
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARYFEBRUARY 1993 141

Genetics-Based Machine Learning and
Behavior-Based Robotics: A New Synthesis

Marco Dorigo, Member, IEEE, and Uwe Schnepf

Abstract- Intelligent robots should be able to use sensor in-
formation to learn how to behave in a changing environment.
As environmental complexity grows, the learning task becomes
more and more difficult. This problem is faced using an architec-
ture based on learning classifier systems and on the structural
properties of animal behavioral organization, as proposed by
ethologists. After a description of the learning technique used
and of the organizational structure proposed, experiments that
show how behavior acquisition can be achieved were presented.
The simulated robot learns to follow a light and to avoid hot
dangerous objects. While these two simple behavioral patterns
are independently learned, coordination is attained by means
of a learning coordination mechanism. Again this capacity is
demonstrated by performing a number of experiments.

I. INTRODUCTION
HE traditional knowledge-based approach to artificial T intelligence shows some fundamental deficiencies in the

generation of powerful and flexible reasoning techniques.
Explaining the cognitive abilities of the brain purely in terms
of symbol manipulation as in current AI implementations
seems to lack the flexibility and expressiveness of natural
cognitive systems. Behavior-based robotics claims to provide
a better-and, perhaps, the only possible-way to develop
intelligent systems [5].

Most of the work done in behavior-based robotics focuses
on the design of appropriate robot behavior, hoping that pow-
erful coordination techniques (e.g., subsumption architecture
[4], action selection model [6], [16]) lead to more complex
behavioral sequences, in this way providing flexibility and
robustness to the robot’s overall behavior.

We believe that these approaches are insufficient as long as
the adaptation takes place only in the mind of the designer
of such an autonomous system. An autonomous agent must
possess this adaptive power itself in order to adapt its behavior
to any changes in the environment. Nature has produced such
adaptability by means of evolution. Natural systems have
genetically learned to adapt, i.e., to increase the likelihood
to survive and to have more offspring. This evolutionary
process has finally led to neural learning, a flexible way of
adaptation, and to cognitive abilities. Only if we can reproduce

Manuscript received February 24, 1991; revised May 26, 1992.
M. Dorigo was with the Politecnico di Milano Artificial Intelligence and

Robotics Project, Dipartimento di Elettronica e Informazione, Via Ponzio 34/5,
20133 Milano, Italy, and is now with the International Computer Science
Institute, 1947 Center Street, Ste. 600, Berkeley, CA 94704-1 105.

U. Schnepf is with the AI Research Division, German National Research
Center for Computer Science (GMD), P.O. Box 1316,5205 Sankt Augustin 1,
Germany.

IEEE Log Number 9205785.

these adaptation processes, we will be able to understand the
emergence of cognitive skills. For this reason, we consider
genetics-based learning as a plausible and powerful way to
develop intelligent systems.

We have developed an approach that is based on both
ethological and evolutionary considerations. In this way, we
intend to construct a model of cognition as a biological
phenomenon that serves only one goal: to increase the chances
of a species to survive. The approach we present in this paper
is considered to reflect these basic mechanisms and to produce
the kind of adaptability necessary for robust and flexible robot
intelligence. The paper is organized as follows. Section I1
deals with the principles of genetics-based machine learning
and Section 111 with behavior-based robotics. In subsequent
sections we present our research methodology and provide
implementational details on the system developed, together
with results. Section IV describes the architecture of the
system. In Section V our approach is compared to related
work. Section VI introduces the experiments and the results
obtained, together with discussion and finally, in Section VII,
we sketch future work to be done.

11. GENETIC ALGORITHMS, LEARNING CLASSIFIER SYSTEMS

Genetics-based machine learning (GBML) systems are a
class of learning systems that learn to accomplish a task
by means of interaction with an environment. They interact
with the environment, monitoring it by means of sensors and
acting according to received messages. The learning process
is guided by feedback about the quality of actions. Therefore,
they belong to the class of reinforcement learning systems (see
Fig. 1). The name genetics-based machine learning stems from
the algorithm used to implement rule discovery (the genetic
algorithm). In our work we used a particular kind of GBML
system known as learning classifier systems (LCS). It presents
the following peculiarities.

Rules are strings of symbols over a three-valued alphabet
(A = {0,1,* }) with a condition-+action format (in our
system each rule has two conditions that have to be
simultaneously satisfied in order to activate the rule).
A limited number of rules fire in parallel.
A pattern-matching and conflict-resolution subsystem
identifies which rules are active in each cycle and which
of them will actually fire.

In LCSs we can observe two different learning processes.
In the first one, the set of rules is given and its use is

AND GENETICS-BASED MACHINE LEARNING

0018-9472/93$03.00 0 1993 IEEE

142 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANLJARY/FEBRUARY 1993

Environment mechanism CP
perceptions actions rewards

Message List

Fig. 1. A general reinforcement learning model.

[Performancesystem 1
I Appoxtionment

conflict-resolution of credit system

Rules and
messages Rule

discovery
system

conflic t-resolution

Fig. 2. Structure of a GBML system.

learned. In the second, new and possibly useful rules can
be created. These two kinds of learning are accomplished
by the apportionment of credit algorithm and by the rule
discovery algorithm respectively. New rules are learned using
past experience and the way to use them is learned using
environmental feedback.

The system is then composed of the following three main
parts (as illustrated in Fig. 2).

The performance system.
The apportionment of credit system.
The rule discovery system.

In the following, we briefly introduce the three subsystems.

A. The Performance System

following.
The performance system is composed of (see Fig. 3) the

A set of rules, called classifiers.
A message list, used to collect messages sent from
classifiers and from the environment to other classifiers.
An input and an output interface with the environment
(detectors and effectors) to receivehend messages frodto
the environment.
A feedback mechanism to reward the system when a
useful action is performed and to punish it when a wrong
action is done.

Initially, at time to , a set of classifiers is created (they
may be generated randomly or by some algorithm that takes
into account the structure of the problem domain) and the
message list is empty. At time tl environmental messages are
appended to the message list, which are matched against the
condition part of classifiers, and these matching classifiers are
set to active status. At time t 2 messages coming from the
environment and messages sent by classifiers active at time
tl are appended to the message list. They are then matched

Fig. 3. The performance system.

against classifiers in the classifier set, and matching classifiers
become activated. The message list is then emptied and the
cycle repeated, from tl.

The need for a rule conflict-resolution system is one of
the reasons for the introduction of an apportionment of credit
algorithm that redistributes environment payoff to the rules
that caused the performed actions. This allows the performance
system to choose which rules to fire in accordance to some
measure of their usefulness. Conflict resolution must also be
used to solve conflict when effectors propose inconsistent
actions (e.g., “go right” and “go left”).

In order to explain better the nuances of this performance
system, let us introduce some terminology.

A classifier (rule) is a string composed of three chromo-
somes, two chromosomes being the condition part,’ the
third one being the message/action part; we will call a
classifier an external classifier if it sends messages to the
effectors, an internal classifier if it sends messages to
other classifiers.
A chromosome is a string of n positions; every position
is called a gene.
A gene can assume a value, called allelic value, belong-
ing to an alphabet that is usually A = {0,1,* }. (The
reasons underlying this choice are to be found in the rule
discovery algorithm used, namely the Genetic Algorithm.
In fact, it has been demonstrated [13] that the lower the
cardinality of the alphabet, the higher the efficiency of
the algorithm in processing useful information contained
in the structure of the chromosomes. This is discussed in
the next section.)

Consider for example the following classifier:

* 1 * ; 0 1 1 + 0 1 0 .

It consists of the two conditions *1* and 011, and the action
010. The second condition is matched only by the message 0
1 1, while the first one is matched by any message with a 1
in the second position. The * symbol stays for “don’t care,”

‘Although we use in our example only two chromosomes, it is in general
possible to u t i l i any number n of chromosomes in the conditions part of
a classifier (n 2 2), without changing the representational power of the
resulting system.

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS 143

that means both symbols, 0 or 1, match the position. If both
the conditions are matched by some message, then the rule
is activated and the message/action part, i.e. the chromosome
0 1 0 in the example, is appended to the message list at the
subsequent step; some of the messages on the message list can
be external messages: after conflicts are solved in the action
conflict resolution box, they are sent to the effectors.

B. The Genetic Algorithm
Genetic algorithms are a class of stochastic algorithms that

has been successfully utilized both as an optimization device
and as a rule-discovery mechanism. They work modifying a
population of solutions (in GBML a solution is a classifier) to
a given problem. Solutions are properly coded and a function,
usually called the fitness function, is defined to relate solutions
to performance. The value returned by this function is a
measure of the solution quality. The fitness of a classifier is
determined by its usefulness calculated with an apportionment
of credit algorithm instead of a fitness function.

GAS work as follows:
Let P be a population of N chromosomes (individuals of

P). Let P(0) be the initial population, randomly generated,
and P(t) the population at time t . The main loop of a GA
consists in generating a new population P(t + 1) using the
existing one P(t) , applying some so-called genetic Operators.
These operators modify randomly chosen individuals of pop-
ulation P(t) into new ones. The two most important of these
operators are crossover-it recombines individuals by taking
two of them, cutting in at a randomly chosen positions and
recombining the two in such a way that some of the genetic
material of the first individual goes to the second one and
vice versa-and mutation that randomly changes some of the
values of the genes constituting an individual. This way, the
population P(t + 1) is created by means of a reproduction
operator that gives higher reproduction probability to higher
fitted individuals. The overall effect of GAS’ work is to move
the population P towards areas of the solution space with
higher values of the fitness function.

The computational speed-up that we obtain using GAS with
respect to random search is due to the fact that the search is
directed by the fitness function. This direction is not based
on whole chromosomes, but on their parts that are strongly
related to high values of the fitness function: these parts are
called building blocks [lo], [13]. It has been proven [22]
that GAS process at each cycle a number of building blocks
proportional to the number of individuals of the population.
GAS are therefore useful for every problem where an optimal
solution may be obtained as composition of a collection of
building blocks.

To use GAS as a rule-discovery system means to hypothesize
that new and more useful rules can be created by recom-
bination of other less useful ones. In order to preserve the
system performance the GA is allowed to replace only a subset
of the classifiers. The worst m classifiers are replaced by m
new classifiers created by the application of the GA on the
population. The new rules are tested by the combined action of
the performance and apportionment of credit algorithms. Since

testing a rule requires many time steps, GAS are applied with
a lower frequency unlike the performance and apportionment
of credit systems.

C. The Apportionment of Credit System

The main task of the apportionment of credit algorithm is
to classify rules in accordance with their usefulness. In other
words, the algorithm works as follows: a time varying real
value called strength is associated to every classifier C. At time
zero each classifier has the same strength. When an external
classifier causes an action on the environment a payoff is
generated whose value is dependent on how good the action
performed was with respect to the system goal. This reward is
then transmitted backward to internal classifiers that caused
the external classifier to fire. The backward transmission
mechanism, examined in detail later, causes the strength of
the classifiers to change in time and to reflect their relevance
to the system performance (with respect to the system goal).

It is not possible to keep track of all the paths of activation
actually followed by the rule chains (a rule chain is a set of
rules activated in sequence, starting with a rule activated by
environmental messages and ending with a rule performing
an action on the environment) because the number of these
paths grows exponentially. It is then necessary to have an
appropriate algorithm that solves the problem using only local
(in time and space) information.

Local in time means that the information used at every
computational step is coming only from a fixed recent temporal
interval. Spatial locality means that changes in a classifier
strength are caused only by classifiers directly linked to it;
classifiers C1 and Cz are linked if the message posted by C1
matches a condition of Cz.

The classical algorithm used for this purpose is the Bucket
Brigade algorithm [3]. This algorithm models the classifier
system as an economic society, in which every classifier pays
an amount of its strength to get the privilege of appending
a message to the message list and receives a payment by all
classifiers activated because of the presence in the message
list of the message it appended during the preceding time
step. In this way payoff flows backward from the environment
again to the environment through a chain of classifiers. The
net result is that classifiers that participate in chains that cause
high rewarded actions tend to increase their strength. A good
introduction to GAS and LCSs, explaining the basic algorithms
in more detail, can be found in [lo].

111. BEHAVIOR-BASED ROBOTICS

The main idea in the approach of behavior-based robotics
as an alternative to the traditional knowledge-based AI is that
intelligent behavior cannot be created in artificial systems
without the ability to interact with a dynamically ,changing
unstructured environment. Cognition emerges only when au-
tonomous systems try to impose structure on the perceived
environment in order to survive. These structures in turn
provide the substratum for more intelligent behavior: the skills
to learn, to generalize and to abstract from given information,
to form categories and concepts, the emergence of goal-

144 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARYEEBRUARY 1993

directed behavior, the creation of internal world models, and
the development of problem-solving techniques. These basic
cognitive skills are unlikely to have been present in biological
autonomous systems from the very beginning of life. They
are more likely to have developed as part of the evolutionary
process. We are interested in reconstructing this process in
order to create robot intelligence.

1) Designing Behaviors: Most of the work done in the field
of behavior-based robotics so far focuses on the design of
appropriate behavioral modules and coordination techniques
to combine these behaviors in the most fruitful way in order to
enable the autonomous system to perform flexible and robust
actions. As most roboticists are interested in a particular robot
task (e.g. avoiding obstacles, following walls, passing doors,
grasping objects), the behaviors designed to fulfill these tasks
are well tailored to a particular situation. So far, no conceptual
model of how behaviors are related to each other has been
presented. Although some recent work has been reported on
the use of genetic algorithm techniques within this approach
[7], we do not expect this more engineering-oriented approach
to behavior-based robotics to give any deeper insights in the
evolutionary processes mentioned above. We have to look
for other methodologies to explain the emergence of adaptive
behavior.

2) Ethological Models: During the last 80 years, re-
searchers working in Ethology have tried to answer the very
same questions that we consider of great importance for
the explanation of goal-directed behavior. The explanation
models of behavioral organization in animals or human
beings presented so far in ethology cannot cover the many
different aspects of adaptive behavior and have not been tested
intensively in the context of autonomous systems. However,
we believe that these models are better suited as explanation
models than the engineered ones based on the robot task, as
the ethological models are based on the intensive observation
of animal and human behavior.

3) Our Approach: The Tinbergen model [18] is a model
of animal behavior that we consider of great utility for
our approach. In general one can describe this model as a
hierarchy of behavioral modules or so-called instinct centers.
Each instinct center is decomposed into more fine-grained
behavioral sequences represented by instinct centers at the
next lower level.

The instinct centers at the same level of the hierarchy
compete against each other in becoming active. At a given
level of the hierarchy only the instinct center having high
excitational status can activate the fine-grained behavioral
sequences at the level below it. The excitational status of an
instinct center is influenced by the excitation coming from
inner and outer sensors, from motivations and from instinct
centers noted previously. So-called innate releasing mecha-
nisms directly related to each individual instinct center prevent
the instinct center from arbitrarily entering the competition for
control over the agent.

Only if a particular threshold value has been achieved, the
excitation is released. This mechanism serves to eliminate
chaotic behavior in the behavioral organization. A more de-
tailed description of the model can be found in [/SI. Fig. 4

6

Fig. 4. A hierarchy of instinct centers.

illustrates the hierarchical relation between the various instinct
centers.

In the following section we will describe our implementa-
tion of the Tinbergen model.

Iv. THE SYSTEM ARCHITECTURE

The Tinbergen model described in Section I11 served as
the starting point for our implementational model. We have
developed a system architecture based on the model features
that has been implemented on a transputer system. The follow-
ing paragraphs will briefly sketch what we call the complete
model, which represents to a large extent the functionalities
of the Tinbergen model. The current implementation will be
described by the so-called current model, which represents
a subset of the complete model. Over the course of time,
the current model is expected to progressively approach the
complete one.

A. The Complete Model .

Our system consists of many classifier systems running
in parallel. Each classifier system learns a simple behavior
through interaction with the environment, the system as a
whole has as its learning goal the coordination of activities.
The hierarchical organization allows us to distinguish between
two different learning activities: the learning of behavioral
sequences and the learning of coordination sequences. The
classifier systems at the lowest level of our hierarchical model
leam behavioral sequences, i.e., real actions activated by
sensory input from the environment, whereas the classifier
systems at higher levels learn to coordinate the activities of

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS 145

d d h classifier
systcm system

Fig. 5 . The complete model.

classifier systems at the level below. Hence, only classifier
systems at the lowest level have direct access to the environ-
ment via the robot’s sensors and actuators. Fig. 5 illustrates the
hierarchical organization of the model.* Note, that it does not
represent a hierarchical system in the classical computational
sense, since there is no hierarchical flow of control and
no explicit input/output relation between different modules
involved in this model. Only the increasing complexity in
behavioral organization is hierarchical.

The complete model can be characterized in the following

Classifier systems are working in parallel at any level of
the hierarchy.
Each classifier system at the lowest level represents one
possible class of interactions with the environment.
Each classifier system at any higher level represents one
possible class of interactions among classifier systems
at the level below.
Classifier systems at the same level can be associated
with one common classifier system at the higher level
when they are simultaneously active in a given situation.
Each classifier system receives excitational and in-
hibitory signals from connected classifier systems and
computes its activational status. If the activational
status is high enough to activate the innate releasing
mechanism, the classifier system becomes active and
sends appropriate messages.
Classifier systems at the same level of the hierarchy
compete against each other in becoming active by ex-

*By calling it the “complete” model, we refer to the complete range of
functionality that reflects the functionality of the underlying Tinbergen model.
However, we do not refer to the completeness of the behavioral complexity
that is unspecified in general.

changing inhibitory signals according to their excita-
tional status.
Only classifier systems at the lowest level have access
to the sensors and actuators of the robot.
The motor signals of all active classifier systems at the
lowest level are collected to calculate a weighted sum
of motor signals.
Excitational signals of a classifier system are sensor sig-
nals (only at the lowest level), motivational stimuli, and
excitational signals from associated classifier systems in
the level above, whereas inhibitory signals come from
associated-(neighboring)-classifier systems at the same
level.

10) Classifier systems at higher levels receive activational
information from and send excitational or inhibitory
signals to the associated classifier systems at the next
level below.

11) Classifier systems can be associated with more than one
classifier system at the next higher level.

What we describe is a construction process. The associative
processes that correlate classifier systems commonly active in
a given situation were not contained in the Tinbergen model,
and it does not have a winner-take-all strategy. The motor sig-
nals emitted by each low-level classifier system are weighted
signals and summed up to calculate the actual motor signals.
This approach is quite similar to the approach developed by
Arkin for his schema-based mobile robot navigation [l], or the
one of Holland and Snaith, who are using such a technique in
their manifold architecture [15].

Another important feature is the extendibility of the sys-
tem: each time it encounters a novel situation for which no
appropriate learned behavior exists, the system instantiates a
new classifier system that should learn to deal with this new
situation.

B. The Current Model
What we have described so far is the complete model. In

a simulation of the current model, the system characteristics
1, 2, 3, 7, 8, 10 have been implemented. See Fig. 6 for an
illustration of the current model. Further system characteristics
are as follows. . The classifier systems at the lowest level have been

associated by design with the classifier system at the next
level.
The classifier systems at the lowest level receive specific
and different sensor signals (no other signals) and com-
pute their motor signals. They do not compete against
each other in becoming active.

V. RELATED WORK

Our work finds its cultural background in three major
research areas. We have integrated ideas developed in the
disciplines of ethology, machine learning and behavior-based
robotics to build a framework we believe to be general
enough to be used for developing leaming robots. Ethology
and robotics are represented in our approach by the work
of Tinbergen and of Brooks and his group at MIT. Their

146 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANIJARYPEBRUARY 1993

-
- 4

Fig. 6. The Current model.

importatlce has already been sufficiently stressed in preceding
sections and elsewhere [17]. The ideas developed in the
field of machine learning firstly by Holland [13], [14], and
then formalized under the term “Animat problem” by Wilson
[19] have been ubefhl to our approach. The Animat problem
is the problem faCed by an artificial animal that has to
learn how to survive in its environment. Wilson proposes the
following reasons fb explain why this is a difficult problem:
information is diffitult to classify because there is no a priori
knowledge about how to relate environmental situations, i.e.,
information coming from the environment, to actions that can
take the Animat closer io the goal state and also because
there is no teacher that can correct useless or wrong actions.
Another motive of difficulty for the learning Animat is the
stage setting problem: how can the Animat realize that a
particular action, although not directly rewarded, is important
because it is a necessary step on the route to the goal?
Wilson says that the Animat problem can be summarized as
“the problem of incrementally learning multiple disjunctive
concepts under payoff.’’ Because of this characterization of the
Animat problem he could propose a first investigation using
as a test-bed the easily defined multiplexer problem. Facing
this problem with the Boom system, he proved the feasibility
of classifier systems as a tool to learn disjunctive concepts
under payoff, even if in an environment much simpler than
the one a real Animat would probably ever be in. The work
done by Wilson is related to ours as far as general background
ideas are concerned. In our research we address some of the
problems Wilson collsidered to be of great importance for the
development of wotking Animats: how to control the growth
in complexity faced by a learning classifier system that has
to solve real world problems, how to coordinate modules and
how to use them in a hierarchical structure.

The general ideas presented in our paper are very close to
the work presented in the Gofer system [2], but they extend
the approach described there in the following respects.

In the Gofer system, the Tinbergen model is just used
as a framework to implicitly describe global robot be-

-

,

havior (modularity, activation etc.). But the model is not
explicitly represented in the system. All the behaviors (ex-
plore, approach, escape) are incorporated into one single
classifier system, whereas in our system each behavior
is represented by an individual classifier system. This
structure has allowed us to solve and overcome some of
the problems Booker reported (e.g., competition between
classifiers that realize completely different behaviors,
extinction of particular behavioral sequences not relevant
in a particular situation, insufficient distinction between
coordination messages and action rules).
Gofer uses a winner-take-all strategy to select appropri-
ate robot behavior. In our system, we use a mediation
technique to summarize emitted motor signals as already
mentioned above.
The introduction of hierarchical classifier systems enables
the system to distribute models of behavioral sequences
over the complete architecture. Instead of forming long
sequences of action rules using the bucket-brigade algo-
rithm in a single classifier system, the system reduces
the length of related action rules by building individual
action sequences and models of their interaction. As
discussed also in [20], the bucket-brigade algorithm may
lose effectiveness as action sequences grow. Therefore
the reduction of length of bucket-brigade chains would
make reinforcement and learning faster. A further ad-
vantage Wiison cites in his paper is that the hierarchical
organization reflects more naturally the real character of
animal and hum& behavioral organization and leads to
more powerful mental models of the world.

Another major contribute to the understanding of how to
apply learning classifier systems to the Animat problem is
the work of Zhou [21]. In his classifier system with memory
(CSM) system he addresses the problem of long versus short
term memory, i.e., how to use past experience to ease the
problem solving activity in novel situations. Zhou’s approach
is to build a system in which a short and a long term memory
are simultaneously present. The short term memory is just the
standard set of rules found in every learning classifier system;
the long term memory is a set of rule chunks, where every
rule chunk represents a generalized version of problem solving
expertise acquired in previous problem solving activity. Every
time the Animat is presented a problem it starts the learning
procedures trying to use long-term experience by means of an
appropriate initialization mechanism. Thereafter, the system
works as a standard classifier system-except for some minor
changes-until an acceptable level of performance has been
achieved. It is at this point that a generalizer process takes
control and compress the acquired knowledge ifito a chunk of
rules that are memorized for later use in the long term memory.

In his work Zhou does not consider the coordina-
tionlcooperation aspects of learning, and the memory is simply
filled with chunks of rules, each one usable to solve a set
of problems or to initialize similar problem solving activities
reducing the learrling effort, but with no other hierarchical
structure. On the other hand, in our system coordination
of learned behaviors has been explicitly introduced, but no
explicit long term memory, even if coordination rules at higher

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS 147

level in the hierarchy can be seen as long term memory for
action plans actuated with actions taking place at lower levels.
We believe that an integration between the two approaches
could lead to systems with a still greater capacity to govern
high degree of complexity.

Last there is the work of Grefenstette [l l] , where the
problem of learning decision rules for sequential tasks is
addressed. Grefenstette’s work radically differs from ours in
that he does not apply genetic operators to individual rules.
Instead he recombines plans, where a plan in his terminology is
a set of rules. Also his research goal is different: he investigates
the effect that training data have on performance in a target
environment.

VI. SIMULATION RESULTS AND DISCUSSION

An important aspect of our work is to study the actual
advantages of using such a complex behavioral organiza-
tion as far as the increased robustness and flexibility of the
robot’s behavior is concerned. As it is difficult to estimate
the changing performance of a robot controlled by various
control mechanisms and by the use of internal world models,
we had to design experiments in order to evaluate the expected
advantages of our particular model of behavioral organization.

We are currently building a real mobile robot equipped
with various sensors such as ultrasonic, infrared, and touch
sensors [9], [23]. The robot will use our model of behavioral
organization in order to control its behavior and to interact with
the environment that is unstructured. The general properties of
our computational model will enable the robot to relate simple
sensor invariants to more complex sensor invariant configura-
tions hence abstracting to higher concepts via generalization
and learning.

We believe that, in the long term, the use of a real robot will
be mandatory because of the close interdependence between
environment and adaptive processes. At the lowest level of
these genetics based learning activities, i.e. the correlation
between pieces of arbitrary sensory input and useful responses,
the notions of disorder and dynamics play an important
role, since only through environmental feedback the system
assigns an internal semantics to the sensory input. Simulations
providing structured and predictable environments will never
(or only with immense computing efforts) serve this purpose.

But learning cycles using a real robot are time consuming
and require an enormous experimental effort. For these rea-
sons, we need simulations to develop a system rapidly and
to test our ideas. Later on, the training sets developed during
the simulations can be downloaded onto the real robot that
can refine them through experimentation and on-line learning.
Results of simulations will therefore be used to provide our
robot with basic, though raw, behavioral skills.

With this goal in mind, we have built a simulated envi-
ronment in order to evaluate the performance of our current
model. A simulated robot with simple capabilities learns some
behavioral patterns and how to coordinate them. A major
problem was to design appropriate feedback functions and to
incorporate various feedback aspects in the hierarchical organ-
ization of the modules to achieve the learning of the desired

behavioral patterns. We started with independent classifier
systems having individual feedback models each representing
the particular task to be learned. These feedback models
are directly linked to specific real-world parameters such as
distance, temperature, light intensity etc. Another problem was
to define the appropriate feedback function for the classifier
system located at the second level of the hierarchy, since
its payoff cannot be governed by the reward achieved from
sensory input directly.

In the following sections we first describe the system and
its built-in capabilities and then present some results.

A. Environmental Settings
We designed three sets of experiments to investigate the

learning of one, two and three behavioral patterns at the
same time, and different coordination techniques to moderate
between them. In our experiments we used two kinds of
simulated robots (Robl and Rob2) living in a two-dimensional
(2-D) world. Both robots have a square shape with each
type of sensor on each side. Also the movement capability
is completely symmetric along the two axis. We cannot
therefore talk of “forward” and “backward” or of “left” and
“right.” All movements will be referred to absolute directions
(North-East-South-West). The sensing capabilities of the two
robots are:

Robl’s sensors.
Four light sensors (see Fig. 7) that cover, with overlays,
the whole environment; the output of each light sensor is
a binary value (0/1) and indicates whether there is light
(1) or not (0) in the half space this particular sensor is
monitoring; the four bits delivered by the four sensors
compose a message that is read by the detectors of the
LCS. Messages have a structure as shown in Fig. 8. An
example illustrates this: if the light is in the position
shown in Fig. 7, only sensors N and E will be activated,
and the corresponding message 1100 will be received by
detectors of the LCS.

9 Four heat sensors, on each of the four sides; they provide
the LCS with messages that have the same structure as
messages coming from light sensors; the main difference
is that they perceive the heat source only when the robot
is closer to it than a threshold distance.

Rob2’s sensors.
A set of four light sensors as for Robl. . Further, it has sensors to sense information about “food,”
generating messages having the same structure as the ones
coming from the light sensors (i.e., four bit).

9 It has sensors to sense information about “predators,”
generating messages that also have the same structure as
the ones coming from the light sensors.

Both Robl and Rob2 are allowed to move into eight
different directions (see Fig. 9). A four bit message is sent
by the LCS to the effectors to cause a robot movement; three
bits to specify the direction of turning, and one to specify
motion or otherwise.

The learning goals of the two robots were different. The
capabilities of Robl were tested on a very simple problem;

148 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARYmBRUARY 1993

I I
Fig. 10. The initial state when Robl is learning to follow a light source. S

Fig. 7. Robot sensing.

N E S W

Distance

250

mt\ll Fig. 8. Structure of a message going from light sensors to detectors.

Fig. 9. Possible robot movement directions.

to learn to follow a moving light source. Additionally, we
investigated the emergence of structures within the rule base
of the classifier system that correspond to (static and dynamic)
properties of the real world (experiments described in Section
VI-B-1). Thereafter we investigated how Robl learned the
coordination of two conflicting behavioral patterns. First, it
learned to follow a light source while avoiding dangerous hot
objects. Second, it learned to follow two independently moving
light sources simultaneously. Thus it learned to minimize the
average distance to the two light sources. In the context of
these two settings, we investigated the properties of different
organization principles within the robot controller (monolithic,
switch and hierarchical organization of behavioral modules;
experiments described in Section VI-B-2). Finally, we studied
the learning of three behavioral patterns at the same time and
the coordination between them. Therefore, Rob2's task had to
be slightly more complicated; it learned to follow the light
source, to reach food whenever hungry and available, and to
avoid predators (experiments described in section VI-B-3).

B. Details of Exveriments

Number of cycles

loo0 3000 4ooo

Fig. 11. Distance (in pixel) of the robot to the moving light source.

(150 seconds using three transputers and a population of 300
classifiers) the system already shows a good performance, after
900 cycles we can say it has learned the desired behavioral
pattern.

We then ran a set of experiments to test if Robl was able
to build up internal structures that correspond to features of
the external world. Our main interest herein was to understand
whether these internal structures could be interpreted as inter-
nal representations of the robot controller? By internal world
model we understand some internal representation in terms
of classifiers that do not directly couple sensing to action.
Instead, these classifiers trigger system activities in terms of
subsequent rule firing that end up in useful behavioral patterns.
The structure and the dynamic interaction of these internal
messages (as opposed to external messages) can be considered
as a learned model of the external world. To investigate this
point we made the following experiments.

We let the light source have an average speed higher than
Robl's speed.
We compared the system performance in the case of the
light following a periodical path (e.g. circular path) and
in the case of the light moving along a random path.
We compared the system performance when, after the - -
system has learned to trace the light following a circular

one.

I) Learning to a Moving Light Source' In the first trajectory, the light changes its trajectory to a rectangular
set of experiments we evaluated the performance of Robl in
accomplishing one of its subtasks: to learn to follow a moving
light source. During the experiment the light moves along a
circular path (see Fig. 10). We use the terms internal representation or internal world model not in

Fig. 11 shows that the leaning rate, measured as the
distance Of the robot to the light
the correct behavioral pattern is learned. After 250 cycles

their traditional sense as knowledge that is actually present in and aVdabk
to the robot. Rather we use these terms to refer to internal structures of the
learning classifier system that generate some fixed behavioral patterns during
the robot-world interaction.

decreases

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS 149

Fig. 12. When the light goes faster than the robot, the robot chooses
shortcuts.

Following a faster light source: During this experiment
we gave the light source a circular trajectory and let its average
speed be higher than the average speed of the robot. As a
result, the robot developed anyway the skill to follow the light,
but, being too slow to stay in touch, it moved along shortcuts
(see Fig. 12). This behavior is a clue, even if not definitive,
for the presence of an internal model. In fact, it looks like
the system is able to “anticipate” the movements of the light,
tracing its movements by means of repeated shortcuts. A
simple thought experiment should illustrate this: assuming the
shortcuts can be explained without the necessity of anything
but stimulus-response rules. In this case, Robl has developed
a set of simple stimulus-response rules, each one saying: “if
position of light is (direction) then move toward (direction) .”
The robot is able to follow a light source nearby. Suddenly
the light accelerates: as now the light source is further away
from Robl, the result of applying the same previously cited
stimulus-response rules would result in a move towards the
light following a direction that, as the light is far away,
is no more appropriate to approach the light. Instead of a
fixed stimulus-response pair, a different association between a
stimulus and a response is formed by means of posting internal
messages. Between perceiving the environmental message and
releasing an external motor message, subsequent rule firing has
taken place and a stimulus is paired with a different response.
In this context, we can assume that the robot has learned a
model of light source movements.

Following different light paths: In this experiment we
taught a first system, Robl-circular, to follow a light moving
along a circular path: the resulting performance is shown in
Fig. 13. We then taught a second system, Robl-random, to
follow a light moving along a random path. The result was that
the system performance in the first case was higher (see Fig.
13). The higher performance when following the light moving
on the circular path can be due to the LCS dynamics: when the
LCS proposes a good action, this action, and therefore the rule
that proposed it, gets a reward; at the next step the rewarded
rule, if the environment has not significantly changed (Le., the
sensory input remains nearly the same), will have a higher
probability to fire than before, and therefore to do the right
thing again. This is a common situation in a slow changing
environment as the one in which the light moves along a circle.
On the contrary, in a rapid changing environment (like random
light) this useful effect cannot be exploited, making the task
a little more difficult.

Following a changing light path: In this experiment we
investigated the capacity of a system, which has acquired a
particular behavioral pattern, to adapt to a novel situation. In

100

50

0
0 2500 5000 7500 loo00

I Fig. 13. System performance in case of circular and random path (measured
as robot distance from light source).

the experiment the system learned to trace a light moving
along a circular trajectory; then the learning algorithms were
suddenly stopped and the rule population “frozen”; simulta-
neously the light trajectory was changed to a rectangular one.
We observed a decrease in performance, even if the system
was still able to trace the light. A better performance was
achieved if the learning algorithms were not stopped. Also
the last result cannot be considered to be definitive: the LCS
is a dynamic system and rule strengths are updated at every
algorithm iteration causing a time changing behavior. This is
a desirable property (it allows the system to be adaptive), but
makes less cogent the significance of the lower performance
level when learning is stopped.

Discussion: As conclusion of this set of experiments, we
have seen that our system develops some useful behavioral
patterns in simple working environments. Concerning to the
observed behavior, it is interesting to note that the robot
behavior seems to be more precise than what we could have
imagined considering its sensorial capabilities (Le., it learns to
follow a light that moves in eight directions having information
only from four sensors). This fact resembles in some way the
effect of coarse coding that can be observed in neural networks
applications [121, and deserves further investigation.

Further investigation on more complex systems will be
necessary to better understand how the system exploits the
generation of intemal structures and how these can be inter-
preted as internal representations. Altogether we are still not
able to say if an internal model has been developed or not.
As a last attempt we compared our results with those obtained
when setting the message list length to one. This way, as only
messages from the environment are placed onto the message
list, the LCS is forced to act as a stimulus-response engine.
Again there was no significant performance difference between
the two approaches, which proves that no intemal models are
necessary to explain these observations.

2) Learning to Coordinate Two “Summable ”Behaviors: In
this experiment we investigated how Robl could manage to
learn two conflicting, but “summable” behavioral patterns. We
say two behavioral patterns are summable if, when simulta-
neously active, they propose actions that, even if different,
can be combined into a resulting action that partially satisfies
the requirements of both behaviors. As outlined before, in

150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARYFEBRUARY 1993

The light source
is in the hot region

Fig. 14. The environment with the heat source.

Fig. 16. Robot avoiding the heat source.

1

LCS-light LCSdanger

Environment

Fig. 15. Architecture of the system used in the heat and light experiment.

this section we focus on two different learning environments,
one heat and light environment, where the task is to learn
to coordinate two concurrently operating classifier systems,
and a two light environment, where the objective was to
study the use of different coordination mechanisms between
concurrently operating classifier systems.

Heat and light environment: In this experiment Robl had
to learn to follow a moving light source and to learn to avoid
dangerous (hot) objects. To make things harder we positioned
the hot object along the light trajectory (see Fig. 14).
As we were interested in evaluating the performance of a

hierarchical architecture, we designed a two level hierarchy
where a LCS, called LCS-light, was specialized in learning the
light following behavior, a second LCS, called LCS-danger,
was specialized in learning to avoid hot objects and a third
LCS, called LCS-coordinator, was specialized in learning the
coordination policy.
As actions proposed by LCS-light and LCS-danger are

vectors (they represent a move in a 2-D space), they can be
summed to produce the final action. Therefore, the coordinator
task is to learn to assign appropriate weights to the actions

. (vectors) proposed by the two low-level classifiers.
In Fig. 15 the system architecture is shown (equivalent

to the one presented in Fig. 6). LCS-light, LCS-danger,
and LCS-coordinator are implemented as processes running
asynchronously on different nodes of a transputer system [SI.

The experiment can be ideally divided into two parts: when
the light is far away from the hot source, the behavior of Robl
is the same as in the light following experiment, while when
the light source is close to the hot object then Robl should
move around the hot object continuing to follow the light.
LCS-coordinator becomes active only in this second situation.

When the two low level LCS (LCS-light and LCS-danger)
are activated simultaneously, the resulting action is a weighted
average of the two proposed actions, with weights given by

I

the strengths of the two classifiers that proposed the actions
(one belonging to LCS-light and the other to LCS-danger)
and the excitation level of the classifier system that proposed
the action (Le., the excitation level of LCS-light and LCS-
danger, respectively). The procedure is the following: each
time LCS-light or LCS-danger post an action message, they
also send it to LCS-coordinator. LCS-coordinator just monitors
the messages it is receiving. When a situation occurs in which
both LCS-light and LCS-danger try to perform an action on
the environment, LCS-coordinator reacts sending back to the
two classifier systems a message containing information that
causes the receiving classifier systems to increase or decrease
their excitation level. This way LCS-coordinator can control
the cooperation between LCS-light and LCS-danger. LCS-
coordinator, after sending messages, receives a reward: which
gives information about the usefulness of the action actually
performed. In this way LCS-coordinator learns how to control
LCS-light and LCS-danger, because it has direct feedback on
its own actions and can use it to evaluate its own rules.

Experiments with this architecture were very encouraging.
The observed behavior was the desired one, Le., the robot
followed the light until it approached the heat source. Then it
chose between two different behavioral patterns: it just turned
around the heat source (case a and b in Fig. 16) or it stopped
waiting in front of the heat source and, when the light had
moved away from the hot region, began to follow it, again
(case c in Fig. 16).

Two lights environment: In the preceding experiment we
tested the €easibility of a simple hierarchy of LCSs. We now
turn our attention to the assessment of its utility, with respect to
a more traditional architecture (see the monolithic architecture
below) in which a single LCS learns both behaviors. We
needed an experimental environment in which performance
was easy to calculate: we decided to let Robl learn to follow
two independently moving light sources. (Robl distinguishes
the two light sources by their different color.) In this envi-
ronment the performance index (as always specified by the
proportion of correct moves to the total number of moves) can
be used for analysis since the two stimuli are always present?

We compared the following architectural organizations.
Monolithic (where a single LCS had to learn the three
behavioral patterns contemporaneously).

LCS-coordinator is rewarded whenever the resulting action is the correct

SRemember that in the heat and light environment the heat source was
one.

perceived only when Robl distance to it was below a given threshold.

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS

*-
light direction . light distance

Fig. 17. Structure of a message going to LCS-light in the vectorial and
hierarchical architectures (messages going to the monolithic architecture are
a concatenation of two messages like the one in the figure, one for each light
to be followed).

Comparison o f some architectures
e 0.8

- Hierarchical
...... Vectorial

*-===..,... I..
0.76

- Paral le l

0.7 >
e 0 30000 60000 POOOO 120000 is0000 Number of

cycles

Fig. 18. Comparison between the monolithic, vectorial and hierarchical
architectures.

Vectorial (where the coordinator was not a LCS but a
procedure that computed a vectorial sum of the two
proposed actions).
Hierarchical (the same strbcture as used in the preceding
“heat and light” environnient).

In this task we have two sets of four light sensors, each
set being sensitive to only one of the two colors. Sensors not
only communicate to the LCS the light position, but also the
light distance. This information is necessary because Rob1
must learn from sensory data which light is the closest and
which one is the most distant. The structure of messages is
therefore different from the one of Fig. 8; moreover, we have
different environmental messages for the three architectures in-
vestigated: very long messages in the monolithic architecture,
shorter messages in the hierarchical and vectorial architectures
(see Fig. 17). As in the monolithic architecture messages are
longer, the learning task is more difficult (the search space
is bigger, as it grows with 3k, where k is the classifier
length), and we expect therefore the monolithic architecture
performance to be the worst.
In Fig. 18 we report results obtained comparing the three

architectures. Our hypothesis about the lower performance
level of the Ifionolithit! architecture has been confirined (con-
sider that the dimehion of the search space in the monolithic
architecture case is 360; in fact, environmental messages are
20 bits long, and therefore rules that are composed of two
conditions and one action are 60 bits long; in the other two
architectures environmental messages are only 10 bits long,
and therefore rules are 30 bits long and the search space6 is

It is also interesting to note that the vectorial architecture,
as it does not have to learn the coordination policy, learns

6The dimension of the search space of the coordinator in the hierarchical
architecture is much smaller (312, because each low level LCS sends a 4 bit
message) and is therefore not considered.

330).

151

I

LCS-light LCS-food LCS-predator

. I t
Environment

LCS-light LCS-food LCS-predator x i Environment

(b)
Fig. 19. (a) The switch architecture. (b) The monolithic hierarchical

architecture.

quicker, but after 60 thousands of cycles the coordination
policy learned by the coordinator becomes slightly more
effective.

3) Learning to Coordinate Three Different Behaviors: This
experiment was devoted to evaluate a different kind of coordi-
nation in which the coordinator must learn to switch between
three behavioral patterns. The three basic low level LCSs are
called LCS-light, LCS-food and LCS-predator. As the three
activities to be learned cannot be performed contemporane-
ously,7 the coordinator has to learn a “switching” policy, Le.,
to which low level LCS to give control to, when more than
one of them is active (i.e., proposes an action). We call the
LCS implementing the coordinator LCS-switch. The structure
of the learning system is shown in Fig. 19(a).

Messages received by LCS-switch are three bits messages,
each bit saying whether the corresponding low level LCS
proposes dn action (bit set to 1) or not (bit set to 0). The
learning task for LCS-switch was to give the highest priority
to LCS-predator in case this behavior is active, and to choose
LCS-food whenever only LCS-light and LCS-food are active.

It is interesting to note that, when using hierarchies of
LCSs, it is possible to define many reward strategies. In our
experiments we tested two of them: in the first one we let
all the LCSs learn contemporaneously, in the second one we
first reward low level LCSs, then we “freeze” the learning
algorithms of low level LCSs and start rewarding the LCS-
switch.

As with the preceding “two lights environment,” we have
done experiments to compare the monolithic (see Fig. 19(b))
and the hierarchical architectures (see Fig. 19(a)). In both
cases the single behavior performance refers only to moves
done when the behavior under consideration was active, while

extreme case of summable behaviors, where weights are 0 or 1.
’And it does not make sense to “sum” them. This can be considered an

152 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARYIFEBRUARY 1993

Performance

0.9 b
Escaping predator

\

0.7

0.65 f
I /

Feeding
Following light

Number
of cycles

lthousands) - . _
. 10 30 40 50 60 70 80

Fig. 20. Performance using the monolithic architecture. Searching food has
a lower performance than other behaviors because it is more difficult to learn.
The whole experiment lasted approximately 8 h.

PeifO”

3.
Escaping predator

0.85 \

0.7 4 \ Global

Number
of cycles

(thcusmds\
0.6 4 >

10 20 30 40 50 60 70 80

Fig. 21. Performance using the switch architecture. The whole experiment
lasted approximately 8 h.

global performance considers all the moves (i.e., if LCS-light
has learned very well and LCS-predator has not, then the
global behavior performance will settle somewhere between
them).

Experiments with the monolithic architecture: In this
case a single LCS8 was used. An environmental message is
equivalent to the concatenation of the three messages coming
from the three groups of sensors. A rule in the monolithic
atchitecture is therefore 36 bits long.

It is important to note that in the monolithic architecture
coordination is not achieved by an explicit LCS (as in the
hierarchical architecture), but it is the result of the learning
process of the unique LCS implementing the three low level
behaviors. It is also interesting to note that the performance
level of the escaping behavioral pattern settled at a higher
performance value (see Fig. 20 and 21). Escaping predator
is an easier task because the number of correct moves on
the number of possible niovks is the greatest (in the discrete
2-D world in which our simulated robots live there are
more departing directions from one point than approaching
directions to the same point).

We report in Figs. 20 and 21 the performance of the
simulated robot, for both the monolithic and the switch ar-
chitectures.

‘The LCS was parallelized using four T800 transputers [8].

Experiments with the switch architecture: The experi-
ment was run to see whether the use of a hierarchical ar-
chitecture improved the performance level. As in the “two
lights environment,” the idea is that each single LCS, having
shorter classifiers, has a smaller search space and that therefore
the overall learning task could be easier. The presence of the
coordinator should not create efficiency problems, due to the
easiness of its learning task: it must learn to choose which of
the three lower level classifier systems to give priority, when
they contemporaneously propose an action.

Low level LCSs send 5 bit messages: these messages are
composed of 4 bits, which propose an action and of one bit
going to the coordinator and saying if the sending LCS is
proposing an action or not. The coordinator therefore receives
three bit messages, indicating which low level classifiers are
active, and produces an action that determines which low
level LCS should take control of the robot; then the action
that was proposed by the LCS, which received the control, is
performed and a reward is assigned to the system. In a first
experiment the reward function considers the whole learning
system as a black box, Le., we did not use the actual behavior
of single classifier systems to distribute rewards (but we
observed them in order to monitor performance). This policy
makes the learning task more difficult, especially in the case
of hierarchical architectures such as the switch architecture,
because there can be situations in which a correct action is
the result of two wrong messages (e.g., the switch chooses to
give control to the wrong low level LCS that in turn proposes
a wrong move that, in this context, results to be the right
one) or situations in which a LCS gets a punishment because
of the mistake another LCS did. Nevertheless this way of
giving rewards is an interesting one because it does not require
accessibility to all the internal modules of the system and is
much more plausible from an ethological point of view. Rule
length in low level classifier systems is 12 bits, whereas in the
switch it is 9 bits.

Results obtained using the switch architecture show that the
relative performance of the three behavioral patterns is the
same as with the monolithic architecture. The absolute perfor-
mance is a little lower than with the monolithic architecture:
this is probably due to the noise in the reward function (as
explained before).

The performance achievable by the hierarchical architecture
improves when we use a two phase reward policy. In the first
phase (see Fig. 22), we reward every low level behavioral
module its own behavior. This activity can go on in parallel
(in three simulated worlds in which there is only one sensory
stimulus): a module learns to follow the light, another one to
find the food and the last one to escape the predator. When
they all have achieved a good perfbrmance level, learning
is stopped (commencing at cycle 30000 in Fig. 22) and the
learning phase of LCS-switch starts (i.e., in this phase it is
the switch that learns, while low level LCSs are “frozen”).
After cycle 42000 we froze the whole system. Using this
reward policy, we obtained an improvement in the system
performance, both regarding the performance level achieved
and the number of cycles required to achieve it. It is clear what
importance good reward methodologies have when building

DORIGO: GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS

0.65

153

I NlUllber
-i of cycles

(thousands)

Performance

0.95

0.9

0.85

0.8

0 . 7 5 p
0.7 , I /

Fig. 22. Performance using the switch architecture and a two phases reward
policy. Ten thousand cycles required 1-h computing time.

more complex systems.
It will be the subject of future research to study these reward

methodologies, i.e., how to reward and how to organize the
learning process (all tasks are learned together, low level LCSs
learn first then learns the coordination level or other).

VII. CONCLUSION

We have presented some results of a hierarchical and parallel
model of behavioral organization in a simulated robot. Start-
ing from a short survey of genetics-based machine learning
techniques and behavior-based robotics, we have outlined the
current implementation of our computational model and we
have compared our approach with related work done by other
researchers. The results of simple experiments designed and
carried out to evaluate the current implementation of the
learning system have been discussed. The results are promising
and seem to indicate that the use of explicit coordination
learning to combine primitive behaviors hence improving the
systems adaptability can be appropriate.

Further work is going on in the direction of a better
understanding of the learning properties of our system. We
are also building in the system new features to make the
implementation closer to the Tinbergen’s model. Experiments
on a real robot in order to test the developed model in a
real environment are beginning [9]. Another important aspect
to be investigated will be how to memorize, and use, past
experience. Two solutions seem at this moment to be feasible:
the use of explicit memory structures, as in the work of Zhou
[21], or the insertion of implicit memory structures in the
system architecture.

ACKNOWLEDGMENT

The authors would like to thank Andrea Bonarini, Marco
Colombetti, and Vittorio Maniezzo for their useful suggestions
on earlier versions of this paper. The authors would also like to
thank Mukesh Pate1 for his careful proofreading and providing
useful comments.

REFERENCES

R. C. Arkin, “Neuroscience in Motion, The application of schema
theory to mobile robotics,” in Visuomotor Coordination: Amphibians,
Comparisons, Models, and Robots, E. Ewert and M. Arbib, Eds. New
York: Plenum, 1987, pp. 649-671.
L. Booker, “Classifier systems that learn internal world models,” Ma-
chine Learning, vol. 3, no. 3, pp. 161-192, 1988.
L. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artificial Intell., vol. 40, pp. 235-282, 1989.
R. A. Brooks, “A robust layered control system for a mobile robot,”
Artificial Intell. Memo 864, MIT, Cambridge, MA, 1985.
-, “Achieving artificial intelligence through building robots,” Ar-
tificial Intell. Memo 899, MIT, Cambridge, MA, 1986.
R. A. Brooks and P. Maes, “Learning to coordinate behaviors,” in Proc.
AAAI 90, 1990, USA.
R. A. Brooks, “Artificial life and real robots,” to appear in Proc. 1st
Eur. Conf Artificial Life, Dec. 1991, Paris, France.
M. Dorigo, “Using transputers to increase speed and flexibility of
genetics-based machine learning systems,’’ Microprocessing and Micro-
programming J., vol. 34, pp. 147-152, 1992.
M. Dorigo, “Alecys and the AutonoMouse: Learning to control a real
robot by distributed classifer systems,” Rapporto Tecnico no. 92-01 1,
Dip. Elett. e Inf., Politecnico di Milano, Milano, Italy, 1992.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. New York: Addison-Wesley, 1989.
J. J. Grefenstette, C. L. Ramsey, and A. C. Schulz, “Learning sequential
decision rules using simulation models and competition,” Machine
Learning, vol. 5, pp. 355-382, 1990.
G. E. Hinton, J. H. McClelland, and D. E. Rumelhart, “Distributed rep-
resentations,” in Parallel Distributed Processing, vol. 1. Cambridge,
MA: MIT Press, 1986, pp. 77-109.
J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor: The University of Michigan Press, 1975.
J. H. Holland, “Escaping brittleness: The possibilities of general purpose
learning algorithms applied to parallel rule-based systems,” in Machine
Learning II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds.
San Mateo, CA: Morgan Kaufmann, 1986.
0. Holland and M. Snaith, “The use of neural modelling in the
development of autonomous mobile robots,” Tech. Rep. Technol. Appl.
Group, Alnwick, UK, 1990.
P. Maes, “How to do the right thing,” Connection Sci., vol. 1, no. 3,
1990.
U. Schnepf, “Robot ethology: A proposal for the research into intelli-
gent autonomous systems,” in Proc. In?. Conf Simulation of Adaptive
Behavior: From Animals to Animats (SAB-90), Sept. 1990, Paris, France.
N. Tinbergen, The Study oflnstincts. Oxford, U K Oxford Univ. Press,
1966.
S. Wilson, “Classifier systems and the animat problem,” Machine
Learning, vol. 2, no. 3, pp. 199-228, 1987.
S. Wilson, “Hierarchical credit allocation in a classifier system,” in Proc.
10th Int. Joint Conf Artificial Intell., Aug. 23-28, 1987, Milan, Italy,

H. H. Zhou, “CSM: A computational model of cumulative learning,”
Machine Learning, vol. 5, no. 4, pp. 383406, 1990.
A. Bertoni and M. Dorigo, “Implicit parallelism in genetic algorithms,”
to appear in Artificial Intell., 1993.
M. Colombetti and M. Dorigo, “Robot shaping: Developing situated
agents through learning,” Rapporto Tecnico no. 92-040, Int., Comput.
Sci. Inst., Berkeley,. CA, 1992.

pp. 217-220.

Marco Dorigo (M’92) was born in Milan, Italy, in
1961. He received the Laprea (Master of Technol-
ogy) in industrial technologies engineering, in 1986
and the Ph.D. in electronic engineering of Informa-
tion and Systems in 1992 from the Politecnico di
Milano, Milan, Italy.

He currently holds a postdoctoral position at the
International Computer Science Institute, Berkeley,
CA. He is a member of the Politecnico di Milano
Artificial Intelligence and Robotics Project. He took
part to several CEC ESPRIT Projects, and National

research projects His research interests are in the field of machine learning,
and in particular of genetic algorithms applied to learning, optimization, and
control.

Dr. Dorigo is a member of the Italian Associatiqn for Artificlal Intelligence
(AI*IA) and of the IEEE SMC Society.

154 IEEE TRANSACIlONS ON SYSTEMS, MAN, AND CYBERNETICS, VQL. 23, NO. 1, JANUARY/FEBRUARY 1993

4we Schnepf was born in Mannheim, Germany, on September 25, 1960.
He received his Diplom in mechanical engineering from the University of
Wiserslautem, Germany, in 1987, and the M.Sc. in information technology
and knowledge-based systems at the Department of Artificial Intelligence at
!he University of Edinburgh, Scotland, in 1988.

S i n v 1989 he has been working at the Artificial Intelligence Research
Division of the German National Research Center for Computer Science
(G W) at Sankt Augustin, Germany. His research interests are in the area
of behavior-based robotics and machine learning.

Mr. Schnepf is a member of the German Association of Engineers (MI)
and the German Association for Computer Science (GI).

