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Abstract

We describe an artificial ant colony capable of solving the travelling salesman problem (TSP). Ants of the artificial
colony are able to generate successively shorter feasible tours by using information accumulated in the form of a
pheromone trail deposited on the edges of the TSP graph. Computer simulations demonstrate that the artificial ant
colony is capable of generating good solutions to both symmetric and asymmetric instances of the TSP. The method
is an example, like simulated annealing, neural networks and evolutionary computation, of the successful use of a
natural metaphor to design an optimization algorithm. © 1997 Elsevier Science Ireland Ltd.

Keywords: Ant colony optimization; Computational intelligence; Artificial life; Adaptive behavior; Combinatorial
optimization; Reinforcement learning

1. Introduction

Real ants are capable of finding the shortest
path from a food source to the nest (Beckers et
al., 1992; Goss et al., 1989) without using visual
cues (Hölldobler and Wilson, 1990). Also, they
are capable of adapting to changes in the environ-
ment, e.g. finding a new shortest path once the old
one is no longer feasible due to a new obstacle
(Beckers et al., 1992; Goss et al., 1989). Consider
Fig. 1A: ants are moving on a straight line that

connects a food source to their nest. It is well
known that the primary means for ants to form
and maintain the line is a pheromone trail. Ants
deposit a certain amount of pheromone while
walking, and each ant probabilistically prefers to
follow a direction rich in pheromone. This ele-
mentary behaviour of real ants can be used to
explain how they can find the shortest path that
reconnects a broken line after the sudden appear-
ance of an unexpected obstacle has interrupted
the initial path (Fig. 1B). In fact, once the obsta-
cle has appeared, those ants which are just in
front of the obstacle cannot continue to follow
the pheromone trail and therefore they have to
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choose between turning right or left. In this situa-
tion we can expect half the ants to choose to turn
right and the other half to turn left. A very similar
situation can be found on the other side of the
obstacle (Fig. 1C). It is interesting to note that
those ants which choose, by chance, the shorter
path around the obstacle will more rapidly recon-
stitute the interrupted pheromone trail compared
to those who choose the longer path. Thus, the
shorter path will receive a greater amount of
pheromone per time unit and in turn a larger
number of ants will choose the shorter path. Due
to this positive feedback (autocatalytic) process,
all the ants will rapidly choose the shorter path
(Fig. 1D). The most interesting aspect of this
autocatalytic process is that finding the shortest
path around the obstacle seems to be an emergent
property of the interaction between the obstacle
shape and ants distributed behaviour: although all
ants move at approximately the same speed and
deposit a pheromone trail at approximately the
same rate, it is a fact that it takes longer to
contour obstacles on their longer side than on
their shorter side which makes the pheromone
trail accumulate quicker on the shorter side. It is
the ants preference for higher pheromone trail
levels which makes this accumulation still quicker
on the shorter path. We will now show how a
similar process can be put to work in a simulated
world inhabited by artificial ants that try to solve
the travelling salesman problem.

The travelling salesman problem (TSP) is the
problem of finding a shortest closed tour which
visits all the cities in a given set. In this article we
will restrict attention to TSPs in which cities are
on a plane and a path (edge) exists between each
pair of cities (i.e., the TSP graph is completely
connected).

2. Artificial ants

In this work an artificial ant is an agent which
moves from city to city on a TSP graph. It
chooses the city to move to using a probabilistic
function both of trail accumulated on edges and
of a heuristic value, which was chosen here to be
a function of the edges length. Artificial ants

probabilistically prefer cities that are connected
by edges with a lot of pheromone trail and which
are close-by. Initially, m artificial ants are placed
on randomly selected cities. At each time step
they move to new cities and modify the
pheromone trail on the edges used—this is
termed local trail updating. When all the ants
have completed a tour the ant that made the
shortest tour modifies the edges belonging to its
tour—termed global trail updating—by adding
an amount of pheromone trail that is inversely
proportional to the tour length.

These are three ideas from natural ant be-
haviour that we have transferred to our artificial
ant colony: (i) the preference for paths with a high
pheromone level, (ii) the higher rate of growth of
the amount of pheromone on shorter paths, and
(iii) the trail mediated communication among
ants. Artificial ants were also given a few capabil-

Fig. 1. (A) Real ants follow a path between nest and food
source. (B) An obstacle appears on the path: ants choose
whether to turn left or right with equal probability.
Pheromone is deposited more quickly on the shorter path. (D)
All ants have chosen the shorter path.
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Table 1
Comparison of ACS with other nature-inspired algorithms on
random instances of the symmetric TSP

FISA SOMProblem name ENACS

5.88 5.98 6.06City set 1 6.035.86
6.25 6.28City set 2 6.05 6.01 6.03

5.70 5.83City set 3 5.57 5.65 5.85
5.86 5.965.875.81City set 4 5.70

6.716.70City set 5 6.17 6.33 6.49

Comparisons of average tour length obtained on five 50-city
problems. Results on SA, EN, and SOM are from Durbin and
Willshaw (1987) and Potvin (1993). FI results are averaged
over 15 trials starting from different initial cities. ACS was run
for 1250 iterations using m=20 ants and the results are
averaged over 15 trials. The best average tour length for each
problem is in bold.

is a parameter and S is a random variable selected
according to the following probability distribu-
tion, which favours edges which are shorter and
have a higher level of pheromone trail:

pk(r, s)=Í
Ã

Ã

Á

Ä

[t(r, s)] · [h(r, s)]b

%
u�Mk

[t(r, u)] · [h(r, u)]b

0

if sQMk

otherwise

(2)

where pk(r, s) is the probability with which ant k
chooses to move from city r to city s.

The pheromone trail is changed both locally
and globally. Global updating is intended to re-
ward edges belonging to shorter tours. Once artifi-
cial ants have completed their tours, the best ant
deposits pheromone on visited edges; that is, on
those edges that belong to its tour. (The other
edges remain unchanged.) The amount of
pheromone Dt(r, s) deposited on each visited edge
(r, s) by the best ant is inversely proportional to
the length of the tour: the shorter the tour the
greater the amount of pheromone deposited on
edges. This manner of depositing pheromone is
intended to emulate the property of differential
pheromone trail accumulation, which in the case
of real ants was due to the interplay between the
length of the path and continuity of time. The
global trail updating formula is t(r, s)� (1−a)
·t(r, s)+a ·Dt(r, s), where Dt(r, s)= (shortest
tour)−1. Global trail updating is similar to a
reinforcement learning scheme in which better
solutions get a higher reinforcement.

Local updating is intended to avoid a very
strong edge being chosen by all the ants: every
time an edge is chosen by an ant its amount of
pheromone is changed by applying the local trail
updating formula: t(r, s)� (1−a) ·t(r, s)+a ·t0,
where t0 is a parameter. Local trail updating is
also motivated by trail evaporation in real ants.

Interestingly, we can interpret the ant colony as
a reinforcement learning system, in which rein-
forcements modify the strength (i.e. pheromone
trail) of connections between cities. In fact, the
above Eqs. (1) and (2) dictate that an ant can
either, with probability q0, exploit the experience

ities which do not have a natural counterpart, but
which have been observed to be well suited to the
TSP application: artificial ants can determine how
far away cities are, and they are endowed with a
working memory Mk used to memorize cities al-
ready visited (the working memory is emptied at
the beginning of each new tour, and is updated
after each time step by adding the new visited
city).

There are many different ways to translate the
above principles into a computational system apt
to solve the TSP. In our ant colony system (ACS)
an artificial ant k in city r chooses the city s to
move to among those which do not belong to its
working memory Mk by applying the following
probabilistic formula:

s=Í
Ã

Ã

Á

Ä

arg max
uQMk

{[t(r, u)] · [h(r, u)]b}

S

if q5q0

otherwise

(1)

where t(r, u) is the amount of pheromone trail on
edge (r, u), h(r, u) is a heuristic function, which
was chosen to be the inverse of the distance
between cities r and u, b is a parameter which
weighs the relative importance of pheromone trail
and of closeness, q is a value chosen randomly
with uniform probability in [0, 1], q0 (05 q051)
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Table 2
Comparison of ACS with other nature-inspired algorithms on random instances of the symmetric TSP

SA+3-opt Fl Fl+3-optProblem name SOM+ACS ACS+3-opt

5.84 5.84 5.89 5.85City set 1 5.84 5.84
6.00 6.02City set 2 6.00 6.00 5.99 5.99

5.575.58 5.57City set 3 5.575.57 5.57
5.76 5.70City set 4 5.70 5.70 5.70 5.60
6.50 6.40City set 5 6.17 6.17 6.17 6.19

Comparison on the shortest tour length obtained by SA+3-opt=best tour length found by SA and many distinct runs of 3-opt,
SOM+=best tour length found by SOM over 4000 different runs (by processing the cities in various orders), FI, FI+3-opt=best
tour length found by FI locally optimized by 3-opt, and ACS with and without local optimization by 3-opt. The 3-opt heuristics
used the result of ACS and FI as starting configuration for local optimization. Results on SA+3-opt and SOM+ are from Durbin
and Willshaw (1987) and Potvin (1993). ACS was run for 1250 iterations using m=20 ants and the best tour length was obtained
out of 15 trials. The best tour length for each problem is in bold.

Table 3
Comparison of ACS with GA, EP, SA and the AG (Lin et al., 1993)

EP SA AGProblem name ACS OptimumGA

420 420Oliver30 420 421 420 424
(N/A) (N/A)(30-city problem) (423.74) (N/A) (423.74) (423.74)

[12 620][24 617][40 000][830] [3200]
426 443 436Eil50 425425 428

(N/A) (N/A)(50-city problem) (427.96) (N/A) (427.86) (N/A)
[28 111][68 512][100 000][1830] [25 000]

580 561Eil75 535 545 542 535
(N/A)(N/A)(N/A)(75-city problem) (549.18)(542.31) (N/A)

[325 000] [173 250] [95 506][3480] [80 000]
21 282N/AN/AKroA100 N/A21 282 21 761

(N/A) (N/A) (N/A) (N/A)(100-city problem) (21 285.44) (N/A)
[N/A][4820] [103 000] [N/A] [N/A]

We report the best integer tour length, the best real tour length (parentheses) and the number of tours required to find the best
integer tour length (square brackets). Results using EP are from Fogel (1993) and those using GA are from Bersini et al. (1995) for
KroAl00, and from Whitley et al. (1989) for Oliver30, EilS0, and Eil75. Results using SA and AG are from Lin et al. (1993).
Oliver30 is from Oliver et al. (1987), Eil50, Eil75 are from Eilon et al. (1969) and are included in TSPLIB with an additional city
as Eil51.tsp and Eil76.tsp. KroA100 is also in TSPLIB. The best result for each problem is in bold. It is interesting to note that the
complexity of all the algorithms is order of n2 · t, except for EP for which it is order of n · t (where n is the number of cities and t
is the number of tours generated). It is therefore clear that ACS and EP greatly outperform GA, SA, and AG.
TSPLIB:http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html (maintained by G. Reinelt).

accumulated by the ant colony in the form of
pheromone trail (pheromone trail will tend to
grow on those edges which belong to short tours,
making them more desirable) or, with probability
(1−q0), apply a biased exploration (exploration is
biased towards short and high trail edges) of new
paths by choosing the city to move to randomly,
with a probability distribution that is a function
of both the accumulated pheromone trail, the
heuristic function and the working memory Mk.

It is interesting to note that ACS employs a
novel type of exploration strategy. First, there is
the stochastic component S of Eq. (1): here the
exploration of new paths is biased towards short
and high trail edges. (Eq. (1), which we call the
pseudo-random-proportional action choice rule, is
strongly reminiscent of the pseudo-random action
choice rule often used reinforcement learning;
see for example Q-learning (Watkins and Dayan,
1992)). Second, local trail updating tends to en-
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Table 4
ACS performance for some bigger TSPs

%ErrorACS averageProblem name Optimal resultACS (cl=20) best result
CPU secs to generate a tour

(2)(1) (1)−(2)

(2)

0.6815 78016 054 0.02d198 15 888
(198-city prob- [585 000] [71.1]

lem)
0.96 0.0550 77951 690pcb442 51 268

(442-city prob- [595 000] [188.7]
lem)

1.67 0.07att532 28 147 28 522 27 686
[275.4](532-city prob- [830 658]

lem)
8806 0.132.379066rat778 9015

[991 276] [28.2](778-city prob-
lem)

3.27+3.79[22 137–22 249] 0.4823 163fl1577 22 977
(fl1577-city [942 000] [116.6]

problem)

First column: best result obtained by ACS out of 15 trials; we give the integer length of the shortest tour and the number of tours
which were generated before finding it (square brackets). Second column: ACS average on 15 trials and its standard deviation in
square brackets. Third column: optimal result (for fl1577 we give, in square brackets, the known lower and upper bounds, given that
the optimal solution is not known). Fourth column: error percentage, a measure of the quality of the best result found by ACS. Fifth
column: time required to generate a tour on a Sun Sparc-server (50 MHz). The reason for the more than linear increase in time is
that the number of failures, that is, the number of times an ant has to choose the next city outside of the candidate list, increases
with the problem dimension. All problems are included in TSPLIB.

courage exploration since each path taken has its
pheromone value reduced by the local updating
formula.

3. Results

We applied ACS to the symmetric and asym-
metric TSPs listed in Tables 1–4 and Table 7.
These test problems were chosen either because
there was data available in the literature to com-
pare our results with those obtained by other
naturally inspired methods or with the optimal
solutions (the symmetric instances) or to show the
ability of ACS in solving difficult instances of the
TSP (the asymmetric instances).

Using the test problems listed in Tables 1–3 the
performance of ACS was compared with the per-
formance of other naturally inspired global opti-
mization methods: simulated annealing (SA),

neural nets (NNs), here represented by the elastic
net (EN) and by the self organizing map (SOM),
evolutionary computation (EC), here represented
by the genetic algorithm (GA) and by evolution-
ary programming (EP) and a combination of sim-
ulated annealing and genetic algorithms (AG);
moreover we compared it with the farthest inser-
tion (FI) heuristic. Numerical experiments were
executed with ACS and FI, whereas the perfor-
mance figures for the other algorithms were taken
from the literature. The ACS parameters were set
to the following values: m=10, b=2, a=0.1,
q0=0.9, t0= (n ·Lnn)−1, where Lnn is the tour
length produced by the nearest neighbour heuris-
tic and n is the number of cities (these values were
found to be very robust across a wide variety of
problems). In some experiments (Table 2), the
best solution found by the heuristic carried to
its local optimum by applying 3-opt (Croes,
1958). The tables show that ACS finds results
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Table 4
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which were generated before finding it (square brackets). Second column: ACS average on 15 trials and its standard deviation in
square brackets. Third column: optimal result (for fl1577 we give, in square brackets, the known lower and upper bounds, given that
the optimal solution is not known). Fourth column: error percentage, a measure of the quality of the best result found by ACS. Fifth
column: time required to generate a tour on a Sun Sparc-server (50 MHz). The reason for the more than linear increase in time is
that the number of failures, that is, the number of times an ant has to choose the next city outside of the candidate list, increases
with the problem dimension. All problems are included in TSPLIB.
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mance figures for the other algorithms were taken
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q0=0.9, t0= (n ·Lnn)−1, where Lnn is the tour
length produced by the nearest neighbour heuris-
tic and n is the number of cities (these values were
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best solution found by the heuristic carried to
its local optimum by applying 3-opt (Croes,
1958). The tables show that ACS finds results
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Table 5
Comparison between candidate list size

Average number of failures for each tour builtACS best resultCandidate list Average time per trialACS average
length (secs)

431.00 426 13.93 0.7310
0.4823.93427431.2720

429 33.9330 435.27 0.36
426 44.2640 433.47 0.11

55.06429 0.01433.8750

Problem: Eil51. For each candidate list length, averages are computed over 15 trials. In each trial the number of tours generated
is 500.

Table 6
Comparison between candidate list size

Average number of failures for each tour builtACS average ACS best result Average time per trialCandidate list
(secs)length

458.552 20154 024.9 3.4220
53 580 786.440 54 970.9 2.10
53 907 1134.560 55 582.7 1.77

1459.254 559 1.5356 495.980
56 728.3 54 527 1764.3 1.30100

Problem: Pcb442. For each candidate list length averages is computed over 10 trials. In each trial the number of tours generated is
20 000.

which are at least as good as, and often better
than, those found by the other methods. Also, the
best solutions found by ACS in Table 2 were local
optima with respect to 3-opt.

We also ran ACS on some bigger problems to
study its behaviour for increasing problem dimen-
sions (Table 4). For these runs we implemented a
slightly modified version of ACS which incorpo-
rates a more advanced data structure known as a
candidate list, a data structure normally used
when trying to solve big TSP problems (Reinelt,
1994; Johnson and McGeoch, 1997). A candidate
list is a list of preferred cities to be visited; it is a
static data structure which contains, for a given
city i, the cl closest cities. In practice, an ant in
ACS with a candidate list first chooses the city to
move to among those belonging to the candidate
list. Only if none of the cities in the candidate list
can be visited does it consider the rest of the
cities. In Tables 5 and 6 we study the performance
of ACS for different lengths of the candidate list

(ACS without a candidate list corresponds to
ACS with a candidate list with the list length set
to cl=n). We report the results obtained for the
Eil51 and Pcb442 TSPs (both these problem are
included in TSPLIB) which show that a short
candidate list improves both the average and the
best performance of ACS; also, using a short
candidate list takes less CPU time to build a tour
than using a longer one. The results reported in
Table 4 were obtained setting cl=20.

Still more promising are the results we obtained
applying ACS to some asymmetric TSP problems
(Table 7). For example, ACS was able to find, in
220 sec using a Pentium PC, the optimal solution
for a 43-city asymmetric problem called 43X2.
The same problem could not be solved to opti-
mality with less than 32 h of computation on a
workstation by the best published code available
for the asymmetric TSP based on the Assignment
Problem relaxation (Fischetti and Toth, of
the asymmetric TSP, and was only very recently
solved to optimality by (Fischetti and Toth, 1994)
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static data structure which contains, for a given
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ACS with a candidate list first chooses the city to
move to among those belonging to the candidate
list. Only if none of the cities in the candidate list
can be visited does it consider the rest of the
cities. In Tables 5 and 6 we study the performance
of ACS for different lengths of the candidate list

(ACS without a candidate list corresponds to
ACS with a candidate list with the list length set
to cl=n). We report the results obtained for the
Eil51 and Pcb442 TSPs (both these problem are
included in TSPLIB) which show that a short
candidate list improves both the average and the
best performance of ACS; also, using a short
candidate list takes less CPU time to build a tour
than using a longer one. The results reported in
Table 4 were obtained setting cl=20.

Still more promising are the results we obtained
applying ACS to some asymmetric TSP problems
(Table 7). For example, ACS was able to find, in
220 sec using a Pentium PC, the optimal solution
for a 43-city asymmetric problem called 43X2.
The same problem could not be solved to opti-
mality with less than 32 h of computation on a
workstation by the best published code available
for the asymmetric TSP based on the Assignment
Problem relaxation (Fischetti and Toth, of
the asymmetric TSP, and was only very recently
solved to optimality by (Fischetti and Toth, 1994)
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Table 7
Comparison between exact methods and ACS for ATSP problems

Problem FT-94ACS best result ACS average FT-92

43X2 56205620 5627 N/A
(492.2)(43-city problem) (220) (295)

14 422ry48p 14 685 14 422 14 422
(48-city problem) (610) (798) (729.6) (52.8)

The exact method is the best published deterministic code for the asymmetric TSP; results are from Fischetti and Toth (1992) and
Fischetti and Toth (1994). The ry48p is from TSPLIB, and the 43X2 problem is from Balas et al. (1993). We report the tour length
and, in parentheses, CPU secs used to find the reported solution (experiments were run on a Pentium PC). ACS was run using 10
ants for 1500 iterations, and results were obtained out of 15 trials. The best result for each problem is in bold.

with an algorithm based on polyhedral cuts
(branch-and-cut scheme)1.

In addition to providing interesting computa-
tional results, ACS also presents some attractive
characteristics due to the use of trail mediated
communication. First, communication determines
a synergistic effect. This is shown for example in
Fig. 2 which shows the typical result of an exper-
iment in which we studied the average speed to
find the optimal solution (defined as the inverse of
the average time to find the optimal solution) as a
function of the number of ants in ACS. To make

the comparison fair performance was measured
by CPU time so as to discount for the higher
complexity of the algorithm when ants communi-
cate (higher complexity is due to trail updating
operations: when ants do not communicate trail is
initially set to 1 on all edges and is not updated
during computation). Second, communication in-
creases the probability of quickly finding an opti-
mal solution. Consider the distribution of the first
finishing times, where the first finishing time is the
time elapsed until the first optimal solution is
found. Fig. 3 shows how this distribution changes
in the communicating and the noncommunicating
cases. These results show that communication
among ants (mediated by trail) is useful.

Although when applied to the symmetric TSP
ACS is not competitive with specialized heuristic
methods like Lin-Kernighan (Lin and Kernighan,
1973), its performance can become very interest-
ing when applied to a slightly different problem;
in this article we reported some results on the

Fig. 2. Communication determines a synergistic effect. Com-
munication among agents: solid line. Absence of communica-
tion: dotted line. Test problem: CCAO, a 10-city problem
(Golden and Stewart, 1985). Average on 100 runs. (The use of
an increasing number of ants does not improve performance
for the case of absence of cooperation since we use CPU time
to measure speed.)

Fig. 3. Communication changes the probability distribution of
first finishing times. Communication among agents: solid line.
Absence of communication: dotted line. Test problem: CCAO,
a 10-city problem (Golden and Stewart, 1985). Average of
10 000 runs. Number of ants: m=4.

1 It should be noted that the task faced by ACS, as is the
case for the heuristic method, is easier than that for any
optimality proving algorithm since ACS does not have to
prove the optimality of the obtained result. The results of
Table 7 should therefore be taken for what they are—they
suggest that ACS is a good method for finding good
to ATSPs in a reasonably short time and not that ACS is
competitive with exact methods.
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asymmetric TSP. An extended version of ACS has
recently been applied to the quadratic assignment
problem (Gambardella et al., 1997): it was able to
find solutions of a quality (measured as cost of
the obtained result and as CPU time required to
find it) comparable to that of solutions found by
the currently best heuristics for the QAP: Taboo
Search (Taillard, 1991), an hybrid genetic al-
gorithm (Fleurent and Ferland, 1994) and
GRASP (Li et al., 1994).

4. Conclusions

The key to the application of ACS to a new
problem is to identify an appropriate representa-
tion for the problem (to be represented as a graph
searched by many artificial ants) and an appropri-
ate heuristic that defines the distance between any
two nodes of the graph. Then the probabilistic
interaction among the artificial ants mediated by
the pheromone trail deposited on the graph edges
will generate good, and often optimal, problem
solutions.

There are many ways in which ACS can be
improved so that the number of tours needed to
reach a comparable performance level can dimin-
ish, making its application to larger problem in-
stances feasible. First, a local optimization
heuristic like 2-opt, 3-opt or Lin-Kernighan (Lin
and Kernighan, 1973) can be embedded in the
ACS algorithm (this is a standard approach to
improve efficiency of general purpose algorithms
like EC, SA, NNs, as discussed in Johnson and
McGeoch (1997)). In the experiments presented in
this article, local optimization was just used to
improve on the best results produced by the vari-
ous algorithms. On the contrary, each ant could
be taken to its local optimum before global trail
updating is performed. Second, the algorithm is
amenable to efficient parallelization, which could
greatly improve the performance for finding good
solutions, especially for high-dimensional prob-
lems. The most immediate parallelization of ACS
can be achieved by distributing ants on different
processors: the same TSP is then solved on each
processor by a smaller number of ants and the
best tour found is exchanged asynchronously

among processors. A preliminary implementation
(Bolondi and Bondanza, 1993) of a similar
scheme (Dorigo et al., 1996) on a net of transput-
ers has shown that it can make the complexity of
the algorithm largely independent of the number
of ants. Third, the method is open to further
improvements such as the introduction of special-
ized families of ants, tighter connections with
reinforcement learning methods (Gambardella
and Dorigo, 1995; Dorigo and Gambardella,
1996) and the introduction of more specialized
heuristic functions to direct the search.
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IRIDIA, Université Libre de Bruxelles, Belgium.

Bolondi, M. and Bondanza, M., 1993, Parallelizzazione di un
algoritmo per la risoluzione del problema del commesso
viaggiatore. Masters thesis, Politecnico di Milano, Italy.

Croes, G.A., 1958, A method for solving traveling salesman
problems. Oper. Res., 6, 791–812.

Dorigo, M. and Gambardella, L.M., 1996, A study of some
properties of Ant-Q, in: Proc. PPSN IV—4th Int. Conf. on
Parallel Problem Solving From Nature, H.-M. Voigt, W.
Ebeling, I. Rechenberg and H.-S. Schwefel (eds.) (Springer-
Verlag, Berlin) pp. 656–665.

Dorigo, M., Maniezzo, V. and Colorni, A., 1996, The ant
system: by a colony of cooperating agents.
IEEE Trans. Syst., Man Cybern. Part B, 26, 29–41.



M. Dorigo, L.M. Gambardella / BioSystems 43 (1997) 73–81 81

Durbin, R. and Willshaw, D., 1987, An analogue approach to
the travelling salesman problem using an elastic net
method. Nature, 326, 689–691.

Eilon, S., Watson-Gandy, C.D.T. and Christofides, N., 1969,
Distribution management: mathematical modeling and
practical analysis. Oper. Res. Q., 20, 37–53.

Fischetti, M. and Toth, P., 1992, An additive bounding proce-
dure for the asymmetric travelling salesman problem.
Math. Program., 53, 173–197.

Fischetti, M. and Toth, P., 1994, A polyhedral approach for
the exact solution of hard ATSP instances. Tech. Rep. No.
OR-94, DEIS, Università di Bologna, Italy.
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