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Genetics-Based Machine Learning and 
Behavior-Based Robotics: A New Synthesis 

Marco Dorigo, Member, IEEE, and Uwe Schnepf 

Abstract- Intelligent robots should be able to use sensor in- 
formation to learn how to behave in a changing environment. 
As environmental complexity grows, the learning task becomes 
more and more difficult. This problem is faced using an architec- 
ture based on learning classifier systems and on the structural 
properties of animal behavioral organization, as proposed by 
ethologists. After a description of the learning technique used 
and of the organizational structure proposed, experiments that 
show how behavior acquisition can be achieved were presented. 
The simulated robot learns to follow a light and to avoid hot 
dangerous objects. While these two simple behavioral patterns 
are independently learned, coordination is attained by means 
of a learning coordination mechanism. Again this capacity is 
demonstrated by performing a number of experiments. 

I. INTRODUCTION 
HE traditional knowledge-based approach to artificial T intelligence shows some fundamental deficiencies in the 

generation of powerful and flexible reasoning techniques. 
Explaining the cognitive abilities of the brain purely in terms 
of symbol manipulation as in current AI implementations 
seems to lack the flexibility and expressiveness of natural 
cognitive systems. Behavior-based robotics claims to provide 
a better-and, perhaps, the only possible-way to develop 
intelligent systems [5].  

Most of the work done in behavior-based robotics focuses 
on the design of appropriate robot behavior, hoping that pow- 
erful coordination techniques (e.g., subsumption architecture 
[4], action selection model [6], [16]) lead to more complex 
behavioral sequences, in this way providing flexibility and 
robustness to the robot’s overall behavior. 

We believe that these approaches are insufficient as long as 
the adaptation takes place only in the mind of the designer 
of such an autonomous system. An autonomous agent must 
possess this adaptive power itself in order to adapt its behavior 
to any changes in the environment. Nature has produced such 
adaptability by means of evolution. Natural systems have 
genetically learned to adapt, i.e., to increase the likelihood 
to survive and to have more offspring. This evolutionary 
process has finally led to neural learning, a flexible way of 
adaptation, and to cognitive abilities. Only if we can reproduce 
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these adaptation processes, we will be able to understand the 
emergence of cognitive skills. For this reason, we consider 
genetics-based learning as a plausible and powerful way to 
develop intelligent systems. 

We have developed an approach that is based on both 
ethological and evolutionary considerations. In this way, we 
intend to construct a model of cognition as a biological 
phenomenon that serves only one goal: to increase the chances 
of a species to survive. The approach we present in this paper 
is considered to reflect these basic mechanisms and to produce 
the kind of adaptability necessary for robust and flexible robot 
intelligence. The paper is organized as follows. Section I1 
deals with the principles of genetics-based machine learning 
and Section 111 with behavior-based robotics. In subsequent 
sections we present our research methodology and provide 
implementational details on the system developed, together 
with results. Section IV describes the architecture of the 
system. In Section V our approach is compared to related 
work. Section VI introduces the experiments and the results 
obtained, together with discussion and finally, in Section VII, 
we sketch future work to be done. 

11. GENETIC ALGORITHMS, LEARNING CLASSIFIER SYSTEMS 

Genetics-based machine learning (GBML) systems are a 
class of learning systems that learn to accomplish a task 
by means of interaction with an environment. They interact 
with the environment, monitoring it by means of sensors and 
acting according to received messages. The learning process 
is guided by feedback about the quality of actions. Therefore, 
they belong to the class of reinforcement learning systems (see 
Fig. 1). The name genetics-based machine learning stems from 
the algorithm used to implement rule discovery (the genetic 
algorithm). In our work we used a particular kind of GBML 
system known as learning classifier systems (LCS). It presents 
the following peculiarities. 

Rules are strings of symbols over a three-valued alphabet 
( A  = {0,1,* }) with a condition-+action format (in our 
system each rule has two conditions that have to be 
simultaneously satisfied in order to activate the rule). 
A limited number of rules fire in parallel. 
A pattern-matching and conflict-resolution subsystem 
identifies which rules are active in each cycle and which 
of them will actually fire. 

In LCSs we can observe two different learning processes. 
In the first one, the set of rules is given and its use is 
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Fig. 1. A general reinforcement learning model. 
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Fig. 2. Structure of a GBML system. 

learned. In the second, new and possibly useful rules can 
be created. These two kinds of learning are accomplished 
by the apportionment of credit algorithm and by the rule 
discovery algorithm respectively. New rules are learned using 
past experience and the way to use them is learned using 
environmental feedback. 

The system is then composed of the following three main 
parts (as illustrated in Fig. 2). 

The performance system. 
The apportionment of credit system. 
The rule discovery system. 

In the following, we briefly introduce the three subsystems. 

A. The Performance System 

following. 
The performance system is composed of (see Fig. 3) the 

A set of rules, called classifiers. 
A message list, used to collect messages sent from 
classifiers and from the environment to other classifiers. 
An input and an output interface with the environment 
(detectors and effectors) to receivehend messages frodto 
the environment. 
A feedback mechanism to reward the system when a 
useful action is performed and to punish it when a wrong 
action is done. 

Initially, at time to ,  a set of classifiers is created (they 
may be generated randomly or by some algorithm that takes 
into account the structure of the problem domain) and the 
message list is empty. At time tl environmental messages are 
appended to the message list, which are matched against the 
condition part of classifiers, and these matching classifiers are 
set to active status. At time t 2  messages coming from the 
environment and messages sent by classifiers active at time 
tl are appended to the message list. They are then matched 

Fig. 3. The performance system. 

against classifiers in the classifier set, and matching classifiers 
become activated. The message list is then emptied and the 
cycle repeated, from tl. 

The need for a rule conflict-resolution system is one of 
the reasons for the introduction of an apportionment of credit 
algorithm that redistributes environment payoff to the rules 
that caused the performed actions. This allows the performance 
system to choose which rules to fire in accordance to some 
measure of their usefulness. Conflict resolution must also be 
used to solve conflict when effectors propose inconsistent 
actions (e.g., “go right” and “go left”). 

In order to explain better the nuances of this performance 
system, let us introduce some terminology. 

A classifier (rule) is a string composed of three chromo- 
somes, two chromosomes being the condition part,’ the 
third one being the message/action part; we will call a 
classifier an external classifier if it sends messages to the 
effectors, an internal classifier if it sends messages to 
other classifiers. 
A chromosome is a string of n positions; every position 
is called a gene. 
A gene can assume a value, called allelic value, belong- 
ing to an alphabet that is usually A = {0,1,* }. (The 
reasons underlying this choice are to be found in the rule 
discovery algorithm used, namely the Genetic Algorithm. 
In fact, it has been demonstrated [13] that the lower the 
cardinality of the alphabet, the higher the efficiency of 
the algorithm in processing useful information contained 
in the structure of the chromosomes. This is discussed in 
the next section.) 

Consider for example the following classifier: 

* 1 * ; 0 1 1 + 0 1 0 .  

It consists of the two conditions *1* and 011, and the action 
010. The second condition is matched only by the message 0 
1 1, while the first one is matched by any message with a 1 
in the second position. The * symbol stays for “don’t care,” 

‘Although we use in our example only two chromosomes, it is in general 
possible to u t i l i  any number n of chromosomes in the conditions part of 
a classifier (n 2 2), without changing the representational power of the 
resulting system. 
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that means both symbols, 0 or 1, match the position. If both 
the conditions are matched by some message, then the rule 
is activated and the message/action part, i.e. the chromosome 
0 1 0 in the example, is appended to the message list at the 
subsequent step; some of the messages on the message list can 
be external messages: after conflicts are solved in the action 
conflict resolution box, they are sent to the effectors. 

B. The Genetic Algorithm 
Genetic algorithms are a class of stochastic algorithms that 

has been successfully utilized both as an optimization device 
and as a rule-discovery mechanism. They work modifying a 
population of solutions (in GBML a solution is a classifier) to 
a given problem. Solutions are properly coded and a function, 
usually called the fitness function, is defined to relate solutions 
to performance. The value returned by this function is a 
measure of the solution quality. The fitness of a classifier is 
determined by its usefulness calculated with an apportionment 
of credit algorithm instead of a fitness function. 

GAS work as follows: 
Let P be a population of N chromosomes (individuals of 

P). Let P(0) be the initial population, randomly generated, 
and P( t )  the population at time t .  The main loop of a GA 
consists in generating a new population P(t + 1) using the 
existing one P( t) , applying some so-called genetic Operators. 
These operators modify randomly chosen individuals of pop- 
ulation P(t )  into new ones. The two most important of these 
operators are crossover-it recombines individuals by taking 
two of them, cutting in at a randomly chosen positions and 
recombining the two in such a way that some of the genetic 
material of the first individual goes to the second one and 
vice versa-and mutation that randomly changes some of the 
values of the genes constituting an individual. This way, the 
population P(t + 1) is created by means of a reproduction 
operator that gives higher reproduction probability to higher 
fitted individuals. The overall effect of GAS’ work is to move 
the population P towards areas of the solution space with 
higher values of the fitness function. 

The computational speed-up that we obtain using GAS with 
respect to random search is due to the fact that the search is 
directed by the fitness function. This direction is not based 
on whole chromosomes, but on their parts that are strongly 
related to high values of the fitness function: these parts are 
called building blocks [lo], [13]. It has been proven [22] 
that GAS process at each cycle a number of building blocks 
proportional to the number of individuals of the population. 
GAS are therefore useful for every problem where an optimal 
solution may be obtained as composition of a collection of 
building blocks. 

To use GAS as a rule-discovery system means to hypothesize 
that new and more useful rules can be created by recom- 
bination of other less useful ones. In order to preserve the 
system performance the GA is allowed to replace only a subset 
of the classifiers. The worst m classifiers are replaced by m 
new classifiers created by the application of the GA on the 
population. The new rules are tested by the combined action of 
the performance and apportionment of credit algorithms. Since 

testing a rule requires many time steps, GAS are applied with 
a lower frequency unlike the performance and apportionment 
of credit systems. 

C. The Apportionment of Credit System 

The main task of the apportionment of credit algorithm is 
to classify rules in accordance with their usefulness. In other 
words, the algorithm works as follows: a time varying real 
value called strength is associated to every classifier C.  At time 
zero each classifier has the same strength. When an external 
classifier causes an action on the environment a payoff is 
generated whose value is dependent on how good the action 
performed was with respect to the system goal. This reward is 
then transmitted backward to internal classifiers that caused 
the external classifier to fire. The backward transmission 
mechanism, examined in detail later, causes the strength of 
the classifiers to change in time and to reflect their relevance 
to the system performance (with respect to the system goal). 

It is not possible to keep track of all the paths of activation 
actually followed by the rule chains (a rule chain is a set of 
rules activated in sequence, starting with a rule activated by 
environmental messages and ending with a rule performing 
an action on the environment) because the number of these 
paths grows exponentially. It is then necessary to have an 
appropriate algorithm that solves the problem using only local 
(in time and space) information. 

Local in time means that the information used at every 
computational step is coming only from a fixed recent temporal 
interval. Spatial locality means that changes in a classifier 
strength are caused only by classifiers directly linked to it; 
classifiers C1 and Cz are linked if the message posted by C1 
matches a condition of Cz. 

The classical algorithm used for this purpose is the Bucket 
Brigade algorithm [3]. This algorithm models the classifier 
system as an economic society, in which every classifier pays 
an amount of its strength to get the privilege of appending 
a message to the message list and receives a payment by all 
classifiers activated because of the presence in the message 
list of the message it appended during the preceding time 
step. In this way payoff flows backward from the environment 
again to the environment through a chain of classifiers. The 
net result is that classifiers that participate in chains that cause 
high rewarded actions tend to increase their strength. A good 
introduction to GAS and LCSs, explaining the basic algorithms 
in more detail, can be found in [lo]. 

111. BEHAVIOR-BASED ROBOTICS 

The main idea in the approach of behavior-based robotics 
as an alternative to the traditional knowledge-based AI is that 
intelligent behavior cannot be created in artificial systems 
without the ability to interact with a dynamically ,changing 
unstructured environment. Cognition emerges only when au- 
tonomous systems try to impose structure on the perceived 
environment in order to survive. These structures in turn 
provide the substratum for more intelligent behavior: the skills 
to learn, to generalize and to abstract from given information, 
to form categories and concepts, the emergence of goal- 
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directed behavior, the creation of internal world models, and 
the development of problem-solving techniques. These basic 
cognitive skills are unlikely to have been present in biological 
autonomous systems from the very beginning of life. They 
are more likely to have developed as part of the evolutionary 
process. We are interested in reconstructing this process in 
order to create robot intelligence. 

1) Designing Behaviors: Most of the work done in the field 
of behavior-based robotics so far focuses on the design of 
appropriate behavioral modules and coordination techniques 
to combine these behaviors in the most fruitful way in order to 
enable the autonomous system to perform flexible and robust 
actions. As most roboticists are interested in a particular robot 
task (e.g. avoiding obstacles, following walls, passing doors, 
grasping objects), the behaviors designed to fulfill these tasks 
are well tailored to a particular situation. So far, no conceptual 
model of how behaviors are related to each other has been 
presented. Although some recent work has been reported on 
the use of genetic algorithm techniques within this approach 
[7], we do not expect this more engineering-oriented approach 
to behavior-based robotics to give any deeper insights in the 
evolutionary processes mentioned above. We have to look 
for other methodologies to explain the emergence of adaptive 
behavior. 

2) Ethological Models: During the last 80 years, re- 
searchers working in Ethology have tried to answer the very 
same questions that we consider of great importance for 
the explanation of goal-directed behavior. The explanation 
models of behavioral organization in animals or human 
beings presented so far in ethology cannot cover the many 
different aspects of adaptive behavior and have not been tested 
intensively in the context of autonomous systems. However, 
we believe that these models are better suited as explanation 
models than the engineered ones based on the robot task, as 
the ethological models are based on the intensive observation 
of animal and human behavior. 

3) Our Approach: The Tinbergen model [18] is a model 
of animal behavior that we consider of great utility for 
our approach. In general one can describe this model as a 
hierarchy of behavioral modules or so-called instinct centers. 
Each instinct center is decomposed into more fine-grained 
behavioral sequences represented by instinct centers at the 
next lower level. 

The instinct centers at the same level of the hierarchy 
compete against each other in becoming active. At a given 
level of the hierarchy only the instinct center having high 
excitational status can activate the fine-grained behavioral 
sequences at the level below it. The excitational status of an 
instinct center is influenced by the excitation coming from 
inner and outer sensors, from motivations and from instinct 
centers noted previously. So-called innate releasing mecha- 
nisms directly related to each individual instinct center prevent 
the instinct center from arbitrarily entering the competition for 
control over the agent. 

Only if a particular threshold value has been achieved, the 
excitation is released. This mechanism serves to eliminate 
chaotic behavior in the behavioral organization. A more de- 
tailed description of the model can be found in [/SI. Fig. 4 

6 

Fig. 4. A hierarchy of instinct centers. 

illustrates the hierarchical relation between the various instinct 
centers. 

In the following section we will describe our implementa- 
tion of the Tinbergen model. 

Iv. THE SYSTEM ARCHITECTURE 

The Tinbergen model described in Section I11 served as 
the starting point for our implementational model. We have 
developed a system architecture based on the model features 
that has been implemented on a transputer system. The follow- 
ing paragraphs will briefly sketch what we call the complete 
model, which represents to a large extent the functionalities 
of the Tinbergen model. The current implementation will be 
described by the so-called current model, which represents 
a subset of the complete model. Over the course of time, 
the current model is expected to progressively approach the 
complete one. 

A. The Complete Model . 

Our system consists of many classifier systems running 
in parallel. Each classifier system learns a simple behavior 
through interaction with the environment, the system as a 
whole has as its learning goal the coordination of activities. 
The hierarchical organization allows us to distinguish between 
two different learning activities: the learning of behavioral 
sequences and the learning of coordination sequences. The 
classifier systems at the lowest level of our hierarchical model 
leam behavioral sequences, i.e., real actions activated by 
sensory input from the environment, whereas the classifier 
systems at higher levels learn to coordinate the activities of 
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Fig. 5 .  The complete model. 

classifier systems at the level below. Hence, only classifier 
systems at the lowest level have direct access to the environ- 
ment via the robot’s sensors and actuators. Fig. 5 illustrates the 
hierarchical organization of the model.* Note, that it does not 
represent a hierarchical system in the classical computational 
sense, since there is no hierarchical flow of control and 
no explicit input/output relation between different modules 
involved in this model. Only the increasing complexity in 
behavioral organization is hierarchical. 

The complete model can be characterized in the following 

Classifier systems are working in parallel at any level of 
the hierarchy. 
Each classifier system at the lowest level represents one 
possible class of interactions with the environment. 
Each classifier system at any higher level represents one 
possible class of interactions among classifier systems 
at the level below. 
Classifier systems at the same level can be associated 
with one common classifier system at the higher level 
when they are simultaneously active in a given situation. 
Each classifier system receives excitational and in- 
hibitory signals from connected classifier systems and 
computes its activational status. If the activational 
status is high enough to activate the innate releasing 
mechanism, the classifier system becomes active and 
sends appropriate messages. 
Classifier systems at the same level of the hierarchy 
compete against each other in becoming active by ex- 

*By calling it the “complete” model, we refer to the complete range of 
functionality that reflects the functionality of the underlying Tinbergen model. 
However, we do not refer to the completeness of the behavioral complexity 
that is unspecified in general. 

changing inhibitory signals according to their excita- 
tional status. 
Only classifier systems at the lowest level have access 
to the sensors and actuators of the robot. 
The motor signals of all active classifier systems at the 
lowest level are collected to calculate a weighted sum 
of motor signals. 
Excitational signals of a classifier system are sensor sig- 
nals (only at the lowest level), motivational stimuli, and 
excitational signals from associated classifier systems in 
the level above, whereas inhibitory signals come from 
associated-(neighboring)-classifier systems at the same 
level. 

10) Classifier systems at higher levels receive activational 
information from and send excitational or inhibitory 
signals to the associated classifier systems at the next 
level below. 

11) Classifier systems can be associated with more than one 
classifier system at the next higher level. 

What we describe is a construction process. The associative 
processes that correlate classifier systems commonly active in 
a given situation were not contained in the Tinbergen model, 
and it does not have a winner-take-all strategy. The motor sig- 
nals emitted by each low-level classifier system are weighted 
signals and summed up to calculate the actual motor signals. 
This approach is quite similar to the approach developed by 
Arkin for his schema-based mobile robot navigation [l], or the 
one of Holland and Snaith, who are using such a technique in 
their manifold architecture [15]. 

Another important feature is the extendibility of the sys- 
tem: each time it encounters a novel situation for which no 
appropriate learned behavior exists, the system instantiates a 
new classifier system that should learn to deal with this new 
situation. 

B. The Current Model 
What we have described so far is the complete model. In 

a simulation of the current model, the system characteristics 
1, 2, 3, 7, 8, 10 have been implemented. See Fig. 6 for an 
illustration of the current model. Further system characteristics 
are as follows. . The classifier systems at the lowest level have been 

associated by design with the classifier system at the next 
level. 
The classifier systems at the lowest level receive specific 
and different sensor signals (no other signals) and com- 
pute their motor signals. They do not compete against 
each other in becoming active. 

V. RELATED WORK 

Our work finds its cultural background in three major 
research areas. We have integrated ideas developed in the 
disciplines of ethology, machine learning and behavior-based 
robotics to build a framework we believe to be general 
enough to be used for developing leaming robots. Ethology 
and robotics are represented in our approach by the work 
of Tinbergen and of Brooks and his group at MIT. Their 
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Fig. 6. The Current model. 

importatlce has already been sufficiently stressed in preceding 
sections and elsewhere [17]. The ideas developed in the 
field of machine learning firstly by Holland [13], [14], and 
then formalized under the term “Animat problem” by Wilson 
[19] have been ubefhl to our approach. The Animat problem 
is the problem faCed by an artificial animal that has to 
learn how to survive in its environment. Wilson proposes the 
following reasons fb explain why this is a difficult problem: 
information is diffitult to classify because there is no a priori 
knowledge about how to relate environmental situations, i.e., 
information coming from the environment, to actions that can 
take the Animat closer io the goal state and also because 
there is no teacher that can correct useless or wrong actions. 
Another motive of difficulty for the learning Animat is the 
stage setting problem: how can the Animat realize that a 
particular action, although not directly rewarded, is important 
because it is a necessary step on the route to the goal? 
Wilson says that the Animat problem can be summarized as 
“the problem of incrementally learning multiple disjunctive 
concepts under payoff.’’ Because of this characterization of the 
Animat problem he could propose a first investigation using 
as a test-bed the easily defined multiplexer problem. Facing 
this problem with the Boom system, he proved the feasibility 
of classifier systems as a tool to learn disjunctive concepts 
under payoff, even if in an environment much simpler than 
the one a real Animat would probably ever be in. The work 
done by Wilson is related to ours as far as general background 
ideas are concerned. In our research we address some of the 
problems Wilson collsidered to be of great importance for the 
development of wotking Animats: how to control the growth 
in complexity faced by a learning classifier system that has 
to solve real world problems, how to coordinate modules and 
how to use them in a hierarchical structure. 

The general ideas presented in our paper are very close to 
the work presented in the Gofer system [2], but they extend 
the approach described there in the following respects. 

In the Gofer system, the Tinbergen model is just used 
as a framework to implicitly describe global robot be- 

- 

, 

havior (modularity, activation etc.). But the model is not 
explicitly represented in the system. All the behaviors (ex- 
plore, approach, escape) are incorporated into one single 
classifier system, whereas in our system each behavior 
is represented by an individual classifier system. This 
structure has allowed us to solve and overcome some of 
the problems Booker reported (e.g., competition between 
classifiers that realize completely different behaviors, 
extinction of particular behavioral sequences not relevant 
in a particular situation, insufficient distinction between 
coordination messages and action rules). 
Gofer uses a winner-take-all strategy to select appropri- 
ate robot behavior. In our system, we use a mediation 
technique to summarize emitted motor signals as already 
mentioned above. 
The introduction of hierarchical classifier systems enables 
the system to distribute models of behavioral sequences 
over the complete architecture. Instead of forming long 
sequences of action rules using the bucket-brigade algo- 
rithm in a single classifier system, the system reduces 
the length of related action rules by building individual 
action sequences and models of their interaction. As 
discussed also in [20], the bucket-brigade algorithm may 
lose effectiveness as action sequences grow. Therefore 
the reduction of length of bucket-brigade chains would 
make reinforcement and learning faster. A further ad- 
vantage Wiison cites in his paper is that the hierarchical 
organization reflects more naturally the real character of 
animal and hum& behavioral organization and leads to 
more powerful mental models of the world. 

Another major contribute to the understanding of how to 
apply learning classifier systems to the Animat problem is 
the work of Zhou [21]. In his classifier system with memory 
(CSM) system he addresses the problem of long versus short 
term memory, i.e., how to use past experience to ease the 
problem solving activity in novel situations. Zhou’s approach 
is to build a system in which a short and a long term memory 
are simultaneously present. The short term memory is just the 
standard set of rules found in every learning classifier system; 
the long term memory is a set of rule chunks, where every 
rule chunk represents a generalized version of problem solving 
expertise acquired in previous problem solving activity. Every 
time the Animat is presented a problem it starts the learning 
procedures trying to use long-term experience by means of an 
appropriate initialization mechanism. Thereafter, the system 
works as a standard classifier system-except for some minor 
changes-until an acceptable level of performance has been 
achieved. It is at this point that a generalizer process takes 
control and compress the acquired knowledge ifito a chunk of 
rules that are memorized for later use in the long term memory. 

In his work Zhou does not consider the coordina- 
tionlcooperation aspects of learning, and the memory is simply 
filled with chunks of rules, each one usable to solve a set 
of problems or to initialize similar problem solving activities 
reducing the learrling effort, but with no other hierarchical 
structure. On the other hand, in our system coordination 
of learned behaviors has been explicitly introduced, but no 
explicit long term memory, even if coordination rules at higher 
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level in the hierarchy can be seen as long term memory for 
action plans actuated with actions taking place at lower levels. 
We believe that an integration between the two approaches 
could lead to systems with a still greater capacity to govern 
high degree of complexity. 

Last there is the work of Grefenstette [ l l ] ,  where the 
problem of learning decision rules for sequential tasks is 
addressed. Grefenstette’s work radically differs from ours in 
that he does not apply genetic operators to individual rules. 
Instead he recombines plans, where a plan in his terminology is 
a set of rules. Also his research goal is different: he investigates 
the effect that training data have on performance in a target 
environment. 

VI. SIMULATION RESULTS AND DISCUSSION 

An important aspect of our work is to study the actual 
advantages of using such a complex behavioral organiza- 
tion as far as the increased robustness and flexibility of the 
robot’s behavior is concerned. As it is difficult to estimate 
the changing performance of a robot controlled by various 
control mechanisms and by the use of internal world models, 
we had to design experiments in order to evaluate the expected 
advantages of our particular model of behavioral organization. 

We are currently building a real mobile robot equipped 
with various sensors such as ultrasonic, infrared, and touch 
sensors [9], [23]. The robot will use our model of behavioral 
organization in order to control its behavior and to interact with 
the environment that is unstructured. The general properties of 
our computational model will enable the robot to relate simple 
sensor invariants to more complex sensor invariant configura- 
tions hence abstracting to higher concepts via generalization 
and learning. 

We believe that, in the long term, the use of a real robot will 
be mandatory because of the close interdependence between 
environment and adaptive processes. At the lowest level of 
these genetics based learning activities, i.e. the correlation 
between pieces of arbitrary sensory input and useful responses, 
the notions of disorder and dynamics play an important 
role, since only through environmental feedback the system 
assigns an internal semantics to the sensory input. Simulations 
providing structured and predictable environments will never 
(or only with immense computing efforts) serve this purpose. 

But learning cycles using a real robot are time consuming 
and require an enormous experimental effort. For these rea- 
sons, we need simulations to develop a system rapidly and 
to test our ideas. Later on, the training sets developed during 
the simulations can be downloaded onto the real robot that 
can refine them through experimentation and on-line learning. 
Results of simulations will therefore be used to provide our 
robot with basic, though raw, behavioral skills. 

With this goal in mind, we have built a simulated envi- 
ronment in order to evaluate the performance of our current 
model. A simulated robot with simple capabilities learns some 
behavioral patterns and how to coordinate them. A major 
problem was to design appropriate feedback functions and to 
incorporate various feedback aspects in the hierarchical organ- 
ization of the modules to achieve the learning of the desired 

behavioral patterns. We started with independent classifier 
systems having individual feedback models each representing 
the particular task to be learned. These feedback models 
are directly linked to specific real-world parameters such as 
distance, temperature, light intensity etc. Another problem was 
to define the appropriate feedback function for the classifier 
system located at the second level of the hierarchy, since 
its payoff cannot be governed by the reward achieved from 
sensory input directly. 

In the following sections we first describe the system and 
its built-in capabilities and then present some results. 

A. Environmental Settings 
We designed three sets of experiments to investigate the 

learning of one, two and three behavioral patterns at the 
same time, and different coordination techniques to moderate 
between them. In our experiments we used two kinds of 
simulated robots (Robl and Rob2) living in a two-dimensional 
(2-D) world. Both robots have a square shape with each 
type of sensor on each side. Also the movement capability 
is completely symmetric along the two axis. We cannot 
therefore talk of “forward” and “backward” or of “left” and 
“right.” All movements will be referred to absolute directions 
(North-East-South-West). The sensing capabilities of the two 
robots are: 

Robl’s sensors. 
Four light sensors (see Fig. 7) that cover, with overlays, 
the whole environment; the output of each light sensor is 
a binary value (0/1) and indicates whether there is light 
(1) or not (0) in the half space this particular sensor is 
monitoring; the four bits delivered by the four sensors 
compose a message that is read by the detectors of the 
LCS. Messages have a structure as shown in Fig. 8. An 
example illustrates this: if the light is in the position 
shown in Fig. 7, only sensors N and E will be activated, 
and the corresponding message 1100 will be received by 
detectors of the LCS. 

9 Four heat sensors, on each of the four sides; they provide 
the LCS with messages that have the same structure as 
messages coming from light sensors; the main difference 
is that they perceive the heat source only when the robot 
is closer to it than a threshold distance. 

Rob2’s sensors. 
A set of four light sensors as for Robl. . Further, it has sensors to sense information about “food,” 
generating messages having the same structure as the ones 
coming from the light sensors (i.e., four bit). 

9 It has sensors to sense information about “predators,” 
generating messages that also have the same structure as 
the ones coming from the light sensors. 

Both Robl and Rob2 are allowed to move into eight 
different directions (see Fig. 9). A four bit message is sent 
by the LCS to the effectors to cause a robot movement; three 
bits to specify the direction of turning, and one to specify 
motion or otherwise. 

The learning goals of the two robots were different. The 
capabilities of Robl were tested on a very simple problem; 
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I I 
Fig. 10. The initial state when Robl is learning to follow a light source. S 

Fig. 7. Robot sensing. 
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mt\ll Fig. 8. Structure of a message going from light sensors to detectors. 

Fig. 9. Possible robot movement directions. 

to learn to follow a moving light source. Additionally, we 
investigated the emergence of structures within the rule base 
of the classifier system that correspond to (static and dynamic) 
properties of the real world (experiments described in Section 
VI-B-1). Thereafter we investigated how Robl learned the 
coordination of two conflicting behavioral patterns. First, it 
learned to follow a light source while avoiding dangerous hot 
objects. Second, it learned to follow two independently moving 
light sources simultaneously. Thus it learned to minimize the 
average distance to the two light sources. In the context of 
these two settings, we investigated the properties of different 
organization principles within the robot controller (monolithic, 
switch and hierarchical organization of behavioral modules; 
experiments described in Section VI-B-2). Finally, we studied 
the learning of three behavioral patterns at the same time and 
the coordination between them. Therefore, Rob2's task had to 
be slightly more complicated; it learned to follow the light 
source, to reach food whenever hungry and available, and to 
avoid predators (experiments described in section VI-B-3). 

B. Details of Exveriments 

Number of cycles 

loo0 3000 4ooo 

Fig. 11. Distance (in pixel) of the robot to the moving light source. 

(150 seconds using three transputers and a population of 300 
classifiers) the system already shows a good performance, after 
900 cycles we can say it has learned the desired behavioral 
pattern. 

We then ran a set of experiments to test if Robl was able 
to build up internal structures that correspond to features of 
the external world. Our main interest herein was to understand 
whether these internal structures could be interpreted as inter- 
nal representations of the robot controller? By internal world 
model we understand some internal representation in terms 
of classifiers that do not directly couple sensing to action. 
Instead, these classifiers trigger system activities in terms of 
subsequent rule firing that end up in useful behavioral patterns. 
The structure and the dynamic interaction of these internal 
messages (as opposed to external messages) can be considered 
as a learned model of the external world. To investigate this 
point we made the following experiments. 

We let the light source have an average speed higher than 
Robl's speed. 
We compared the system performance in the case of the 
light following a periodical path (e.g. circular path) and 
in the case of the light moving along a random path. 
We compared the system performance when, after the - -  
system has learned to trace the light following a circular 

one. 

I) Learning to a Moving Light Source' In the first trajectory, the light changes its trajectory to a rectangular 
set of experiments we evaluated the performance of Robl in 
accomplishing one of its subtasks: to learn to follow a moving 
light source. During the experiment the light moves along a 
circular path (see Fig. 10). We use the terms internal representation or internal world model not in 

Fig. 11 shows that the leaning rate, measured as the 
distance Of the robot to the light 
the correct behavioral pattern is learned. After 250 cycles 

their traditional sense as knowledge that is actually present in and aVdabk 
to the robot. Rather we use these terms to refer to internal structures of the 
learning classifier system that generate some fixed behavioral patterns during 
the robot-world interaction. 

decreases 
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Fig. 12. When the light goes faster than the robot, the robot chooses 
shortcuts. 

Following a faster light source: During this experiment 
we gave the light source a circular trajectory and let its average 
speed be higher than the average speed of the robot. As a 
result, the robot developed anyway the skill to follow the light, 
but, being too slow to stay in touch, it moved along shortcuts 
(see Fig. 12). This behavior is a clue, even if not definitive, 
for the presence of an internal model. In fact, it looks like 
the system is able to “anticipate” the movements of the light, 
tracing its movements by means of repeated shortcuts. A 
simple thought experiment should illustrate this: assuming the 
shortcuts can be explained without the necessity of anything 
but stimulus-response rules. In this case, Robl has developed 
a set of simple stimulus-response rules, each one saying: “if 
position of light is (direction) then move toward (direction) .” 
The robot is able to follow a light source nearby. Suddenly 
the light accelerates: as now the light source is further away 
from Robl, the result of applying the same previously cited 
stimulus-response rules would result in a move towards the 
light following a direction that, as the light is far away, 
is no more appropriate to approach the light. Instead of a 
fixed stimulus-response pair, a different association between a 
stimulus and a response is formed by means of posting internal 
messages. Between perceiving the environmental message and 
releasing an external motor message, subsequent rule firing has 
taken place and a stimulus is paired with a different response. 
In this context, we can assume that the robot has learned a 
model of light source movements. 

Following different light paths: In this experiment we 
taught a first system, Robl-circular, to follow a light moving 
along a circular path: the resulting performance is shown in 
Fig. 13. We then taught a second system, Robl-random, to 
follow a light moving along a random path. The result was that 
the system performance in the first case was higher (see Fig. 
13). The higher performance when following the light moving 
on the circular path can be due to the LCS dynamics: when the 
LCS proposes a good action, this action, and therefore the rule 
that proposed it, gets a reward; at the next step the rewarded 
rule, if the environment has not significantly changed (Le., the 
sensory input remains nearly the same), will have a higher 
probability to fire than before, and therefore to do the right 
thing again. This is a common situation in a slow changing 
environment as the one in which the light moves along a circle. 
On the contrary, in a rapid changing environment (like random 
light) this useful effect cannot be exploited, making the task 
a little more difficult. 

Following a changing light path: In this experiment we 
investigated the capacity of a system, which has acquired a 
particular behavioral pattern, to adapt to a novel situation. In 

100 

50 

0 
0 2500 5000 7500 loo00 

I Fig. 13. System performance in case of circular and random path (measured 
as robot distance from light source). 

the experiment the system learned to trace a light moving 
along a circular trajectory; then the learning algorithms were 
suddenly stopped and the rule population “frozen”; simulta- 
neously the light trajectory was changed to a rectangular one. 
We observed a decrease in performance, even if the system 
was still able to trace the light. A better performance was 
achieved if the learning algorithms were not stopped. Also 
the last result cannot be considered to be definitive: the LCS 
is a dynamic system and rule strengths are updated at every 
algorithm iteration causing a time changing behavior. This is 
a desirable property (it allows the system to be adaptive), but 
makes less cogent the significance of the lower performance 
level when learning is stopped. 

Discussion: As conclusion of this set of experiments, we 
have seen that our system develops some useful behavioral 
patterns in simple working environments. Concerning to the 
observed behavior, it is interesting to note that the robot 
behavior seems to be more precise than what we could have 
imagined considering its sensorial capabilities (Le., it learns to 
follow a light that moves in eight directions having information 
only from four sensors). This fact resembles in some way the 
effect of coarse coding that can be observed in neural networks 
applications [ 121, and deserves further investigation. 

Further investigation on more complex systems will be 
necessary to better understand how the system exploits the 
generation of intemal structures and how these can be inter- 
preted as internal representations. Altogether we are still not 
able to say if an internal model has been developed or not. 
As a last attempt we compared our results with those obtained 
when setting the message list length to one. This way, as only 
messages from the environment are placed onto the message 
list, the LCS is forced to act as a stimulus-response engine. 
Again there was no significant performance difference between 
the two approaches, which proves that no intemal models are 
necessary to explain these observations. 

2) Learning to Coordinate Two “Summable ”Behaviors: In 
this experiment we investigated how Robl could manage to 
learn two conflicting, but “summable” behavioral patterns. We 
say two behavioral patterns are summable if, when simulta- 
neously active, they propose actions that, even if different, 
can be combined into a resulting action that partially satisfies 
the requirements of both behaviors. As outlined before, in 
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The light source 
is in the hot region 

Fig. 14. The environment with the heat source. 

Fig. 16. Robot avoiding the heat source. 

1 

LCS-light LCSdanger 

Environment 

Fig. 15. Architecture of the system used in the heat and light experiment. 

this section we focus on two different learning environments, 
one heat and light environment, where the task is to learn 
to coordinate two concurrently operating classifier systems, 
and a two light environment, where the objective was to 
study the use of different coordination mechanisms between 
concurrently operating classifier systems. 

Heat and light environment: In this experiment Robl had 
to learn to follow a moving light source and to learn to avoid 
dangerous (hot) objects. To make things harder we positioned 
the hot object along the light trajectory (see Fig. 14). 
As we were interested in evaluating the performance of a 

hierarchical architecture, we designed a two level hierarchy 
where a LCS, called LCS-light, was specialized in learning the 
light following behavior, a second LCS, called LCS-danger, 
was specialized in learning to avoid hot objects and a third 
LCS, called LCS-coordinator, was specialized in learning the 
coordination policy. 
As actions proposed by LCS-light and LCS-danger are 

vectors (they represent a move in a 2-D space), they can be 
summed to produce the final action. Therefore, the coordinator 
task is to learn to assign appropriate weights to the actions 

. (vectors) proposed by the two low-level classifiers. 
In Fig. 15 the system architecture is shown (equivalent 

to the one presented in Fig. 6). LCS-light, LCS-danger, 
and LCS-coordinator are implemented as processes running 
asynchronously on different nodes of a transputer system [SI. 

The experiment can be ideally divided into two parts: when 
the light is far away from the hot source, the behavior of Robl 
is the same as in the light following experiment, while when 
the light source is close to the hot object then Robl should 
move around the hot object continuing to follow the light. 
LCS-coordinator becomes active only in this second situation. 

When the two low level LCS (LCS-light and LCS-danger) 
are activated simultaneously, the resulting action is a weighted 
average of the two proposed actions, with weights given by 

I 

the strengths of the two classifiers that proposed the actions 
(one belonging to LCS-light and the other to LCS-danger) 
and the excitation level of the classifier system that proposed 
the action (Le., the excitation level of LCS-light and LCS- 
danger, respectively). The procedure is the following: each 
time LCS-light or LCS-danger post an action message, they 
also send it to LCS-coordinator. LCS-coordinator just monitors 
the messages it is receiving. When a situation occurs in which 
both LCS-light and LCS-danger try to perform an action on 
the environment, LCS-coordinator reacts sending back to the 
two classifier systems a message containing information that 
causes the receiving classifier systems to increase or decrease 
their excitation level. This way LCS-coordinator can control 
the cooperation between LCS-light and LCS-danger. LCS- 
coordinator, after sending messages, receives a reward: which 
gives information about the usefulness of the action actually 
performed. In this way LCS-coordinator learns how to control 
LCS-light and LCS-danger, because it has direct feedback on 
its own actions and can use it to evaluate its own rules. 

Experiments with this architecture were very encouraging. 
The observed behavior was the desired one, Le., the robot 
followed the light until it approached the heat source. Then it 
chose between two different behavioral patterns: it just turned 
around the heat source (case a and b in Fig. 16) or it stopped 
waiting in front of the heat source and, when the light had 
moved away from the hot region, began to follow it, again 
(case c in Fig. 16). 

Two lights environment: In the preceding experiment we 
tested the €easibility of a simple hierarchy of LCSs. We now 
turn our attention to the assessment of its utility, with respect to 
a more traditional architecture (see the monolithic architecture 
below) in which a single LCS learns both behaviors. We 
needed an experimental environment in which performance 
was easy to calculate: we decided to let Robl learn to follow 
two independently moving light sources. (Robl distinguishes 
the two light sources by their different color.) In this envi- 
ronment the performance index (as always specified by the 
proportion of correct moves to the total number of moves) can 
be used for analysis since the two stimuli are always present? 

We compared the following architectural organizations. 
Monolithic (where a single LCS had to learn the three 
behavioral patterns contemporaneously). 

LCS-coordinator is rewarded whenever the resulting action is the correct 

SRemember that in the heat and light environment the heat source was 
one. 

perceived only when Robl distance to it was below a given threshold. 
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Fig. 17. Structure of a message going to LCS-light in the vectorial and 
hierarchical architectures (messages going to the monolithic architecture are 
a concatenation of two messages like the one in the figure, one for each light 
to be followed). 
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Fig. 18. Comparison between the monolithic, vectorial and hierarchical 
architectures. 

Vectorial (where the coordinator was not a LCS but a 
procedure that computed a vectorial sum of the two 
proposed actions). 
Hierarchical (the same strbcture as used in the preceding 
“heat and light” environnient). 

In this task we have two sets of four light sensors, each 
set being sensitive to only one of the two colors. Sensors not 
only communicate to the LCS the light position, but also the 
light distance. This information is necessary because Rob1 
must learn from sensory data which light is the closest and 
which one is the most distant. The structure of messages is 
therefore different from the one of Fig. 8; moreover, we have 
different environmental messages for the three architectures in- 
vestigated: very long messages in the monolithic architecture, 
shorter messages in the hierarchical and vectorial architectures 
(see Fig. 17). As in the monolithic architecture messages are 
longer, the learning task is more difficult (the search space 
is bigger, as it grows with 3k, where k is the classifier 
length), and we expect therefore the monolithic architecture 
performance to be the worst. 
In Fig. 18 we report results obtained comparing the three 

architectures. Our hypothesis about the lower performance 
level of the Ifionolithit! architecture has been confirined (con- 
sider that the dimehion of the search space in the monolithic 
architecture case is 360; in fact, environmental messages are 
20 bits long, and therefore rules that are composed of two 
conditions and one action are 60 bits long; in the other two 
architectures environmental messages are only 10 bits long, 
and therefore rules are 30 bits long and the search space6 is 

It is also interesting to note that the vectorial architecture, 
as it does not have to learn the coordination policy, learns 

6The dimension of the search space of the coordinator in the hierarchical 
architecture is much smaller (312, because each low level LCS sends a 4 bit 
message) and is therefore not considered. 

330). 
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Fig. 19. (a) The switch architecture. (b) The monolithic hierarchical 

architecture. 

quicker, but after 60 thousands of cycles the coordination 
policy learned by the coordinator becomes slightly more 
effective. 

3) Learning to Coordinate Three Different Behaviors: This 
experiment was devoted to evaluate a different kind of coordi- 
nation in which the coordinator must learn to switch between 
three behavioral patterns. The three basic low level LCSs are 
called LCS-light, LCS-food and LCS-predator. As the three 
activities to be learned cannot be performed contemporane- 
ously,7 the coordinator has to learn a “switching” policy, Le., 
to which low level LCS to give control to, when more than 
one of them is active (i.e., proposes an action). We call the 
LCS implementing the coordinator LCS-switch. The structure 
of the learning system is shown in Fig. 19(a). 

Messages received by LCS-switch are three bits messages, 
each bit saying whether the corresponding low level LCS 
proposes dn action (bit set to 1) or not (bit set to 0). The 
learning task for LCS-switch was to give the highest priority 
to LCS-predator in case this behavior is active, and to choose 
LCS-food whenever only LCS-light and LCS-food are active. 

It is interesting to note that, when using hierarchies of 
LCSs, it is possible to define many reward strategies. In our 
experiments we tested two of them: in the first one we let 
all the LCSs learn contemporaneously, in the second one we 
first reward low level LCSs, then we “freeze” the learning 
algorithms of low level LCSs and start rewarding the LCS- 
switch. 

As with the preceding “two lights environment,” we have 
done experiments to compare the monolithic (see Fig. 19(b)) 
and the hierarchical architectures (see Fig. 19(a)). In both 
cases the single behavior performance refers only to moves 
done when the behavior under consideration was active, while 

extreme case of summable behaviors, where weights are 0 or 1. 
’And it does not make sense to “sum” them. This can be considered an 
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Fig. 20. Performance using the monolithic architecture. Searching food has 
a lower performance than other behaviors because it is more difficult to learn. 
The whole experiment lasted approximately 8 h. 
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Fig. 21. Performance using the switch architecture. The whole experiment 
lasted approximately 8 h. 

global performance considers all the moves (i.e., if LCS-light 
has learned very well and LCS-predator has not, then the 
global behavior performance will settle somewhere between 
them). 

Experiments with the monolithic architecture: In this 
case a single LCS8 was used. An environmental message is 
equivalent to the concatenation of the three messages coming 
from the three groups of sensors. A rule in the monolithic 
atchitecture is therefore 36 bits long. 

It is important to note that in the monolithic architecture 
coordination is not achieved by an explicit LCS (as in the 
hierarchical architecture), but it is the result of the learning 
process of the unique LCS implementing the three low level 
behaviors. It is also interesting to note that the performance 
level of the escaping behavioral pattern settled at a higher 
performance value (see Fig. 20 and 21). Escaping predator 
is an easier task because the number of correct moves on 
the number of possible niovks is the greatest (in the discrete 
2-D world in which our simulated robots live there are 
more departing directions from one point than approaching 
directions to the same point). 

We report in Figs. 20 and 21 the performance of the 
simulated robot, for both the monolithic and the switch ar- 
chitectures. 

‘The LCS was parallelized using four T800 transputers [8]. 

Experiments with the switch architecture: The experi- 
ment was run to see whether the use of a hierarchical ar- 
chitecture improved the performance level. As in the “two 
lights environment,” the idea is that each single LCS, having 
shorter classifiers, has a smaller search space and that therefore 
the overall learning task could be easier. The presence of the 
coordinator should not create efficiency problems, due to the 
easiness of its learning task: it must learn to choose which of 
the three lower level classifier systems to give priority, when 
they contemporaneously propose an action. 

Low level LCSs send 5 bit messages: these messages are 
composed of 4 bits, which propose an action and of one bit 
going to the coordinator and saying if the sending LCS is 
proposing an action or not. The coordinator therefore receives 
three bit messages, indicating which low level classifiers are 
active, and produces an action that determines which low 
level LCS should take control of the robot; then the action 
that was proposed by the LCS, which received the control, is 
performed and a reward is assigned to the system. In a first 
experiment the reward function considers the whole learning 
system as a black box, Le., we did not use the actual behavior 
of single classifier systems to distribute rewards (but we 
observed them in order to monitor performance). This policy 
makes the learning task more difficult, especially in the case 
of hierarchical architectures such as the switch architecture, 
because there can be situations in which a correct action is 
the result of two wrong messages (e.g., the switch chooses to 
give control to the wrong low level LCS that in turn proposes 
a wrong move that, in this context, results to be the right 
one) or situations in which a LCS gets a punishment because 
of the mistake another LCS did. Nevertheless this way of 
giving rewards is an interesting one because it does not require 
accessibility to all the internal modules of the system and is 
much more plausible from an ethological point of view. Rule 
length in low level classifier systems is 12 bits, whereas in the 
switch it is 9 bits. 

Results obtained using the switch architecture show that the 
relative performance of the three behavioral patterns is the 
same as with the monolithic architecture. The absolute perfor- 
mance is a little lower than with the monolithic architecture: 
this is probably due to the noise in the reward function (as 
explained before). 

The performance achievable by the hierarchical architecture 
improves when we use a two phase reward policy. In the first 
phase (see Fig. 22), we reward every low level behavioral 
module its own behavior. This activity can go on in parallel 
(in three simulated worlds in which there is only one sensory 
stimulus): a module learns to follow the light, another one to 
find the food and the last one to escape the predator. When 
they all have achieved a good perfbrmance level, learning 
is stopped (commencing at cycle 30000 in Fig. 22) and the 
learning phase of LCS-switch starts (i.e., in this phase it is 
the switch that learns, while low level LCSs are “frozen”). 
After cycle 42000 we froze the whole system. Using this 
reward policy, we obtained an improvement in the system 
performance, both regarding the performance level achieved 
and the number of cycles required to achieve it. It is clear what 
importance good reward methodologies have when building 
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Fig. 22. Performance using the switch architecture and a two phases reward 
policy. Ten thousand cycles required 1-h computing time. 

more complex systems. 
It will be the subject of future research to study these reward 

methodologies, i.e., how to reward and how to organize the 
learning process (all tasks are learned together, low level LCSs 
learn first then learns the coordination level or other). 

VII. CONCLUSION 

We have presented some results of a hierarchical and parallel 
model of behavioral organization in a simulated robot. Start- 
ing from a short survey of genetics-based machine learning 
techniques and behavior-based robotics, we have outlined the 
current implementation of our computational model and we 
have compared our approach with related work done by other 
researchers. The results of simple experiments designed and 
carried out to evaluate the current implementation of the 
learning system have been discussed. The results are promising 
and seem to indicate that the use of explicit coordination 
learning to combine primitive behaviors hence improving the 
systems adaptability can be appropriate. 

Further work is going on in the direction of a better 
understanding of the learning properties of our system. We 
are also building in the system new features to make the 
implementation closer to the Tinbergen’s model. Experiments 
on a real robot in order to test the developed model in a 
real environment are beginning [9]. Another important aspect 
to be investigated will be how to memorize, and use, past 
experience. Two solutions seem at this moment to be feasible: 
the use of explicit memory structures, as in the work of Zhou 
[21], or the insertion of implicit memory structures in the 
system architecture. 
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