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Abstract. We propose a novel communication strategy inspired by ex-
plicit signaling mechanisms seen in vertebrates, in order to improve per-
formance of self-organized flocking for a swarm of mobile robots. The
communication strategy is used to make the robots match each other’s
headings. The task of the robots is to coordinately move towards a com-
mon goal direction, which might stay fixed or change over time.

We perform simulation-based experiments in which we evaluate the
accuracy of flocking with respect to a given goal direction. In our settings,
only some of the robots are informed about the goal direction. Experi-
ments are conducted in stationary and non-stationary environments. In
the stationary environment, the goal direction and the informed robots
do not change during the experiment. In the non-stationary environ-
ment, the goal direction and the informed robots are changed over time.
In both environments, the proposed strategy scales well with respect to
the swarm size and is robust with respect to noise.

1 Introduction

In nature, we observe different activities performed by animals living in groups.
Such activities require collective decision-making even when few individuals have
the needed information. This information then spreads in the group according to
different mechanisms, depending on the species. In some insect and fish species,
information is transferred implicitly without any signaling mechanism [1,2]. Con-
versely, other species utilize explicit signaling mechanisms such as vocalization.
For example, mountain gorillas switch between some daily activities (resting
to travelling/feeding) very rapidly using vocalization [3]. In a honeybee swarm,
when scouts agree on a new nest site, they fly rapidly towards the nest while
signaling the right direction to the rest of the swarm [4].

Coordinated motion of animals is an example of activities which require col-
lective decision-making. For example, flocks of birds and schools of fish move
and maneuver coherently as if they were a super-organism [5]. Recent work in
biology showed that a group of animals can be guided to particular locations
(food sources) even if only a minority of the group is aware of the location [1].
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The first studies of flocking in swarm robotics were inspired by Reynolds’
seminal work [6], one of the first regarding flocking outside biology. Reynolds
obtained a realistic computer animation of a flock of birds through three simple
concurrent behaviors: separation (avoiding collisions), cohesion (staying close to
neighbors) and alignment (heading in the same direction as neighbors). These
behaviors are all based on local sensing and local decision rules. Separation and
cohesion control, denoted in the rest of the paper as proximal control, is the
aggregate behavior controlling the relative distance between individuals.

In Reynolds’ work, in order to perform alignment, each individual is assumed
to sense the velocity of its neighbors without noise. This assumption is unreal-
istic in robotics. Subsequent works have tried to relax this assumption. These
works can be organized into three different categories. The first category does
not feature an explicit alignment behavior. Instead, it tries to obtain alignment
intrinsically via other behaviors such as homing [7], leader-following [8] and
light-following [9]. The second category achieves alignment by resorting to the
emulation of a heading sensor [10] or to the estimation of the heading of neigh-
bors [11]. In the third and last category, heading information is spread within the
swarm via local communication [12]. Turgut et al. [13] proposed an algorithm
belonging to the third category. A robot measures its heading with respect to
the North using a compass and broadcasts it periodically so that the heading is
sensed “virtually” by its neighbors. With this method, Turgut et al. [13] achieved
self-organized flocking in a random direction.

Çelikkanat et al. [14], inspired by the implicit decision-making mechanisms of
some animal species [15,2], extended the flocking behavior proposed by Turgut et
al. [13] by providing a goal direction to some of the robots (“informed” robots).
They observed that a large swarm can be guided by only a few robots, which is
in accordance with theoretical results [1].

In this paper, inspired by both biological [3,4] and swarm robotics ideas [14],
we propose a new method for heading alignment. The proposed strategy that we
call information-aware communication, uses only local communication, which
means that robots can communicate only with their neighbors within a given
range and in their line of sight. Our system is composed of informed and un-
informed robots: informed robots relay the goal direction and uninformed ones
just send the average of the messages they receive from their neighbors. We com-
pare the novel information-aware communication with heading communication,
where all of the robots always send the measured heading information to their
neighbors by still relying on local communication only. The latter was used by
Turgut et al. and Çelikkanat et al. [13,14].

We present the results of two sets of experiments. One is conducted in a sta-
tionary environment, in which the goal direction and the informed indivuals do
not change during the experiment. The other is conducted in a non-stationary en-
vironment, in which both the goal direction and the informed robots are changed
at regular time intervals during the experiment.
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2 Methodology

The methodology we use to design the flocking behavior is based on artificial
physics [9]. At each control step, a virtual force vector is computed as:

f = αp + βh + γg,

where p is the proximal control vector; h is the heading alignment vector; g
is the vector that indicates the goal direction. The vectors p and h are each
calculated by a behavior (explained in Section 2.1 and Section 2.2 respectively).
The goal direction vector g is available to some robots, whereas for the others
g = 0. The weights α, β and γ define the relative contribution of the different
force components. In this paper, we do not tune these parameters for obtaining
optimal performance, but we set them to α = 1, β = 5 and γ = 10 to reflect our
prior knowledge on the relative importance of the three components.

2.1 Proximal Control Behavior

The proximal control behavior assumes that a robot perceives the relative po-
sition (range and bearing) of its neighbors in close proximity. This is realized
using LEDs and an omni-directional camera as in [12]. Let k denote the number
of robots perceived at a given time, di and φi denote the range and bearing
measurements of the ith robot, respectively. The virtual force p is given by:

p =
k∑

i=1

pie
jφi ,

where pie
jφi are vectors expressed in polar coordinates. pi is calculated as a

function of di using a force function pi(di) as in [16]. pi is repulsive when di is
smaller than the desired distance (D) and it is attractive when di is greater than
D. The function is:

p(di) = −2D2

d3
i

+
2
di

,

2.2 Heading Alignment Behavior

The heading alignment behavior assumes that, using an onboard light sensor, a
robot r measures its heading (θr) with respect to the common reference frame
represented by a light source. The robot receives an angle θi from its ith neighbor.
The value sent by each neighbor depends on which communication strategy is
used, as explained in the following. Each received angle is transformed into robot
r body-fixed reference frame1. Having received k angles from its k neighbors,
1 We define two reference frames. One is the reference frame common to all of the

robots, and the other is the body-fixed reference frame specific to each robot. The
body-fixed reference frame is fixed to the center of a robot: its x− axis is coincident
with the rotation axis of the wheels and its y− axis points to the front of the robot.
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robot r calculates the average heading vector as:

h =
∑k

i=1 e
jθi

‖∑k
i=1 e

jθi‖
,

where ‖ · ‖ denotes the norm of a vector.
The proposed communication strategy, that we call information-aware com-

munication strategy, is explained in the following.

Information-aware communication: This communication strategy assumes
that robots are aware of whether they are provided with the goal direction
g or not, that is whether they are informed or non-informed. This awareness
mechanism is implemented by measuring the length of the goal direction vector
g: the robot considers itself non-informed if g = 0 and informed if g �= 0. Each
robot then communicates the following information: if it is non-informed, it sends
� h (� · denotes the angle of a vector) to its immediate neighbors; otherwise, it
sends � g. The intuition behind this strategy is the following: if the robot is
non-informed, it should facilitate the diffusion of the information originating
from the informed robots; if it is informed, it should then directly propagate the
information about the goal location to its immediate neighbors. The information
then eventually reaches the entire swarm thanks to the uninformed robots. Note
that the awareness of each robot is only used to determine which information
should be sent, and is never directly communicated to neighboring robots (i.e.,
each robot never knows if a message is received from an informed or a non-
informed robot).

As a baseline comparison, we implemented another communication strategy
that we call heading communication strategy. This strategy is similar to the one
used in [13].

Heading communication: This communication strategy consists in the local
communication of the robot’s own current heading θ measured with respect to
the common reference frame. In the original work [13], this strategy was used to
simulate robots that are able to measure the heading of their neighbors when
the actual measurement is not physically possible.

2.3 Motion Control

The computed virtual force vector f is mapped into rotational speed of the
wheels. First, using Newton’s second law of motion, the target velocity utarget

is computed:

utarget = ut +
fΔt
m

,

where Δt is the control-step size, m is the mass of the robot and ut is the current
velocity of the robot. The target velocity utarget cannot be followed directly by
the robot due to its non-holonomic constraints. Thus, it is mapped into the
robot’s forward velocity ut+1, which points in the direction of the y − axis and
has magnitude u = ‖ut+1‖ set to:
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u =

{
( utarget

‖utarget‖ · ut

‖ut‖ )umax, if utarget · ut ≥ 0;
0, otherwise.

,

where umax is set to 0.036 m/s.
The angular velocity ω of the robot is determined by a proportional controller

that calculates the deviation of the desired angle from the current heading of the
robot: ω = Kp(� utarget − � ut), where Kp is a proportionality constant whose
value is set to 0.5 s−1. Finally, the rotation speeds of the left (NL) and right
(NR) motors are set to:

NL =
(
u+

ω

2
l
) 1
r
; NR =

(
u− ω

2
l
) 1
r
,

where l is the distance between the wheels and r is their radius.

3 Experiments

In this section, we first introduce the metrics and the experimental setup used to
evaluate the proposed methodology. We then present the results in a stationary
and a non-stationary environment.

3.1 Metrics

In flocking, we are interested in having a group of robots that move compactly,
coherently, within their sensory range and without collisions. Furthermore, the
group should be aligned towards a common direction (in our case the goal di-
rection) and move towards that direction. In this paper, we use two metrics as
in [14]: order and accuracy.

Order: The order metric ψ is used to measure the angular order of the robots.
ψ ≈ 1 when the group has a common heading and ψ � 1 when each robot
is pointing in a random, different direction. The order is defined as:

ψ =
1
N

‖a‖ =
1
N

‖
N∑

i=1

ejθi‖,

where N is the total number of robots in the experiment, and a is the
vectorial sum of the measured headings of the N robots.

Accuracy: The accuracy metric δ is used to measure how accurately close to
the target direction (dependent on the task) robots are moving. δ ≈ 1 when
robots are perfectly aligned (which corresponds also to a high value for the
order metric ψ ≈ 1) towards the correct direction of motion. As in [1],
accuracy can be defined as:

δ = 1 −
√

2 (1 − ψcos(� a − � g))
2

,

where � a is the direction of a and � g is the goal direction with respect to
the common reference frame.
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3.2 The Task and the Experimental Setup

In our experiments, N mobile robots are placed at random positions and with
random orientations in an empty arena of 5 meters × 5 meters. Each robot is a
realistic simulation of a foot-bot, in development for the Swarmanoid project2.
We utilized the following sensors and actuators: i) A light sensor, that is able
to perceive a noisy light gradient around the robot. It is used to measure θr,
the orientation of robot r with respect to a common light source. ii) A range
and bearing communication system, with which a robot can send a message to
other robots that are within 2 meters and in line of sight [17]. iii) Two wheels
actuators, that are used to control independently the left and right wheels speed
of the robot. iv) 24 LEDs and a camera, which are used to detect distance and
bearing from other robots in the proximal control behavior (see Section 2.1). We
conducted two sets of experiments.

Stationary environment: In a stationary environment, a proportion ρ of ran-
domly selected robots are given the information about the goal direction g.
All the other robots remain uninformed for the entire duration of the simu-
lation. In every run, we randomly choose g, as well as the selection of robots
that are informed. The duration of one run is 100 simulated seconds.

Non-stationary environment: A non-stationary environment consists of four
stationary phases of equal length. The proportion of informed robots ρ is kept
fixed during the entire run. However, at the beginning of every stationary
phase, the informed robots are reselected at random. Also, the goal direction
g changes randomly from one stationary phase to the next one. The duration
of one run is 250 simulated seconds.

In the stationary environment, we study the effect of changing the swarm size
N and the proportion of informed robots ρ. In the non-stationary environment,
we also study the effect of noise in the heading alignment vector h. We modeled
this noise as a uniformly distributed random variable controlled by a scaling
parameter σ ∈ [0, 1], which is used to add noise to θr, the robot’s measured
heading: θ̃r = θr + U(−σ2π,+σ2π). For each experimental setting, we execute
100 runs and we report the average results.

3.3 Results in Stationary Environments

The effect of varying the swarm size N is shown in Figure 1a. The information-
aware communication strategy outperforms the classical heading communication
strategy, in the sense that it achieves higher accuracy both with small (10) and
large (100) swarms. In both strategies, the convergence speed is higher with
the smaller swarm size. This can be explained by the fact that smaller swarms
have smaller inertia than larger swarms. However, in the heading communication
strategy, the accuracy level reached with a larger swarm is higher than the one

2 http://www.swarmanoid.org

http://www.swarmanoid.org
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Fig. 1. Information-aware communication against heading communication in a station-
ary environment: (a) effect of varying swarm size N with fixed ρ = 0.25 and σ = 0; (b)
effect of varying the percentage of informed robots ρ with fixed N = 100 and σ = 0

achieved with a smaller swarm. This result is consistent with the findings of [1],
which state that the needed proportion of informed robots to achieve a given
level of accuracy becomes smaller for increasing swarm sizes.

The effect of varying the proportion of informed robots ρ is shown in Fig-
ure 1b. Also in this case, the information-aware communication strategy outper-
forms the classical heading communication. In both strategies, more informed
robots corresponds to higher accuracy. With a proportion of 1% informed robots
(corresponding to 1 robot), the classical alignment communication strategy can-
not achieve an increasing accuracy over time, which means that at the end of
the simulation robots are randomly oriented as they were at the beginning. Dif-
ferently, the proposed information-aware communication strategy can cope also
with a very small proportion of informed robots.

3.4 Results in Non-stationary Environments

The effect of varying the swarm size N is shown in Figure 2a. The same trends
observed in the stationary environment are also present here: The information-
aware communication strategy always outperforms the classical alignment com-
munication. However, here we observe an interesting phenomenon: The accuracy
convergence speed of the information-aware communication strategy in the ini-
tial stationary phase is lower than the one in the subsequent three stationary
phases. This can be explained by the order shown in Figure 2b. The initial order
of the system is very low, and gets higher and higher towards the end of the first
stationary phase. When the change in the environment occurs, order decreases
but does not reach the initial, very low values for any of the techniques. This
means that the swarm is able to make a transition from an ordered state to
another ordered state without a detrimental impact on the order itself, which in
turn corresponds to faster adaptation to changes in the environment.
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Fig. 2. Information-aware communication againts heading communication in a non-
stationary environment: effect on the accuracy (a) and on the order (b) of varying
swarm size N with fixed ρ = 0.25 and σ = 0, (c) effect of varying the percentage of
informed robots ρ with fixed N = 100 and σ = 0; (d) effect of adding noise σ = 0.25
with fixed N = 100 and ρ = 0.25.

The effect of varying the proportion of informed robots ρ is shown in Figure 2c.
The same trends observed in the stationary case apply in this case. Hence, the
information-aware communication strategy scales well to the non-stationary case
even when only 1% of the robots (in this case only one robot) are informed.

Finally, the effect of adding noise σ in the alignment is shown in Figure 2d. As
we can see, noise has a non-significant impact on the accuracy of the information-
aware communication strategy, which still continues to outperform the classical
alignment communication strategy.

4 Conclusions and Future Work

In this paper, we proposed a communication strategy, called information-aware
communication, for heading alignment in self-organized flocking. In the system,
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a swarm of robots is decomposed into informed and uninformed robots: informed
robots possess information about a goal direction, whereas uninformed robots
do not. The proposed strategy works as follows: each robot communicates the
goal direction when it is informed, whereas it communicates the average of its
neighbors messages when it is uninformed. We compared this strategy with the
heading communication strategy, similar to those used in the literature, in which
each robot communicates directly its own heading.

We conducted two sets of experiments. The first set is executed in a sta-
tionary environment, where the goal direction and the informed robots do not
change over time. The second set is executed in a non-stationary environment,
where both the goal direction and the informed robots change over time. Re-
sults show that the proposed information-aware communication strategy always
outperforms the heading communication strategy. Furthermore, the proposed
approach is also robust against noise in the alignment, and it achieves high
accuracy values even if only few robots in a large swarm are informed.

The presented work can be extended in many ways. First, a more complete
scenario may include multiple sources of different information which can be con-
flicting, and perceived by different robots in different ways. In this scenario, we
may need the swarm to be coherent while heading towards a common direction,
or split to different sub-groups, depending on the application. To cope with this
scenario, we might need to include some measure of information quality, per-
ceived by each robot, which can be used to determine a new communication
strategy. Secondly, we plan to port the presented work into real robots. We be-
lieve that the set of assumptions made in this work are all compatible with future
real robots experiments, with the exception of the one in which we assume that
all robots are able to perceive a common environmental cue. As a matter of fact,
the foot-bot robots that we will use are not equipped with a compass, and the
light sensor cannot be used for such an aim because the perception of light is
not uniform in the swarm due to the robots shadowing each other or to their
varying distance from the light source. To avoid the need of a common environ-
mental cue, we plan to extend the information-aware communication strategy to
incorporate the capabilities of a situated communication mechanism, in which
also the range and bearing of the sender is available and has a meaning.

Acknowledgments. This work was supported by the SWARMANOID project
funded by the Future and Emerging Technologies programme (IST-FET) of the
European Commission (grant IST-022888). M. Birattari and M. Dorigo acknowl-
edge support from the F.R.S.-FNRS of the French Community of Belgium.

References

1. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433, 513–516 (2005)

2. King, A.J., Johnson, D.D.P., Van Vugt, M.: The origins and evolution of leadership.
Current biology 19(19), 911–916 (2009)



340 E. Ferrante et al.

3. Stewart, K.J., Harcourt, A.H.: Gorillas’ vocalizations during rest periods: signals
of impending departure? Behaviour 130(1), 29–40 (1994)

4. Beekman, M., Fathke, R., Seeley, T.: How does an informed minority of scouts
guide a honeybee swarm as it flies to its new home? Animal Behaviour 71(1),
161–171 (2006)

5. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraulaz,
G.: Self-Organization in Biological Systems. Princeton University Press, Princeton
(2001)

6. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Stone,
M.C. (ed.) SIGGRAPH 1987: Proc. of the 14th Annual Conference on Computer
graphics and Interactive Techniques, pp. 25–34. ACM, New York (1987)
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