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Abstract - In this paper we present ACS, a distributed 
algorithm for the solution of combinatorial optimization 
problems which was inspired by the observation of real 
colonies of ants. We apply ACS to both symmetric and 
asymmetric traveling salesman problems. Results show 
that ACS is able to find good solutions to these problems. 

I. Introduction 
In this paper we present Ant Colony System (ACS), a 

novel distributed approach to combinatorial optimization 
based on the observation of real ant colonies behavior. ACS 
finds its ground in one of the authors previous work on the 
so-called Ant System (AS) [1],[2],[51,[71 and in Ant-Q [81 
an extension of AS with Q-learning [12], a reinforcement 
learning technique. In particular, ACS is a revisited version 
of Ant-Q where a different way to update the experience 
accumulated by the artificial ants has been introduced [6]. 

All the mentioned systems belong to the Artificial Ant 
Colonies (AAC) family of algorithms that has been applied 
to various combinatorial optimization problems like the 
symmetric and asymmetric traveling salesman problems 
(TSP and ATSP respectively), the quadratic assignment 
problem [lo], and the job-shop scheduling problem [3]. 

This paper is centered on the presentation of the ACS 
algorithm and on its application to both the symmetric and 
asymmetric versions of the TSP. 

11. The ACS algorithm 
We introduce the ACS algorithm by its application to the 

traveling salesman problem (TSP) or to the more general 
asymmetric traveling salesman problem (ATSP). They are 
defined as follows. 
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Let V =  {v,, ... , v n )  be a set of cities, 
A = { (r,s) : r,sE V} be the edge set, and drs= dsr be a cost 
measure associated with edge (r,s) E A.  
The TSP is the problem of finding a minimal length closed 
tour that visits each city once. 
In the case cities vi E V are given by their coordinates (xi, yi) 
and drs is the Euclidean distance between r and s then we 
have an Euclidean TSP. 

ATSP 
If d, # dsr for at least one (r,s) then the TSP becomes an 
ATSP. 

In the following of this section we will talk generically of 
ATSP problems, which includes TSP as a special case. 

Let k be an agent whose task is to make a tour: visit all 
the cities and return to the starting one. Associated to k 
there is the list Jk(r) of cities still to be visited, where r is the 
current city (this is equivalent to say that agent k remembers 
already visited cities). An agent k situated in city Y moves to 
city s using the following rule, called pseudo-random- 
proportional action choice rule (or state transition rule) : 
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otherwise (exploitation) i s  
where: 

~ ( r , s ) ,  is a positive real value associated to edge (YJ) and 
is the ACS algorithm counterpart of pheromone left by 
the real ants. z(r,s)'s are changed at run time and are 
intended to indicate how useful it is to make move s (i.e., 
to go to city s) when in state r. 
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q(r,s) ,  is a heuristic function which evaluates the utility 
of move s when in city r. For example, in the ATSP 
q(r,s)  is the inverse of the distance between cities r and  s. 
Parameter p weigh the relative importance of the 
heuristic function. 
q is a value chosen randomly with uniform probability in 
[0, 11, and qo (O< q , l l )  is a parameter: the smaller qo the 
higher the probability to make a random choice. In short 
4,, determines the relative importance of exploitation 
versus exploration in formula (1). 
S is a random variable selected according to the 
distribution given by formula (2) which gives the 
probability with which an agent in city r chooses the city 
s to move to. 

l o  otherwise 

This state transition rule will favor transitions towards 
nodes connected by short edges with an high amount of trail. 
Formula (1) shows how a transition can either exploit 
accumulated knowledge about the problem (knowledge 
accumulates in the form of different amount of trail on 
edges) or explore new edges (exploration is biased towards 
short and high trail edges). 

T h e  l o c a l - u p d a t i n g  r u l e  

While building a solution (i.e., a tour) of the TSP, ants 
visit edges and change their trail by applying the following 
local updating rule: 

where z,, is a parameter. 
formula (3) will be discussed in Section 111. 

The effect of the application of 

reinforcement (as it happens, for example, in genetic 
algorithms). 

We have defined two different ways to choose the ant that 
is allowed to perform the global updating: iteration-best 
updating and global-best updating. In the iteration-best 
method the selected agent is the agent who did the shortest 
tour in the current iteration while in the global-best method 
the selected agent is the agent who did the shortest tour since 
the beginning of the computation’. In all the experiments 
presented in this paper we will apply the global-best 
updating strategy. 

In words the ACS algorithm is presented in Figure I and 
can be described as follows. 

First, at Phase 1 there is an initialization phase in which 
an initial value zo is given to z-values, and each agent k is 
placed on a city rkl chosen according to some policy (in the 
following experiments we place maximum one agent for 
each city). Also, the set Jk(rk, ) of the still to be visited cities 
is initialized. 

Then, at Phase 2, a cycle, in which each of the m agents 
makes a move and the ~ ( r , s ) ’ s  are updated according to 
formula (3 ) ,  is repeated until each agent has finished its tour 
and is back in the starting city. 

At Phase 3, the length Lhr,t of the tour done by agent who 
made the shortest tour is computed, and it is used to compute 
the delayed reinforcements (Lhr,f-lirT) I .  Then z(r,s)’s are 
updated using formula (4). 

Finally, Phase 4 checks whether a termination condition 
is met, and if it is not the case the algorithm returns to Phase 
2. 

Usually the termination condition is verified after a fixed 
number of cycles, or when no improvement is obtained for a 
fixed number of cycles. (In experiments in which the optimal 
value was known a priori the algorithm was stopped as soon 
as the optimum was found.) 

We would like to point out that in ACS (and in general 
in any application of AAC systems to ATSP) the only 
knowledge related to ATSP problems is the heuristic 
function q(r,s)  that represents the inverse distance between 
node r and node s. In ACS we do not use any local tour 
improvement heuristics (like r-opt, LinkKerningan, see [9] 
and [ I l l  for a complete presentation of TSP heuristics) to 
modify the results of our computation and we do not 
maintain any explicit notion of tour. Tours are globally used 
(see formula 4) to reinforce a set of edges in the ATSP 
graph but, later on, we only use the accumulated trail to 
generate new tours. Possible extensions of ACS that 
includes dedicated ATSP heuristics will be discussed in 
section V. 

T h e  g l o b a l - u p d a t i n g  r u l e  

Once all ants have completed their solutions, edges (r,s)  
belonging to the shortest tour made by an ant have their trail 
changed by applying the following global updating rule: 

z ( r ,  s):= (I - a )  z (Y, s) + a . (Lbest-iter )-l (4) 

Global trail updating provides a higher amount of trail to 
shorter tours. In a sense. this is similar to a reinforcement 
learning scheme in which better get a higher An analisys of the behaviour of Ant-Q (the predecessor of ACS) using 

these two different updating policies has been presented in [SI. 
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1 .I* Initialization phase "I 

For k:=l to m do 
For each pair (r,s) T(r,s):= z, End-for 

Let rkl be the starting city for agent k 
Jk(rkl):= { 1, ..., n} - r,, 
I" Jk(rk,) is the set of yet to be visited cities f o r  

agent k in city rk, "I 
rk:= r,, I" rk is the city where agent k is located "I 

End-for 
2. I" This is the phase in which agents build their tours. The 

tour oj agent k is stored in Tour,.. "1 
For i:=l to n do 

Then 
If i<n 

For k:=l to m do 
Choose the next city sk according to formula (1) 
and formula (2) 
If i a - 1  Then Jk(sk):= Jk(rk) - sk 
If i=n-1 Then J,(s,):= Jk(rk) - sk + rk, 
Tour,(i):=(r, ,sk) 

End-for 

For k:=l to m do I" In this cycle all the agents go 

sk := r,, 
Tour,(i):=(r, ,sk) 

End-for 

Else 

back to the initial city rk, "1 

1" In this phase local updating is computed and 

For k:=l to m do 
7-values are updated using formula (3)  V 

7(rk >'k):=( l-p)T(rk 2'k)' 

rk := sk 1" New city f o r  agent k "I 
End-for 

End-for 
3. I* In this Phase delayed reinforcement is computed and 

7-values are updated Y 

Compute L, /* L, is the length of the tour done 
For k:=l to m do 

by agent k Y  
End-for 

1" Update edges belonging to Lhr,r-rtrr using formula(4) * I  
For each edge (r,s) 

End-for 

Compute Lbest-itei 

z(rk ,s,>:=(l-a)s( 'k a (Lbest ~ t e l ) . ~  

4. If (End-condition = True) 
then Print shortest of L, 

I else goto Phase 2 
Figure 1: The ACS algorithm 

111. Algorithm Analysis 
In this section we present results of a micro-level 

investigation in which we observe how trail changes on 
edges as a function of ACS performance. In all the 
experiments of this and of the following sections we set 
parameter values, if not differently indicated, as follows: 
q0=0.9, p=2, p=a=O.l, m=10, and zo=a very small constant 
(we found that a good value was (n.Lnn)-', where Lnn is the 
tour length produced by the nearest neighbor heuristic2 and 
n is the number of cities). 

In order to try to understand which mechanism ACS uses 
to direct the search we study how the trail-closeness product 

[T ( r ,  s ) ]  [TI ( r ,  SI] changes at run-time. Consider Figure 2, 
where we show how the trail-closeness product changes with 
the number of steps while ants are building a solution3 
(steps refer to the Phase 2 of the ACS algorithm): the 
abscissa goes therefore from 1 to n, where n is the number of 
cities). 

We consider three family of edges (see Figure 2): 
1. those belonging to the last best tour (BE, Best Edges), 
2. those which do not belong to the last best tour, but 

3. those that either have never or haven't for a long time 
which recently did (TE, Testable Edges), 

belonged to a best tour (UE, Uninteresting Edges). 

The average trail-closeness product is then computed as 
the average of trail-closeness values of all the edges within a 
family. The graph clearly shows that ACS favors 
exploitation of edges in BE (BE edges are chosen with 
probability q0=0.9) and exploration of edges in TE (remind 
that, since formula (2 ) ,  edges with higher trail-closeness 
product have a higher probability of being explored). 

An interesting aspect is that while edges are visited by 
ants, the application of the local updating rule, formula (3 ) ,  
makes their trail diminish, making them less and less 
attractive, and favoring therefore the exploration of not yet 
visited edges. 

Experimental observation has shown that edges in  BE, 
when ACS achieves a good performance, will be 
approximately downgraded to TE after an iteration of the 
algorithm and that edges in TE will soon be downgraded to 
UE, unless they happen to belong to a new shortest tour. 

In Figures 3 and 4 we report two typical behaviors of trail 
when the system has respectively a good or a bad 
performance. 

To be true, any very rough approximation of the optimal tour length would 
do. 
Note that the graph in Figure 2 is an abstraction of graphs obtained 
experimentally. Examples of these are given in Figure 3 and Figure 4. 
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Tigure 2. Families of edges classified according to different 
behavior with respect to the amount of trail. In this figure 
we show how the average trail level changes in each family 
during one iteration of the algorithm (i.e., during n steps}. 

Problem (cities) 

[#evaluations] 

T 

ACS ACS Best Known % Error 

Best Result Average Result 

8 ’  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 Z $ ? J 2 S % ~ % ~ Z  

kroalOO (100) 

[ l,OOO,000] 

d198 (198) 

[1,980,000] 

att532 (532) 

[ 1,000,000] 

rat778 (778) 

[I,000,000] 

fl1577 (1577) 
[I,OOO,OOO] 

Steps 

21,282 21,420 21,282 0.0 % 

[36,610] [ 141.721 

15,888 16,054 15,780 0.68 % 

[585,000] [71.15] 

28,147 28,522.80 27,686 1.67 % 

[830,658] [275.37] 

9,015 9,066 8,806 2.37% 

[991,276] [28.25] 

22,977 23,163 [22,137 - 3.27+ 

[942,0OO] [ I  16.551 22,2491 3.79 % 

TE _ _ _ _ _  . UE BE 
I 

Figure 3. Trail behavior of ACS. Problem: Ei151. Trail 
behavior when the system peformance is good. Best 
solution found after I000 iterations: 426, a= p=O.l. 

1. .. .)>, . ._ ......... ‘---- ........................ ...,. . . . . . . . . . .  

O L D  ? Z E % ~ % ~ % ~ G  
Steus 

TE - - - _ _  UE BE 

?igure 4.  Trail behavior of ACS. Problem: Ei151. Trail 
behavior when the system performance is bad. Best solution 
found after I000 iterations: 465, a=p=O.9 .  

IV. Experiments 
In this section we presents ACS results in the solution of 
different instances of TSP and ATSP proposed in the “First 
International Contest on Evolutionary Optimization” 

In the following experiments we set ACS parameters in 
the following way: q0=0.9, p=2, p=a=O.l, m=10, and 
zo=(n.L,,)-’. For each problem we performed a total number 
of evaluations4 (generated tours) given by the following 
formula: 

evalllat‘ons = 100 * problem-size * problem-type 

where problems-type=IOO for TSP and problems_type=200 
for ATSP problems. For TSP problems attS32, rat783, 
fl1577 we performed 1,000,000 evaluations. 

In Table 1 and Table 2 we report the results obtained for 
TSP an ATSP problems. In the first column we report the 
problem name, the number of cities (in parentheses) and the 
total number of evaluations (in square brackets). In the 
second column we report the best result obtained by ACS out 
of 15 trials: we give the integer length of the shortest tour, 
and the number of evaluations required to find it (in square 
brackets). In the third column we report ACS average on 15 
trials and its standard deviation in square brackets. In the 
fourth column we report the optimal result (for fl1577 we 
give, in square brackets, the known lower and upper bounds, 
given that the optimal solution is not known). In the last 
column we give the error percentage, a measure of the 
quality of the best result found by ACS: 
1 OO*((ACSBest-Result - Optimal-Result)/Optimal-Result). 

In case of m agents ACS is executed for evduutionlm iterations 

625 

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore.  Restrictions apply.



Problem (cities) 

[#evaluations] 

ACS ACS Best Known % Error 

Best Result Averaze Result 

V. Discussion and Conclusions 
In this paper we presented ACS a novel approach to 
combinatorial optimization based on the cooperation of a set 
of agents. The research was first inspired by a study of ant 
colonies behavior [4] which gave rise first to the Ant System 
[7], then to Ant-Q [8], an hybridization of AS with Q- 
learning. ACS is an extension of Ant-Q where we 
experimented a different local trial updating policy in order 
to improve the performance of the system in term of speed 
and quality of results (see [6] for a comparison between Ant- 
Q and ACS). 

Although the results presented in this paper are very 
encouraging we intend to study a specialized version of ACS 
for the solution of TSP and ATSP problems. In Figure 5 we 
report the typical behavior of ACS during the experiments 
presented in this paper. Usually, the length of the best 
solution is improved very fast in the initial phase of the 
algorithm (10% of the total number of iterations). Later on, 
(until the 50% of the total number of iterations) new good 
solutions are discovered but phenomena of local stagnation 
starts to appear. In the last phases of the computation new 
improved solutions are discovered more rarely and situations 
of local minima appears more frequently. 

p43 (43) 

ry48p (48) 

[860,0001 

[960,000] 

ft70 (7 I )  

[1,400,000] 

kroa124p (100) 

[2,000,000] 

ftvl70 (170) 

[3,400,000] 

---Best Tour Length I 

2,810 2,811.95 2,810 0.0 % 

[16,850] [1.61] 

14,422 14,565.45 14,422 0.0 % 

[233,140] [115.23] 

38,781 39,099.05 38,673 0.28 % 

[996,020] [170.32] 

36,241 36,857.00 36,230 0.03 % 

[536,170] [521.19] 

2,774 2,826.47 2,755 0.69 % 

[939,1001 L33.841 

Iterations 

Figure 5. Typical behavior of the ACS algorithm. 

We believed that, in order to escape from local minima, and 
to increase the speed of the search, one possible extension of 
ACS is the introduction of local optimization heuristics 
during agent’s computation. Our idea is to add to the 
artificial ant colony some new ant explicitly dedicated to 
local optimization. They will try to improve the best path 
applying their local optimization heuristics. In the case they 
find a solution that decreases the length of the tour, they will 
apply formula (4) changing the trial on their new best tour. 

An other possible improvement is related to the 
organization of the colony of agents. Until now, the 
population of agents that perform the search in parallel, is 
composed of identical individuals (they all have the same 
parameters). This limitation requires sometimes parameter 
recalibration in order to avoid local stagnation and to 
improve the speed of the search. 

626 

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore.  Restrictions apply.



Our idea is to take inspiration from the observation of 
natural phenomena (and in some way from Genetic 
Algorithms) and to define a population of agents with 
different structural parameters. Then, a new mechanisms 
will be introduced in ACS that will allow agents which 
perform better than others to survive and reproduce. 
Analysis will be also carried out to understand the role of the 
parameters in order to identify when and how new agents 
must be introduced into the system. 
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