
Solving Symmetric and Asymmetric TSPs
by Ant Colonies

Luca Maria Gambardella
IDSIA

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale
Corso Elvezia 36, 6900 Lugano, Switzerland

luca@idsia.ch
http://www.idsia.ch/-luca

Abstract - In this paper we present ACS, a distributed
algorithm for the solution of combinatorial optimization
problems which was inspired by the observation of real
colonies of ants. We apply ACS to both symmetric and
asymmetric traveling salesman problems. Results show
that ACS is able to find good solutions to these problems.

I. Introduction
In this paper we present Ant Colony System (ACS), a

novel distributed approach to combinatorial optimization
based on the observation of real ant colonies behavior. ACS
finds its ground in one of the authors previous work on the
so-called Ant System (AS) [1],[2],[51,[71 and in Ant-Q [81
an extension of AS with Q-learning [12], a reinforcement
learning technique. In particular, ACS is a revisited version
of Ant-Q where a different way to update the experience
accumulated by the artificial ants has been introduced [6].

All the mentioned systems belong to the Artificial Ant
Colonies (AAC) family of algorithms that has been applied
to various combinatorial optimization problems like the
symmetric and asymmetric traveling salesman problems
(TSP and ATSP respectively), the quadratic assignment
problem [lo], and the job-shop scheduling problem [3].

This paper is centered on the presentation of the ACS
algorithm and on its application to both the symmetric and
asymmetric versions of the TSP.

11. The ACS algorithm
We introduce the ACS algorithm by its application to the

traveling salesman problem (TSP) or to the more general
asymmetric traveling salesman problem (ATSP). They are
defined as follows.

0-7803-2902-3/96/ $4.00 0 1996 IEEE

Marco Dorigo
IRIDIA, UniversitC Libre de Bruxelles

Avenue Franklin Roosevelt 50
CP 19416, 1050 Bruxelles, Belgium, EU

mdorigo @ulb.ac. be
http://iridia. ulb.ac. be/dorigo/dorigo. html

Let V = {v,, ... , v n) be a set of cities,
A = { (r,s) : r,sE V} be the edge set, and drs= dsr be a cost
measure associated with edge (r,s) E A.
The TSP is the problem of finding a minimal length closed
tour that visits each city once.
In the case cities vi E V are given by their coordinates (xi, yi)
and drs is the Euclidean distance between r and s then we
have an Euclidean TSP.

ATSP
If d, # dsr for at least one (r,s) then the TSP becomes an
ATSP.

In the following of this section we will talk generically of
ATSP problems, which includes TSP as a special case.

Let k be an agent whose task is to make a tour: visit all
the cities and return to the starting one. Associated to k
there is the list Jk(r) of cities still to be visited, where r is the
current city (this is equivalent to say that agent k remembers
already visited cities). An agent k situated in city Y moves to
city s using the following rule, called pseudo-random-
proportional action choice rule (or state transition rule) :

622

otherwise (exploitation) i s
where:

~ (r , s) , is a positive real value associated to edge (YJ) and
is the ACS algorithm counterpart of pheromone left by
the real ants. z(r,s)'s are changed at run time and are
intended to indicate how useful it is to make move s (i.e.,
to go to city s) when in state r.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

http://www.idsia.ch/-luca
http://iridia

q(r,s) , is a heuristic function which evaluates the utility
of move s when in city r. For example, in the ATSP
q(r,s) is the inverse of the distance between cities r and s.
Parameter p weigh the relative importance of the
heuristic function.
q is a value chosen randomly with uniform probability in
[0, 11, and qo (O< q , l l) is a parameter: the smaller qo the
higher the probability to make a random choice. In short
4,, determines the relative importance of exploitation
versus exploration in formula (1).
S is a random variable selected according to the
distribution given by formula (2) which gives the
probability with which an agent in city r chooses the city
s to move to.

l o otherwise

This state transition rule will favor transitions towards
nodes connected by short edges with an high amount of trail.
Formula (1) shows how a transition can either exploit
accumulated knowledge about the problem (knowledge
accumulates in the form of different amount of trail on
edges) or explore new edges (exploration is biased towards
short and high trail edges).

T h e l o c a l - u p d a t i n g r u l e

While building a solution (i.e., a tour) of the TSP, ants
visit edges and change their trail by applying the following
local updating rule:

where z,, is a parameter.
formula (3) will be discussed in Section 111.

The effect of the application of

reinforcement (as it happens, for example, in genetic
algorithms).

We have defined two different ways to choose the ant that
is allowed to perform the global updating: iteration-best
updating and global-best updating. In the iteration-best
method the selected agent is the agent who did the shortest
tour in the current iteration while in the global-best method
the selected agent is the agent who did the shortest tour since
the beginning of the computation’. In all the experiments
presented in this paper we will apply the global-best
updating strategy.

In words the ACS algorithm is presented in Figure I and
can be described as follows.

First, at Phase 1 there is an initialization phase in which
an initial value zo is given to z-values, and each agent k is
placed on a city rkl chosen according to some policy (in the
following experiments we place maximum one agent for
each city). Also, the set Jk(rk,) of the still to be visited cities
is initialized.

Then, at Phase 2, a cycle, in which each of the m agents
makes a move and the ~ (r , s) ’ s are updated according to
formula (3) , is repeated until each agent has finished its tour
and is back in the starting city.

At Phase 3, the length Lhr,t of the tour done by agent who
made the shortest tour is computed, and it is used to compute
the delayed reinforcements (Lhr,f-lirT) I . Then z(r,s)’s are
updated using formula (4).

Finally, Phase 4 checks whether a termination condition
is met, and if it is not the case the algorithm returns to Phase
2.

Usually the termination condition is verified after a fixed
number of cycles, or when no improvement is obtained for a
fixed number of cycles. (In experiments in which the optimal
value was known a priori the algorithm was stopped as soon
as the optimum was found.)

We would like to point out that in ACS (and in general
in any application of AAC systems to ATSP) the only
knowledge related to ATSP problems is the heuristic
function q(r,s) that represents the inverse distance between
node r and node s. In ACS we do not use any local tour
improvement heuristics (like r-opt, LinkKerningan, see [9]
and [I l l for a complete presentation of TSP heuristics) to
modify the results of our computation and we do not
maintain any explicit notion of tour. Tours are globally used
(see formula 4) to reinforce a set of edges in the ATSP
graph but, later on, we only use the accumulated trail to
generate new tours. Possible extensions of ACS that
includes dedicated ATSP heuristics will be discussed in
section V.

T h e g l o b a l - u p d a t i n g r u l e

Once all ants have completed their solutions, edges (r,s)
belonging to the shortest tour made by an ant have their trail
changed by applying the following global updating rule:

z (r , s):= (I - a) z (Y, s) + a . (Lbest-iter)-l (4)

Global trail updating provides a higher amount of trail to
shorter tours. In a sense. this is similar to a reinforcement
learning scheme in which better get a higher An analisys of the behaviour of Ant-Q (the predecessor of ACS) using

these two different updating policies has been presented in [SI.

623

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

1 .I* Initialization phase "I

For k:=l to m do
For each pair (r,s) T(r,s):= z, End-for

Let rkl be the starting city for agent k
Jk(rkl):= { 1, ..., n} - r,,
I" Jk(rk,) is the set of yet to be visited cities f o r

agent k in city rk, "I
rk:= r,, I" rk is the city where agent k is located "I

End-for
2. I" This is the phase in which agents build their tours. The

tour oj agent k is stored in Tour,.. "1
For i:=l to n do

Then
If i<n

For k:=l to m do
Choose the next city sk according to formula (1)
and formula (2)
If i a - 1 Then Jk(sk):= Jk(rk) - sk
If i=n-1 Then J,(s,):= Jk(rk) - sk + rk,
Tour,(i):=(r, ,sk)

End-for

For k:=l to m do I" In this cycle all the agents go

sk := r,,
Tour,(i):=(r, ,sk)

End-for

Else

back to the initial city rk, "1

1" In this phase local updating is computed and

For k:=l to m do
7-values are updated using formula (3) V

7(rk >'k):=(l-p)T(rk 2'k)'

rk := sk 1" New city f o r agent k "I
End-for

End-for
3. I* In this Phase delayed reinforcement is computed and

7-values are updated Y

Compute L, /* L, is the length of the tour done
For k:=l to m do

by agent k Y
End-for

1" Update edges belonging to Lhr,r-rtrr using formula(4) * I
For each edge (r,s)

End-for

Compute Lbest-itei

z(rk ,s,>:=(l-a)s('k a (Lbest ~ t e l) . ~

4. If (End-condition = True)
then Print shortest of L,

I else goto Phase 2
Figure 1: The ACS algorithm

111. Algorithm Analysis
In this section we present results of a micro-level

investigation in which we observe how trail changes on
edges as a function of ACS performance. In all the
experiments of this and of the following sections we set
parameter values, if not differently indicated, as follows:
q0=0.9, p=2, p=a=O.l, m=10, and zo=a very small constant
(we found that a good value was (n.Lnn)-', where Lnn is the
tour length produced by the nearest neighbor heuristic2 and
n is the number of cities).

In order to try to understand which mechanism ACS uses
to direct the search we study how the trail-closeness product

[T (r , s)] [TI (r , SI] changes at run-time. Consider Figure 2,
where we show how the trail-closeness product changes with
the number of steps while ants are building a solution3
(steps refer to the Phase 2 of the ACS algorithm): the
abscissa goes therefore from 1 to n, where n is the number of
cities).

We consider three family of edges (see Figure 2):
1. those belonging to the last best tour (BE, Best Edges),
2. those which do not belong to the last best tour, but

3. those that either have never or haven't for a long time
which recently did (TE, Testable Edges),

belonged to a best tour (UE, Uninteresting Edges).

The average trail-closeness product is then computed as
the average of trail-closeness values of all the edges within a
family. The graph clearly shows that ACS favors
exploitation of edges in BE (BE edges are chosen with
probability q0=0.9) and exploration of edges in TE (remind
that, since formula (2) , edges with higher trail-closeness
product have a higher probability of being explored).

An interesting aspect is that while edges are visited by
ants, the application of the local updating rule, formula (3) ,
makes their trail diminish, making them less and less
attractive, and favoring therefore the exploration of not yet
visited edges.

Experimental observation has shown that edges in BE,
when ACS achieves a good performance, will be
approximately downgraded to TE after an iteration of the
algorithm and that edges in TE will soon be downgraded to
UE, unless they happen to belong to a new shortest tour.

In Figures 3 and 4 we report two typical behaviors of trail
when the system has respectively a good or a bad
performance.

To be true, any very rough approximation of the optimal tour length would
do.
Note that the graph in Figure 2 is an abstraction of graphs obtained
experimentally. Examples of these are given in Figure 3 and Figure 4.

624

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

......... UE:uninteresting edges
c

3 BE:Edges of the last best tour

_ - _ _ _ -:Edges which recentely
belonged to a best tour

-----____
--------------_______________

m 5 4 1 I I I ~ I I ~ ~

...

0 5 10 15 20 25 30 35 40 45 50 51

Steps

I

Tigure 2. Families of edges classified according to different
behavior with respect to the amount of trail. In this figure
we show how the average trail level changes in each family
during one iteration of the algorithm (i.e., during n steps}.

Problem (cities)

[#evaluations]

T

ACS ACS Best Known % Error

Best Result Average Result

8 ’
.

2 Z $? J 2 S % ~ % ~ Z

kroalOO (100)

[l,OOO,000]

d198 (198)

[1,980,000]

att532 (532)

[1,000,000]

rat778 (778)

[I,000,000]

fl1577 (1577)
[I,OOO,OOO]

Steps

21,282 21,420 21,282 0.0 %

[36,610] [141.721

15,888 16,054 15,780 0.68 %

[585,000] [71.15]

28,147 28,522.80 27,686 1.67 %

[830,658] [275.37]

9,015 9,066 8,806 2.37%

[991,276] [28.25]

22,977 23,163 [22,137 - 3.27+

[942,0OO] [I 16.551 22,2491 3.79 %

TE _ _ _ _ _ . UE BE
I

Figure 3. Trail behavior of ACS. Problem: Ei151. Trail
behavior when the system peformance is good. Best
solution found after I000 iterations: 426, a= p=O.l.

1. .. .)>, . ._ ‘----,.

O L D ? Z E % ~ % ~ % ~ G
Steus

TE - - - _ _ UE BE

?igure 4. Trail behavior of ACS. Problem: Ei151. Trail
behavior when the system performance is bad. Best solution
found after I000 iterations: 465, a=p=O.9 .

IV. Experiments
In this section we presents ACS results in the solution of
different instances of TSP and ATSP proposed in the “First
International Contest on Evolutionary Optimization”

In the following experiments we set ACS parameters in
the following way: q0=0.9, p=2, p=a=O.l, m=10, and
zo=(n.L,,)-’. For each problem we performed a total number
of evaluations4 (generated tours) given by the following
formula:

evalllat‘ons = 100 * problem-size * problem-type

where problems-type=IOO for TSP and problems_type=200
for ATSP problems. For TSP problems attS32, rat783,
fl1577 we performed 1,000,000 evaluations.

In Table 1 and Table 2 we report the results obtained for
TSP an ATSP problems. In the first column we report the
problem name, the number of cities (in parentheses) and the
total number of evaluations (in square brackets). In the
second column we report the best result obtained by ACS out
of 15 trials: we give the integer length of the shortest tour,
and the number of evaluations required to find it (in square
brackets). In the third column we report ACS average on 15
trials and its standard deviation in square brackets. In the
fourth column we report the optimal result (for fl1577 we
give, in square brackets, the known lower and upper bounds,
given that the optimal solution is not known). In the last
column we give the error percentage, a measure of the
quality of the best result found by ACS:
1 OO*((ACSBest-Result - Optimal-Result)/Optimal-Result).

In case of m agents ACS is executed for evduutionlm iterations

625

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

Problem (cities)

[#evaluations]

ACS ACS Best Known % Error

Best Result Averaze Result

V. Discussion and Conclusions
In this paper we presented ACS a novel approach to
combinatorial optimization based on the cooperation of a set
of agents. The research was first inspired by a study of ant
colonies behavior [4] which gave rise first to the Ant System
[7], then to Ant-Q [8], an hybridization of AS with Q-
learning. ACS is an extension of Ant-Q where we
experimented a different local trial updating policy in order
to improve the performance of the system in term of speed
and quality of results (see [6] for a comparison between Ant-
Q and ACS).

Although the results presented in this paper are very
encouraging we intend to study a specialized version of ACS
for the solution of TSP and ATSP problems. In Figure 5 we
report the typical behavior of ACS during the experiments
presented in this paper. Usually, the length of the best
solution is improved very fast in the initial phase of the
algorithm (10% of the total number of iterations). Later on,
(until the 50% of the total number of iterations) new good
solutions are discovered but phenomena of local stagnation
starts to appear. In the last phases of the computation new
improved solutions are discovered more rarely and situations
of local minima appears more frequently.

p43 (43)

ry48p (48)

[860,0001

[960,000]

ft70 (7 I)

[1,400,000]

kroa124p (100)

[2,000,000]

ftvl70 (170)

[3,400,000]

---Best Tour Length I

2,810 2,811.95 2,810 0.0 %

[16,850] [1.61]

14,422 14,565.45 14,422 0.0 %

[233,140] [115.23]

38,781 39,099.05 38,673 0.28 %

[996,020] [170.32]

36,241 36,857.00 36,230 0.03 %

[536,170] [521.19]

2,774 2,826.47 2,755 0.69 %

[939,1001 L33.841

Iterations

Figure 5. Typical behavior of the ACS algorithm.

We believed that, in order to escape from local minima, and
to increase the speed of the search, one possible extension of
ACS is the introduction of local optimization heuristics
during agent’s computation. Our idea is to add to the
artificial ant colony some new ant explicitly dedicated to
local optimization. They will try to improve the best path
applying their local optimization heuristics. In the case they
find a solution that decreases the length of the tour, they will
apply formula (4) changing the trial on their new best tour.

An other possible improvement is related to the
organization of the colony of agents. Until now, the
population of agents that perform the search in parallel, is
composed of identical individuals (they all have the same
parameters). This limitation requires sometimes parameter
recalibration in order to avoid local stagnation and to
improve the speed of the search.

626

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

Our idea is to take inspiration from the observation of
natural phenomena (and in some way from Genetic
Algorithms) and to define a population of agents with
different structural parameters. Then, a new mechanisms
will be introduced in ACS that will allow agents which
perform better than others to survive and reproduce.
Analysis will be also carried out to understand the role of the
parameters in order to identify when and how new agents
must be introduced into the system.

VI. Acknowledgments
This work has been partially supported by a CEC Human
Capital and Mobility (HCM) contract for the years
1994/1996 to Marco Dorigo.

References
Colorni A., M. Dorigo and V. Maniezzo, 1991.
Distributed Optimization by Ant Colonies. Proceedings
of ECAL91 - European Conference on Artificial Life,
Paris, France, F.Varela and P.Bourgine (Eds.), Elsevier
Publishing, 134-142.

Colorni A., M. Dorigo and V. Maniezzo, 1992. An
Investigation of some Properties of an Ant Algorithm.
Proceedings of the Parallel Problem Solving from
Nature Conference (PPSN 921, Brussels, Belgium,
R.Manner and B.Manderick (Eds.), Elsevier
Publishing, 509-520.

Colorni A., M. Dorigo, V. Maniezzo and M. Trubian,
1994. Ant system for Job-shop Scheduling. JORBEL -
Belgian Journal of Operations Research, Statistics and
Computer Science, 34, 1, 39-53.
Denebourg J.L., J.M. Pasteels and J.C. Verhaeghe,
1983. Probabilistic Behaviour in Ants: a Strategy of
Errors'? Journal of Theoretical Biology, 105, 259-271.

Dorigo M., 1992. Optimization, Learning and Natural
Algorithms. Ph.D.Thesis, Politecnico di Milano, Italy,
EU. (In Italian.)

Dorigo M. and L.M. Gambardella, 1996. Ant Colony
system Tech. Rep. lRIDIA/96-01, UniversitC Libre de
Bruxelles, Belgium, EU..
Dorigo M., V. Maniezzo and A. Colorni, 1996. The
Ant System: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part-B, 26, 1, 29-41

Gambardella L. and M. Dorigo, 1995. Ant-Q: A
Reinforcement Learning approach to the traveling
salesman problem. Proceedings of ML-95, Twelfth
International Conference.on Machine Learning, Tahoe

City, CA, A. Prieditis and S . Russell (Eds.), Morgan
Kaufmann, 252-260.

[9] Johnson D.S. and L.A. McGeoch, in press. The
Travelling Salesman Problem: A Case Study in Local
Optimization. In Local Search in Combinatorial
Optimization, E.H.L. Aarts and J.K. Lenstra (Eds.),
Wiley, New York.

[lo] Maniezzo V., A.Colorni and M.Dorigo, 1994. The Ant
System Applied to the Quadratic Assignment Problem.
Tech. Rep. IRIDIM94-28, UniversitC Libre de
Bruxelles, Belgium, EU.

[111 Reinelt G., 1994. The traveling salesman:
Computational solutions for TSP applications.
Springer-Verlag .

1121 Watkins C.J.C.H., 1989. Learning with delayed
rewards. Ph. D. dissertation, Psychology Department,
University of Cambridge, England.

627

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on May 16, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

