50(2), 167-176.

Garey, M. R,, Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 2(2), 117-129.

. Gavett, J. (1965). Three heuristic rules for sequencing jobs to a single production facility.

Management Science, 11, 166-176.

. Glover, F. (1989). Tabu search, part I. ORSA Journal on Computing, 1, 190-206.
. Glover, F. (1989). Tabu search, part II. ORSA Journal on Computing, 2, 4-32.

. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.

Reading, MA: Addison-Wesley.

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in
the Argentine ant. Naturwissenschaften, 76, 579-581.

Grassé, P. P. (1946). Les insects dans leur univers. Paris: Editions du Palais de la
découverte.

Artificial Life Volume 5, Number 2 169

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

62.

63.

64.

67.

68.

69.

70.

71.

72.

73.

74.

70.

77.

78.

79.

80.

81.
82.

83.

170

Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez
Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41-81.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation. Redwood City, CA: Addison-Wesley.

Heusse, M., Guérin, S., Snyers, D., & Kuntz, P. (1998). Adaptive agent-driven routing and
load balancing in communication networks. Advances in Complex Systems, 1, 237-254.

. Hillis, W. D. (1982). The connection machine. Cambridge, MA: MIT Press.
66.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: A case study.
In E. H. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization
(pp. 215-310). Chichester, UK: Wiley.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671-680.

Koopmans, T. C., & Beckmann, M. J. (1957). Assignment problems and the location of
econonomic activities. Econometrica, 25, 53—76.

Kriger, F., Merkle, D., & Middendorf, M. (1998). Studies on a parallel Ant System for the
BSP model. Unpublished manuscript.

Lawler, E. L., Lenstra, J. K., Rinnooy-Kan, A. H. G., & Shmoys, D. B. (Eds.). (1985). The
travelling salesman problem. Chichester, UK: Wiley.

Leighton, F. (1979). A graph coloring algorithm for large scheduling problems. journal of
Research of the National Bureau of Standards, 84, 489-505.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell Systems
Journal, 44, 2245-22069.

Ma, Q., Steenkiste, P., & Zhang, H. (1996). Routing in high-bandwidth traffic in max-min
fair share networks. ACM Computer Communication Review (SIGCOMM 96), 26(4),
206-217.

. Maniezzo, V. (1998). Exact and approximate nondeterministic tree-search procedures for

the quadratic assignment problem. (Tech. Rep. CSR 98-1). In Scienze dell'Informazione,
Universita di Bologna, sede di Cesena, Italy.

Maniezzo, V., & Colorni, A. (in press). The Ant System applied to the quadratic
assignment problem. IEEE Transactions on Knowledge and Data Engineering.

Maniezzo, V., Colorni, A., & Dorigo, M. (1994). The Ant System applied to the quadratic
assignment problem. (Tech. Rep. IRIDIA/94-28). Belgium: Université Libre de Bruxelles.

Michel, R., & Middendorf, M. (1998). An island model based Ant System with lookahead
for the shortest supersequence problem. In A. E. Eiben, T. Bick, M. Schoenauer, &

H.-P. Schwefel (Eds.), Proceedings of PPSN-V, Fifth International Conference on Parallel
Problem Solving from Nature (pp. 692-701). Berlin: Springer-Verlag.

Michel, R., & Middendorf, M. (1999). An ACO algorithm for the shortest common
supersequence problem. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in
optimization. Maidenhead, UK: McGraw-Hill.

Narendra, K., & Thathachar, M. (1989). Learning automata: An introduction.
Prentice-Hall.

Nilsson, N. J. (1998). Artificial intelligence: A new synthesis. Morgan Kaufmann.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European
Journal of Operational Research, 34, 330-344.

Pasteels, J. M., Deneubourg, J.-L., & Goss, S. (1987). Self-organization mechanisms in ant

societies (i): Trail recruitment to newly discovered food sources. Experientia
Supplementum, 54, 155-175.

Artificial Life Volume 5, Number 2

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

84

86.

87.
88.

89.

90.

91.

92.

93.

94.

90.

97.

98.

99.

100.

101.

102.

103.

. Réihd, K.-J., & Ukkonen, E. (1981). The shortest common supersequence problem over
binary alphabet is NP-complete. Theoretical Computer Science, 16, 187-198.

. Rechenberg, R. I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart, Germany: Frommann-Holzboog.

Reinelt, G. (1994). The traveling salesman problem: Computational solutions for TSP
applications. Berlin: Springer-Verlag.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. New York: Wiley.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (Eds.). (19806). Parallel
distributed processing. Cambridge, MA: MIT Press.

Schoonderwoerd, R., Holland, O., & Bruten, J. (1997). Ant-like agents for load balancing
in telecommunications networks. In J. Miiller (Ed.), Proceedings of the First International
Conference on Autonomous Agents (pp. 209-216). ACM Press.

Schoonderwoerd, R., Holland, O., Bruten, J., & Rothkrantz, L. (1996). Ant-based load
balancing in telecommunications networks. Adaptive Bebhavior, 5(2), 169-207.

Schwefel, H.-P. (1977). Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie. Basel, Switzerland: Birkauser.

Shani, S., & Gonzales, T. (1976). P-complete approximation problems. Journal of ACM,
23, 555-505.

Streltsov, S., & Vakili, P. (1996). Variance reduction algorithms for parallel replicated
simulation of uniformized Markov chains. Discrete Event Dynamic Systems: Theory and
Applications, 6, 159-180.

Stiitzle, T. (1998). Parallelization strategies for ant colony optimization. In A. E. Eiben,

T. Bidck, M. Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of PPSN-V, Fifth
International Conference on Parallel Problem Solving from Nature (pp. 722-731). Berlin:
Springer-Verlag.

. Stiitzle, T., & Dorigo, M. (1999). ACO algorithms for the quadratic assignment problem. In
D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization. Maidenhead, UK:
McGraw-Hill.

Stitzle, T., & Dorigo, M. (1999). ACO algorithms for the traveling salesman problem. In
K. Miettinen, M. M. Mikeld, P. Neittaanmiki, & J. Periaux (Eds.), Evolutionary algorithms
in engineering and computer science. Chichester, UK: Wiley.

Stiitzle, T., & Hoos, H. (1997). Improvements on the Ant System: Introducing
MAX — MIN ant system. In Proceedings of the International Conference on Artificial
Neural Networks and Genetic Algorithms (pp. 245-249). Springer-Verlag.

Stiitzle, T., & Hoos, H. (1997). The MAX — MZN Ant System and local search for the
traveling salesman problem. In T. Bick, Z. Michalewicz, & X. Yao (Eds.), Proceedings of
IEEE-ICEC-EPS '97, IEEE International Conference on Evolutionary Computation and
Evolutionary Programming Conference (pp. 309-314). Piscataway, NJ: IEEE Press.

Stiitzle, T., & Hoos, H. (1998). MAX — MZN Ant System and local search for
combinatorial optimization problems. In S. Voss, S. Martello, I. H. Osman, & C. Roucairol
(Eds.), Meta-bheuristics: Advances and trends in local search paradigms for optimization
(pp. 137-154).

Subramanian, D., Druschel, P., & Chen, J. (1997). Ants and reinforcement learning: A case

study in routing in dynamic networks. In Proceedings of IJCAI-97, International Joint
Conference on Artifical Intelligence (pp. 832-838). Palo Alto, CA: Morgan Kauffman.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

van der Put, R. (1998). Routing in the faxfactory using mobile agents. (Tech. Rep.
R&D-SV-98-276). Leidschendam, The Netherlands: KPN Research.

van der Put, R., & Rothkrantz, L. (in press). Routing in packet switched networks using
agents. Simulation Practice and Theory.

Artificial Life Volume 5, Number 2 171

|

M. Dorigo, G. Di Caro, and L. M. Gambardella Ant Algorithms for Discrete Optimization

100.

172

. Watkins, C. J. (1989). Learning with delayed rewards. Unpublished doctoral dissertation,

Psychology Department, University of Cambridge, UK.

. White, T., Pagurek, B., & Oppacher, F. (1998). Connection management using adaptive

mobile agents. In H. R. Arabnia (Ed.), Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA '98)
(pp. 802-809). Athens, GA: CSREA Press.

Whitley, D., Starkweather, T., & Fuquay, D. (1989). Scheduling problems and travelling
salesman: The genetic edge recombination operator. In J. D. Schaffer (Ed.), Proceedings
of the Third International Conference on Genetic Algorithms (pp. 133-140). Palo Alto, CA:
Morgan Kaufmann.

Artificial Life Volume 5, Number 2

