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Abstract. In this paper we introduce two systematic approaches, based on the
stochastic gradient ascent algorithm and the cross-entropy method, for deriving
the pheromone update rules in the Ant colony optimization metaheuristic. We
discuss the relationships between the two methods as well as connections to the
update rules previously proposed in the literature.

1 Introduction

The necessity to solveNP-hard optimization problems, for which the existence of effi-
cient exact algorithms is highly unlikely, has led to awide range of stochastic approxima-
tionalgorithms.Manyof thesealgorithms, that are often referred to asmetaheuristics, are
not specific to a particular combinatorial problem, but rather present a general approach
for organizing the search in the solution space. Examples of well-known metaheuristics
are evolutionary algorithms, simulated annealing and tabu search.

At a very abstract level, many metaheuristics can be seen as methods that look for
good solutions (possibly optimal ones) by repeating the following two steps:

1. Candidate solutions are constructed using some parameterized probabilistic model,
that is, a parameterized probability distributions over the solution space.

2. The candidate solutions are used to update the model’s parameters in a way that is
deemed to bias future sampling toward low cost solutions.

Recently, a metaheuristic inspired by the foraging behavior of ant has been defined. This
metaheuristic, calledant colony optimization(ACO), has been successfully applied to
the solution of numerous NP-hard problems [1] as well as to dynamic optimization
problems [2]. The main innovation of the ACO metaheuristic consists in proposing a
novel way to implement the two steps described above:
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1. A structure calledconstruction graphis coupled with a set of stochastic agents
called artificial ants, which build new solutions using local information, called
pheromone,1 stored in the construction graph.

2. Onceantshavebuilt solutions, theyuse informationcollectedduring theconstruction
phase to update the pheromone values.

The exact form of the pheromone update (i.e., the second component of the general
approach outlined above) is not strictly defined and a good amount of freedom is left to
the algorithm designer concerning how it should be implemented. Various model update
rules have been proposed within the ACO framework, but they are all of a somewhat
heuristic nature and are lacking a theoretical justification.

On the other hand, thestochastic gradient ascent(SGA) [3] and thecross-entropy
(CE) [4] methods suggest principled ways of updating the parameters associated to the
construction graph. In the following we show how the SGA and the CE methods can
be cast into the ACO framework. While these two methods have different motivations,
we find that in some cases the CE method leads to the same update rule as does SGA.
Moreover, quite unexpectedly, some existing ACO updates are re-derived as a particular
implementation of the CE method.

The paper is organized as follows. In Section 2 we present the solution construction
mechanismusedby theACOmetaheuristic.Section3presents several typical pheromone
update rules among those most used by practitioners and researchers. In Section 4 and 5
we introduce the stochastic gradient ascent and the cross entropy methods respectively,
and we show how, once cast into the ACO framework, they can be used to define
novel pheromone updating rules. We conclude in Section 6 with a brief summary of the
contributions of this short paper.

2 Solution Construction in ACO Metaheuristic

Let us consider a minimization problem2 (S, f), whereS is theset of feasible solutions
andf is theobjective function, which assigns to each solutions ∈ S a cost valuef(s).
The goal of the minimization problem is to find an optimal solutions∗, that is, a feasible
solution of minimum cost. The set of all optimal solutions is denoted byS∗. We assume
that the combinatorial optimization problem(S, f) is mapped on a problem that can be
characterized by the following list of items3:

– A finite setC = {c1, c2, . . . , cNC
} of components.

– A finite setX of statesof the problem, defined in terms of all the possible sequences
x = 〈ci, cj , . . . , ck, . . . 〉 over the elements ofC. The length of a sequencex, that
is, the number of components in the sequence, is expressed by|x|. The maximum
length of a sequence is bounded by a positive constantn < +∞.

1 This is the terminology used in the ACO literature for historical reasons. We will keep with this
tradition in this paper.

2 The obvious changes must be done if a maximization problem is considered.
3 How this mapping can be done in practice has been described in a number of earlier papers on
the ACO metaheuristic; see, for example, [1].
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– The set of (candidate) solutionsS is a subset ofX (i.e.,S ⊆ X ).
– A set of feasible states̃X , with X̃ ⊆ X , defined via a set ofconstraintsΩ.
– A non-empty setS∗ of optimal solutions, withS∗ ⊆ X̃ andS∗ ⊆ S.

Given the above formulation, artificial ants build candidate solutions by performing
randomized walks on the completely connected, weighted graphG = (C,L, T ), where
the vertices are the componentsC, the setL fully connects the componentsC, andT
is a vector gathering so-calledpheromone trailsτ .4 The graphG is calledconstruction
graph.

Each artificial ant is put on a randomly chosen vertex of the graph and then it
performs a randomized walk by moving at each step from vertex to vertex in the graph
in such a way that the next vertex is chosen stochastically according to the strength of
the pheromone currently on the arcs.5 While moving from one node to another of the
graphG, constraintsΩ may be used to prevent ants from building infeasible solutions.
Formally, the solution construction behavior of a generic ant can be described as follows:

ant solution construction
for each ant:
– select a start nodec1 according to some problem dependent criterion,
– setk = 1 andxk = 〈c1〉.
– While (xk = 〈c1, c2, . . . , ck〉 ∈ X̃ andxk /∈ S andJxk

�= ∅) do:
at each stepk, after building the sequencexk, select the next node (com-
ponent)ck+1 randomly following

PT (ck+1 = c|xk) =




F(ck,c)
(
τ(ck, c)

)
∑

(ck,y)∈Jxk

F(ck,y)
(
τ(ck, y)

) if (ck, c)∈Jxk
,

0 otherwise;

(1)

where a connection(ck, y) belongs toJxk
iff the sequencexk+1 = 〈c1, c2,

. . . , ck, y〉 satisfies the constraintsΩ (i.e.,xk+1 ∈ X̃ ) andF(i,j)(z) is some
monotonic function (most commonly,zαη(i, j)β , whereα, β > 0 andη are
heuristic “visibility” values [6]). If at some stagexk /∈ S andJxk

= ∅, the
construction process has reached a dead-end and is therefore abondoned.6

After the solution construction has been completed, the artificial ants update the phero-
mone values. Next we describe several typical updates that were suggested in the past
within the ACO framework.
4 Pheromone trails can be associated to components, connections, or both. In the following,
unless stated otherwise, we assume that the pheromone trails are associated to connections, so
thatτ(i, j) is the pheromone associated to the connection between componentsi andj. It is
straightforward to extend algorithms to the other cases.

5 It should be noted that the same type of model was later (but independently) used in the CE
framework under the name “associated stochastic network” [4,5].

6 This situation may be prevented by allowing artificial ants to build infeasible solutions as well.
In such a case an infeasibility penalty term is usually added to the cost function. It should be
noted, however, that inmost settings ACOwas applied to, the dead-end situation does not occur.
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3 Typical ACO Pheromone Updates

Many different schemes for pheromone update have been proposed within the ACO
framework.Most of themcanbedescribed, however, using the followinggeneric scheme:

Generic ACO Update
– ∀s ∈ Ŝt,∀(i, j) ∈ s : τ(i, j)← τ(i, j) + Qf (s|S1, . . . , St)
– ∀(i, j) : τ(i, j)← (1− ρ) · τ(i, j)
whereSi is the sample in thei-th iteration,ρ, 0 ≤ ρ < 1, is the evaporation
rate andQf (s|S1, . . . , St) is some “quality function”, which is typically
required to be non-increasing with respect tof and is defined over the
“reference set”̂St.

Different ACO algorithms may use different quality functions and reference sets. For
example, in the very first ACO algorithm — Ant System [7] — the quality function
was simply1/f(s) and the reference set̂St = St. In a more recently proposed scheme,
called iteration best update[6], the reference set was a singleton containing the best
solution withinSt (if there were several iteration-best solutions, one of themwas chosen
randomly). For theglobal-best update[8,6], the reference set contained the best among
all the iteration-best solutions (and if there were more than one global-best solution, the
earliest one was chosen). In [7] anelitist strategy was introduced, in which the update
was a combination of the previous two.

A somewhat different pheromone update was used inant colony system(ACS) [6].
There the pheromones are evaporated by the ants online during the solution construction,
hence only the pheromones involved in the construction evaporate.

Another modification of the generic update described above was recently proposed
under the name Hyper-Cube (HC) ACO [9]. The HC-ACO, applied to combinatorial
problemswith binary coded solutions,7 normalizes the quality function, hence obtaining
an automatic scaling of the pheromone values:

τi ← (1− ρ)τi + ρ

∑
s∈Ŝt
si=1

Qf (s)
∑

s∈Ŝt
Qf (s)

. (2)

While all the updates described above are of somewhat heuristic nature, the SGA and
the CE methods allow to derive pheromone update rules in a more systematic manner,
as we show next.

4 Stochastic Gradient Ascent

The construction process described above implicitly defines a probability distribution
over the solution space. Let us denote this distribution byPT , whereT is the vector of

7 Using the notation of Section 2, in such a case the components are bit assignments to the
locations, and the pheromone values are associated with the components, rather than with the
connections.
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pheromone values. Now, the original optimization problem may be replaced with the
following equivalent continuousmaximization problem:

T ∗ = argmax
T
E(T ), (3)

whereE(T ) = ET Qf (s), ET denotes expectation with respect toPT , andQf (s)
is a fixedquality function, which is strictly decreasing with respect tof . It may be
easily verified thatPT ∗ is greater than zero only overS∗, hence solving problem (3) is
equivalent to solving the original combinatorial optimization problem.

One may then search for an optimum (possibly a local one) of problem (3) using a
gradient ascent method (in other words, gradient ascent may be used as a heuristic to
changeT with the goal of solving (3)):

– Start from some initial guessT 0.
– At staget, calculate the gradient∇E(T t) and updateT t+1 to beT t +

αt∇E(T t).

The gradient can be calculated (theoretically) as follows:

∇E = ∇ET Qf (s) = ∇
∑

s

Qf (s)PT (s) =
∑

s

Qf (s)∇PT (s)

=
∑

s

PT (s)Qf (s)∇ lnPT (s) = ET Qf (s)∇ lnPT (s). (4)

However, the gradient ascent algorithm cannot be implemented in practice, as for its
evaluation a summation over the whole search space is needed. A more practical alter-
native would be to usestochastic gradient ascent[3], which replaces the expectation in
Equation 4 by an empirical mean of a sample generated fromPT .

The update rule for the stochastic gradient is:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ lnPT t(s), (5)

whereSt is the sample at iterationt. It remains to be shownhow the gradient∇ lnPT t(s)
can be evaluated. The following calculation is a generalization of the one in [10].

From the definition ofant solution construction, it follows that, fors =
〈c1, c2, . . .〉,

PT (s) =
|s|−1∏
k=1

PT
(
ck+1| prefk(s)

)
, (6)

where prefk(s) is thek-prefix ofs, and consequently

∇ lnPT (s) =
|s|−1∑
k=1

∇ lnPT
(
ck+1| prefk(s)

)
. (7)
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Finally, given a pair of components(i, j) ∈ C2, using Equation (1), it is easy to verify
that:

– if i = ck andj = ck+1 then

∂

∂τ(i, j)

(
lnPT

(
ck+1| prefk(s)

))
=

∂

∂τ(i, j)

(
lnF

(
τ(i, j)

)− ln
∑

(i,y)∈Jxk

F
(
τ(i, y)

))
=


1− F

(
τ(i, j)

)/ ∑
(i,y)∈Jxk

F
(
τ(i, y)

)

 F ′(τ(i, j)

)
F

(
τ(i, j)

) =

(
1− PT

(
j| prefk(s)

))
G

(
τ(i, j)

)
,

whereG(·) = F ′(·)/F (·) and the subscript ofF was omitted for the clarity of
presentation.

– if i = ck andj �= ck+1 then

∂ ln
(
PT

(
ck+1| prefk(s)

))

∂τ(i, j)
= −PT

(
j| prefk(s)

)
G

(
τ(i, j)

)
.

By combining these results, the following pheromone update rule is derived:

SGA Update

∀s = 〈c1, . . . , ck, . . .〉 ∈ St, 1 ≤ k < |s| :
– τ(ck, ck+1)← τ(ck, ck+1) + αtQf (s)G

(
τ(ck, ck+1)

)

– ∀y : τ(ck, y)← τ(ck, y)− αtQf (s)PT
(
y| prefk(s)

)
G

(
τ(ck, y)

)

Hence any connection(i, j) used in the construction of a solution is reinforced by
an amountαtQf (s)G

(
τ(i, j)

)
, and any connectionconsideredduring the construction,

has its pheromone values evaporated by an amountαtQf (s)PT
(
j| prefk(s)

)
G

(
τ(i, j)

)
.

Note, that if the solutions are allowed to contain loops, a connection may be updated
more than once for the same solution.

In order to guarantee the stability of the resulting algorithm, it is desirable for the
estimate of the gradient∇ lnPT (s) to be bounded. This means that a functionF , for
whichG = F ′/F is bounded, should be used. Meuleau and Dorigo [10] suggest using
F (·) = exp(·), which leads toG ≡ 1. It should be further noted that if, in addition,
Qf = 1/f andαt = 1, the reinforcement part becomes1/f , as in Ant System.

5 Cross-Entropy Method

Thecross-entropy (CE)methodwas initiallyproposed in thestochastic simulationfieldas
a tool for rare events estimation and later adapted as a tool for combinatorial optimization
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[4]. In this overview we present a more straightforward derivation of the cross-entropy
method (as a combinatorial optimization tool), without reference to the rare events
estimation.

Starting from some initial distributionP0 ∈ M, the CE method inductively builds
a series of distributionsPt ∈M, in an attempt to increase the probability of generating
low-cost solutions after each iteration. A tentative way to achieve this goal is to setPt+1
equal to

P̂ ∝ PtQf , (8)

whereQf is, again, some quality function dependent on the cost value.
If this were possible, aftern iteration we would obtainPn ∝ P0Q

n
f , and asn→∞,

Pn would converge to a probability distribution restricted toS∗. Unfortunately, even if
the distributionPt belongs to the familyM, the distributionP̂ as defined by (8) does not
necessarily remain inM, hence somesort of projection is needed.Anatural candidate for
Pt+1, is the distributionP ∈ M that minimizes theKullback-Leibler divergence[11],
which is a commonly used measure of misfit between two distributions:

D(P̂‖P ) =
∑

s

P̂ (s) ln
P̂ (s)
P (s)

, (9)

or, equivalently, thecross-entropy: −∑
s P̂ (s) lnP (s).

SinceP̂ ∝ PtQf , cross-entropy minimization is equivalent to the following maxi-
mization problem

Pt+1 = argmax
P∈M

∑
s

Pt(s)Qf (s) lnP (s). (10)

It should be noted that, unlike SGA, in the cross-entropy method the quality function
is only required to be non-increasing with respect to the cost and may also depend on
the iteration index, either deterministically or stochastically, for example, depending on
the points sampled so far. One common choice is, for example,Qt

f (s) = I(f(s) < ft),
whereI(·) is an indicator function, andft is, for example, some quantile (e.g., lower
10%) of the cost distribution during the last iteration.

Similarly to the gradient ascent algorithm, the maximization problem (10) cannot
be solved in practice, as the evaluation of the function

∑
s Pt(s)Qf (s) lnP (s) requires

summation over the whole solution space, and once again a finite sample approximation
is used instead:

Pt+1 = argmax
P∈M

∑
s∈St

Qf (s) lnP (s), (11)

whereSt is a sample fromPt.
Let us now consider problem (11) in more details. At the maximum the gradient

must be zero: ∑
s∈St

Qf (s)∇ lnPT (s) = 0. (12)

In some relatively simple cases, for example, when the solutions is represented by an
unconstrainedstringof bits of lengthn, (s1, . . . , sn), and there is a single parameterτi for
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thei-th position in the string,8 such thatPT (s) =
∏

i pτi(si), the equations system (12)
reduces to a set of independent equations:

d ln pτi

dτi

∑
s∈St
si=1

Qf (s) = −d ln(1− pτi
)

dτi

∑
s∈St
si=0

Qf (s), (13)

whichmay often be solved analytically. For example, forpτi
= τi it can be easily shown

that the solution of Equation (13) is simply

τi =

∑
s∈St
si=1

Qf (s)
∑

s∈St
Qf (s)

. (14)

Now, since the pheromone trailsτi in (14) are random variables, whose values depend
on the particular sample, we may wish to make our algorithm more robust by intro-
ducing some conservatism into the update. For example, rather than discarding the old
pheromone values, the new values may be taken to be a convex combination of the old
values and the solution (14):

τi ← (1− ρ)τi + ρ

∑
s∈St
si=1

Qf (s)
∑

s∈St
Qf (s)

. (15)

The resulting update is identical to the one used in the Hyper-Cube ACO [9].
In general, however, Equations (12) are coupled and an analytical solution is unavail-

able. Nevertheless, in the actual implementations of theCEmethod the update was of the
form (14) (with some brief remarks about using (15)) [5], which may be considered as
an approximation to the exact solution of the cross-entropy minimization problem (11).

Still, even if the exact solution is not known, some iterative methods for solving this
optimization problem may be used. A natural candidate for the iterative solution of the
maximization problem (11) is gradient ascent:

– Start withT ′ = T t. (Other starting points are possible, but this is the most
natural one, since we may expectT t+1 to be close toT t.)

– Repeat:
– T ′ ← T ′ + α

∑
s∈St

Qf (s)∇ lnPT ′(s)
– until some stopping criteria is satisfied.

– SetT t+1 = T ′.

It should be noted that, since the new vectorT t+1 is a random variable, depending on
a sample, there is no use in running the gradient ascent process till full convergence.
Instead, in order to obtain some robustness against sampling noise, we may use a fixed
number of gradient ascent updates. One particular choice, which is of special interest,
is the use of a single gradient ascent update, leading to the updating rule:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ lnPT t(s) (16)

8 This is a particular subtype ofmodels, used in HC-ACO [9], without any non-trivial constraints.
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which is identical to the SGA update (5). However, as it was already mentioned earlier,
the CE method imposes less restrictions on the quality function (e.g., allowing it to
change over time), hence the resulting algorithm may be seen as a generalization of
SGA.

To conclude, we have shown that if we use (14) as a (possibly approximate) solution
ofEquation (11), theHyper-CubeACOalgorithm is derived. If otherwiseweuseasingle-
step gradient ascent for solving (11), we obtain a generalization of the SGA update, in
which the quality function is allowed to change over time.

6 Conclusions

The ant colony optimization metaheuristics attempts to solve a combinatorial problem
by repeatedly constructing solutions using locally available pheromones, and updating
them, so as to increase the probability of generating good solutions in the future. While
the construction process, employed in ACO, is well-defined (and, in fact, is one of the
distinctive features of ACO metaheuristic), a considerable amount of freedom remains
regarding the exact form of the pheromone update rule.

We have described two general approaches, the SGA and the CE methods, for up-
dating pheromone values for the ACO metaheuristic. These two methods provide sys-
tematic, theoretically founded ways for deriving the update rules. Moreover, we have
also shown that in many cases the updates used by the two methods are quite similar (or
even identical in some cases), and sometimes they coincide with existing ACO updates.

While the newly derived pheromone updates do have a solid theoretical motivation,
little can be saida priori about their performance as compared to the existing update
rules. The empirical evaluation of these methods is the subject of ongoing research.
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8. T. Sẗutzle and H. H. Hoos. The MAX-MIN ant system and local search for the traveling
salesman problem. InProceedings of ICEC’97 - 1997 IEEE 4th International Conference on
Evolutionary Computation, pages 308–313. IEEE Press, Piscataway, NJ, 1997.

9. C. Blum, A.Roli, andM.Dorigo. HC–ACO: The hyper-cube framework for AntColonyOpti-
mization. InProceedings of MIC’2001 – Meta–heuristics International Conference, volume2,
pages399–403,Porto, Portugal, 2001. Alsoavailable as technical report TR/IRIDIA/2001-16,
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