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We present a new local optimizer called SOP-3-exchange for the
sequential ordering problem that extends a local search for the
traveling salesman problem to handle multiple constraints di-
rectly without increasing computational complexity. An algo-
rithm that combines the SOP-3-exchange with an Ant Colony
Optimization algorithm is described, and we present experi-
mental evidence that the resulting algorithm is more effective
than existing methods for the problem. The best-known results
for many of a standard test set of 22 problems are improved
using the SOP-3-exchange with our Ant Colony Optimization
algorithm or in combination with the MPO/AI algorithm (Chen
and Smith 1996).

T here are many NP-hard combinatorial optimization prob-
lems for which it is impractical to find an optimal solution.
Among them is the sequential ordering problem (SOP). For
such problems the only reasonable enterprise is to look for
heuristic algorithms that quickly produce good, although
not necessarily optimal, solutions. These algorithms often
use some problem-specific knowledge either to build or to
improve solutions. Recently, many researchers have focused
their attention on a new class of algorithms called metaheu-
ristics. Metaheuristics are rather general algorithmic frame-
works that can be applied to several different optimization
problems with few modifications. Examples of metaheuris-
tics are simulated annealing (Kirkpatrick et al. 1983), evolu-
tionary computation (Holland 1975; Fogel 1994), and tabu
search (Glover 1989a,b). Metaheuristics are often inspired by
natural processes. In fact, the above-cited metaheuristics
were inspired, respectively, by the physical annealing pro-
cess, the Darwinian evolutionary process, and the clever
management of memory structures. One of the most recent
nature-inspired metaheuristics is Ant Colony Optimization
(Dorigo and Di Caro 1999; Dorigo et al. 1999; Dorigo et al.
1991; Dorigo et al. 1996; Dorigo 1992). There, the inspiring
natural process is the foraging behavior of ants. Ant Colony
System (ACS), a particular instance of Ant Colony Optimi-
zation (ACO), has recently been shown (Gambardella and
Dorigo 1996; Dorigo and Gambardella 1997) to be competi-
tive with other metaheuristics on the symmetric and asym-
metric traveling salesman problems (TSP and ATSP). Al-
though this is an interesting and promising result, it remains

clear that Ant Colony Optimization, as well as other meta-
heuristics, in many cases cannot compete with specialized
local search methods. A current trend (Johnson and Mc-
Geoch 1997) is therefore to associate with the metaheuristic
a local optimizer, giving birth to so-called hybrid methods.
This is an interesting marriage since local optimizers often
suffer from the initialization problem. That is, the performance
of a local optimizer is often a function of the initial solution
to which it is applied. For example, multistart, that is, the
application of local search to different, randomly generated,
initial solutions has been found to be a poor choice, since the
local search procedure spends most of its time improving
the initial low-quality solution (Aarts and Lenstra 1997).
Therefore, it becomes interesting to find good metaheuristic-
local optimizer couplings, where a coupling is good if the
metaheuristic generates initial solutions that can be carried
to very good local optima by the local optimizer.

In previous work we have shown that local search plays
an important role in ACO. For example, Dorigo and Gam-
bardella (1997) have applied ACS with an extended version
of the 3-opt local search to symmetric and asymmetric TSPs
obtaining very good results. Also, Gambardella et al. (1999a)
have proposed MACS-VRPTW (Multiple ACS for the Vehi-
cle Routing Problem with Time Windows), a hierarchically
organized ACS in which two different colonies successively
optimize a multiple objective function exploiting, among
other things, local search. MACS-VRPTW has been shown to
be competitive with the best-known existing methods in
terms of both solution quality and computation and has
been able to improve some of the best-known solutions for a
number of problem instances in the literature.

Finally, Gambardella et al. (1999b) have recently applied
HAS-QAP, an ACO-related algorithm that uses a simple
form of local search, to the quadratic assignment problem
(QAP), obtaining solutions that are better than those ob-
tained by the best-known algorithms on structured, real-
world problem instances; comparison includes reactive tabu
search (Battiti and Tecchiolli 1994), robust tabu search (Tail-
lard 1991), simulated annealing (Connolly 1990), and genetic
hybrid search (Fleurent and Ferland 1994).
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In this paper we attack the SOP by an ACO algorithm
coupled with SOP-3-exchange, a novel local search proce-
dure specifically designed for the SOP. The resulting Hybrid
Ant System for the SOP (HAS-SOP; Gambardella and
Dorigo 1997) outperforms all known heuristic approaches to
the SOP (code and up-to-date information are maintained at
http://www.idsia.ch/luca/has-sop.html). Also, we have
been able to improve many of the best results published in
TSPLIB (the TSPLIB can be accessed at http://softlib.rice.
edu/softlib/tsplib/), one of the most important databases of
difficult TSP-related optimization problems available on the
Internet.

1. The Sequential Ordering Problem
The sequential ordering problem with precedence con-
straints (SOP) was first formulated by Escudero (1988) to
design heuristics for a production planning system. It con-
sists of finding a minimum weight Hamiltonian path on a
directed graph with weights on the arcs and the nodes,
subject to precedence constraints among nodes.

1.1 Problem Definition
Consider a complete graph G � (V, A) with node set V and
arc set A, where nodes correspond to jobs 0, . . . , i, . . . , n
(n � 1 � �V�). A cost tij � �, with tij � 0, is associated to each
arc (i, j). This cost represents the waiting time between the
end of job i and the beginning of job j. A cost pi � �, pi � 0,
representing the processing time of job i, is associated with
each node i. The set of nodes V includes a starting node
(node 0) and a final node (node n) connected with all the
other nodes. The costs between node 0 and the other nodes
are equal to the setup time of node i, t0i � pi @i, and tin � 0
@i. Precedence constraints are given by an additional acyclic
digraph P � (V, R) defined on the same node set V. An arc
(i, j) � R if job i has to precede job j in any feasible solution.
R has the transitive property (that is, if (i, j) � R and ( j, k) �
R then (i, k) � R). Since a sequence always starts at node 0
and ends at node n, (0, i) � R @i � V�{0}, and (i, n) � R @i �
V�{n}. In the following we will indicate with predecessor[i]
and successor[i] the sets of nodes that have to precede/
succeed node i in any feasible solution.

Given the above definitions, the SOP can be stated as the
problem of finding a job sequence that minimizes the total
makespan subject to the precedence constraints. This is
therefore equivalent to the problem of finding a feasible
Hamiltonian path with minimal cost in G under precedence
constraints given by P.

The SOP can also be formulated as a general case of the
ATSP by giving only the weights on the edges (in the SOP a
solution connects the first and the last node by a path that
visits all nodes once, as opposed to the ATSP in which a
solution is a closed tour that visits all nodes once). This
formulation is equivalent to the previous: it suffices to re-
move weights from nodes and to redefine the weight cij of
arc (i, j) by adding the weight pj of node j to each tij. In this
representation cij is an arc weight (where cij may be different
from cji), which can either represent the cost of arc (i, j) when
cij � 0, or an ordering constraint when cij � �1 (cij � �1
means that element j must precede, not necessarily imme-

diately, element i). In this paper we will use this last formu-
lation.

1.2 Heuristic Methods for the SOP
The SOP models real-world problems like production plan-
ning (Escudero 1988), single-vehicle routing problems with
pick-up and delivery constraints (Pulleyblank and Timlin
1991; Savelsbergh 1990), and transportation problems in
flexible manufacturing systems (Ascheuer 1995).

The SOP can be seen as a general case of both the asym-
metric TSP and the pick-up and delivery problem. It differs
from ATSP because the first and the last nodes are fixed, and
in the additional set of precedence constraints on the order
in which nodes must be visited. It differs from the pick-up
and delivery problem because this is usually based on sym-
metric TSPs and because the pick-up and delivery problem
includes a set of constraints between nodes with a unique
predecessor defined for each node, in contrast to the SOP
where multiple precedences can be defined.

1.2.1 Approaches Based on the ATSP
Sequential ordering problems were initially solved as con-
strained versions of the ATSP. The main effort has been put
into extending the mathematical definition of the ATSP by
introducing new equations to model the additional con-
straints. The first mathematical model for the SOP was in-
troduced in Ascheuer et al. (1993) where a cutting-plane
approach was proposed to compute lower bounds on the
optimal solution. In Escudero et al. (1994), a Lagrangian
relax-and-cut method was described, and new valid cuts to
obtain strong lower bounds were defined. More recently,
Ascheuer (1995) has proposed a new class of valid inequal-
ities and has described a branch-and-cut algorithm for a
broad class of SOP instances based on the polyhedral inves-
tigation carried out on ATSP problems with precedence
constraints by Balas et al. (1995). His approach also investi-
gates the possibility to compute and improve sub-optimal
feasible problem solutions starting from the upper bound
computed by the polyhedral investigation. The upper bound
is the initial solution of a heuristic phase based on well-
known ATSP heuristics that are iteratively applied in order
to improve feasible solutions. These heuristics do not handle
constraints directly: infeasible solutions are simply rejected.
With this approach Ascheuer was able to compute new
upper bounds for the SOP instances in TSPLIB, although a
genetic algorithm called Maximum Partial Order/Arbitrary
Insertion (MPO/AI), recently proposed by Chen and Smith
(1996), seems to work better on the same class of problems.
MPO/AI always works in the space of feasible solutions by
introducing a sophisticated crossover operator that pre-
serves the common schema of two parents by identifying
their maximum partial order through matrix operations. The
new solution is completed using a constructive heuristic.

1.2.2 Approaches Based on the Pick-up and Delivery
Problem
Heuristic approaches to pick-up and delivery problems are
based on particular extensions of TSP heuristics able to
handle precedence constraints while improving feasible so-
lutions without any increase in computation times. Psaraftis
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(1983) has introduced a preprocessing technique to ensure
feasibility checking in constant time by starting the algo-
rithm with a screening procedure that, at an initial cost of
O(n2), produces a feasibility matrix that contains informa-
tion about feasible edge exchanges. Subsequently, Solomon
(1987) proposed a search procedure based on a tailored
updating mechanism, while Savelsbergh (1990), Van der
Bruggen et al. (1993), and Kindervater and Savelsbergh
(1997) presented a lexicographic search strategy, a variation
of traditional edge-exchange TSP heuristics, that reduces the
number of visited nodes without losing any feasible ex-
change. In order to ensure constraint checking in constant
time, the lexicographic search strategy has been combined
with a labeling procedure where nodes in the sequence are
labeled with information related to their unique predeces-
sor/successor, and a set of global variables are updated to
keep this information valid. Savelsbergh (1990) presented a
lexicographic search based on 2-opt and 3-opt strategies that
exchanges a fixed number of edges, while Van der Bruggen
et al. (1993) proposed a variable-depth search based on the
Lin and Kernighan (1973) approach. Unfortunately, this la-
beling procedure is not applicable in the case of multiple
precedence constraints because it requires that nodes in the
sequence have a unique predecessor/successor. On the
other hand, the lexicographic search strategy itself is inde-
pendent of the number of precedence constraints and can
therefore be used to solve sequential ordering problems
where multiple precedence constraints are allowed.

The approach to the SOP presented in this paper is the
first in the literature that uses an extension of a TSP heuristic
to handle directly multiple constraints without any increase
in computational time. Our approach combines a construc-
tive phase based on the ACS algorithm (Dorigo and Gam-
bardella 1997) with a new local search procedure called
SOP-3-exchange. SOP-3-exchange is based on a lexico-
graphic search heuristic due to Savelsbergh (1990) and a new
labeling procedure able to handle multiple precedence con-
straints. In addition, we test and compare different methods
to select nodes during the search and different stopping
criteria. In particular we test two different selection heuris-
tics: one based on the don’t look bit data structure introduced
by Bentley (1992), and the other based on a new data struc-
ture called don’t push stack introduced by the authors.

2. Ant Colony Optimization
The Ant Colony Optimization metaheuristic (Dorigo and Di
Caro 1999) is a population-based approach to the solution of

discrete optimization problems. It has been applied to both
static and dynamic combinatorial optimization problems
(static problems are those whose topology and costs do not
change while the problems is being solved, while in dy-
namic problems the topology and the costs can change while
solutions are built; for an up-to-date list of ACO papers and
applications see http://iridia.ulb.ac.be/�mdorigo/ACO/
ACO.html). When applied to static combinatorial optimiza-
tion problems, it takes the form shown in Fig. 1, where three
procedures are iterated until some end condition is verified.
First, a set of agents (artificial ants) builds solutions. Then
these solutions can be taken to their local optima by the
application of a local search procedure. Finally, pheromone
trails are updated. Solution construction uses a probabilistic
nearest-neighbor algorithm that uses a special distance mea-
sure. Once the artificial ants have built a solution, they use
the quality of the generated solutions to update the distance
information. Let us consider, for presentation purposes, the
symmetric TSP, defined as follows: a graph G � (V, A) with
node set V and arc set A is given; arcs have a cost associated
(e.g., their length), and the problem is to find a minimal-
length closed tour that visits all the nodes once and only
once. In the ACO approach each edge of the graph has two
associated measures: the heuristic desirability �ij, and the
pheromone trail �ij. In the TSP application the heuristic
desirability is defined as the inverse of the edge length and
never changes for a given problem instance, while the pher-
omone trail is modified at runtime by ants. Each ant has a
starting node and its goal is to build a solution, that is, a
complete tour. A tour is built node by node (nodes are the
vertices of the graph): when ant k is in node i it chooses to
move to node j using a probabilistic rule that favors nodes
that are close and connected by edges with a high phero-
mone trail value. Nodes are always chosen among those not
yet visited in order to enforce the construction of feasible
solutions. Once all ants have built a complete tour, the local
search procedure can be applied (in fact, in most applica-
tions the use of local search greatly improves the metaheu-
ristic performance). Then pheromone trail is updated on the
edges of the (possibly locally optimized) solutions. The
guiding principle is to increase pheromone trail on the edges
that belong to short tours. Pheromone trails also evaporate
so that memory of the past is gradually lost (this prevents
bad initial choices from having a lasting effect on the search
process). The metaheuristic, here informally described, can
be implemented in many different ways, and details about
specific implementation choices for the TSP can be found in

Figure 1. The ACO metaheuristic for static combinatorial optimization problems.
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Dorigo et al. (1991, 1996), Dorigo (1992), and Dorigo and
Gambardella (1997). The ACO metaheuristic can be adapted
to the SOP by letting ants build a path from source to
destination while respecting the ordering constraints (this
can be achieved by having ants choose not-yet-visited nodes
that do not violate any ordering precedence).

The most distinctive feature of ACO is the management of
pheromone trails that are used, in conjunction with the
objective function, to construct new solutions. Informally,
the intensity of pheromone gives a measure of how desirable
it is to insert a given element in a solution. Pheromone trails
are used for exploration and exploitation. Exploration con-
cerns the probabilistic choice of the components used to
construct a solution: a higher probability is given to ele-
ments with a strong pheromone trail. Exploitation is based
on the choice of the component that maximizes a blend of
pheromone-trail values and partial objective function eval-
uations.

3. Ant Colony Optimization for the SOP
As said in the previous section, application of an ACO
algorithm to a combinatorial optimization problem requires
definition of a constructive algorithm and possibly a local
search. Accordingly, we have designed a constructive algo-
rithm called ACS-SOP in which a set of artificial ants builds
feasible solutions to the SOP, and a local search specialized
for the SOP (discussed in the next section) that takes these
solutions to their local optimum. The resulting algorithm is
called a Hybrid Ant System for the SOP (HAS-SOP).

3.1 ACS-SOP
ACS-SOP is strongly based on Ant Colony System (Gam-
bardella and Dorigo 1996; Dorigo and Gambardella 1997). It
differs from ACS in the way the set of feasible nodes is
computed and in the setting of one of the algorithm’s pa-
rameters that is made dependent on the problem dimen-
sions. ACS-SOP implements the constructive phase of HAS-
SOP, and its goal is to build feasible solutions for the SOP. It
generates feasible solutions with a computational cost of
order O(n2).

Informally, ACS-SOP works as follows. Each ant itera-
tively starts from node 0 and adds new nodes until all nodes
have been visited and node n is reached. When in node i, an
ant applies a so-called transition rule, that is, it probabilisti-
cally chooses the next node j from the set F(i) of feasible
nodes. F(i) contains all the nodes j still to be visited and such
that all nodes that have to precede j, according to precedence
constraints, have already been inserted in the sequence.

The ant chooses, with probability q0, the node j, j � F(i),
for which the product �ij � �ij is highest (deterministic rule),
while with probability 1 � q0 the node j is chosen with a
probability given by

pij

j�F�i�

� � ij � � ij� �
l�F�i�

� il � � il

(i.e., nodes connected by edges with higher values of �ij � �ij,
j � F(i), have higher probability of being chosen).

The value q0 is given by q0 � 1 � s/n; q0 is based on a

parameter s that represents the number of nodes we would
like to choose using the probabilistic transition rule. The
parameter s allows the system to define q0 independently of
the problem size, so that the expected number of nodes
selected with the probabilistic rule is s.

In ACS-SOP only the best ant, that is the ant that built the
shortest tour, is allowed to deposit pheromone trail. The
rationale is that in this way a “preferred route” is memo-
rized in the pheromone trail matrix, and future ants will use
this information to generate new solutions in a neighbor-
hood of this preferred route. The formula used is:

� ij � �1 � �� � � ij � �/Lbest (1)

where Lbest is the length of the path built by the best ant, that
is, the length of the shortest path generated since the begin-
ning of the computation.

Pheromone is also updated during solution building. In
this case, however, it is removed from visited edges. In other
words, each ant, when moving from node i to node j, applies
a pheromone updating rule that causes the amount of pher-
omone trail on edge (i, j) to decrease.

The rule is:

� ij � �1 � 	� � � ij � 	 � �0 (2)

where �0 is the initial value of trails. We found that good
values for the algorithm’s parameters are �0 � (FirstSolu-
tion � n)�1, � � 	 � 0.1, s � 10, where FirstSolution is the
length of the shortest solution generated by the ant colony
following the ACS-SOP algorithm without using the phero-
mone trails. These values are rather robust. Values in the
following ranges didn’t cause any appreciable change in
performance: 0.05 � �, 	 � 0.3, 5 � s � 15. The number of
ants in the population was set to 10. The rationale for using
formula (2) is that it causes ants to eat away pheromone trail
while they build solutions so that a certain variety in gen-
erated solutions is assured (if pheromone trail was not con-
sumed by ants, they would tend to generate very similar
tours).

The algorithm stops when one of the following conditions
becomes true: a fixed number of solutions has been gener-
ated, a fixed CPU time has elapsed, or no improvement has
been observed during a fixed last number of iterations.

3.2 HAS-SOP
HAS-SOP is ACS-SOP plus local search. Local search is an
optional component of ACO algorithms, although it has
been shown since early implementations that it can greatly
improve the overall performance of the ACO metaheuristic
when static combinatorial optimization problems are con-
sidered (the first example of ACO algorithm with local
search was Ant-Q (Gambardella and Dorigo 1995), which
was followed by the more performing ACS (Gambardella
and Dorigo 1996; Dorigo and Gambardella 1997)).

In HAS-SOP local search is applied once ants have built
their solutions: each solution is carried to its local optimum
by an application of the local search routine described in
Section 4. Locally optimal solutions are then used to update
pheromone trails on arcs, according to the pheromone trail
update rule (1).
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In Fig. 2 we give a commented Pascal-like description of
the algorithm; the local optimization routine, the optional
step 4 of the algorithm in Fig. 2, is described in the next
section.

4. Local Search: SOP-3-Exchange

4.1 Edge-Exchange Heuristics
In recent years much research went into defining ad-hoc TSP
heuristics (see Johnson and McGeoch 1997 for an overview).
They can be classified as tour-constructive heuristics and
tour-improvement heuristics (the latter are also called local
optimization heuristics). Tour-constructive heuristics usually
start by selecting a random node (city) from the set of nodes
and then incrementally building a feasible TSP solution by
adding new nodes chosen according to some heuristic rule
(see Bentley 1992 for an overview). For example, the nearest-
neighbor heuristic builds a tour by adding the closest node
in terms of distance to the last node inserted in the path. On

the other hand, tour-improvement heuristics start from a given
tour and attempt to reduce its length by exchanging edges
chosen according to some heuristic rule until a local optimum
is found (i.e., until no further improvement is possible using
the heuristic rule). It has been experimentally shown (Reinelt
1994) that, in general, tour-improvement heuristics produce
better quality results than tour-constructive heuristics. Still, a
tour-constructive heuristic is necessary at least to build the
initial solution for the tour-improvement heuristic.

Starting from an initial solution, an edge-exchange proce-
dure generates a new solution by replacing k edges with
another set of k edges. This operation is usually called a
k-exchange and is iteratively executed until no additional
improving k-exchange is possible. When this is the case the
final solution is said to be k-optimal; the verification of k-
optimality requires O(nk) time. For a k-exchange procedure to
be efficient, it is necessary that the improving criterion for
new solutions can be computed in constant time.

Figure 2. The ACS-SOP/HAS-SOP algorithm. ACS-SOP differs from HAS-SOP in step 4 (local search) which is present
only in HAS-SOP.
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It has been shown that increasing k produces solutions of
increasing quality, but the computational effort to test com-
pletely the k-exchange set for a given solution usually re-
stricts our attention to k-exchange with k � 3. The most
widely used edge-exchange procedures set k to 2 or 3 (2-opt
and 3-opt edge-exchange procedures; Lin 1965) or to a vari-
able value (Lin and Kernighan 1973), in which case a vari-
able-depth edge-exchange search is performed.

In this section we first make some observations about
edge-exchange techniques for TSP/ATSP problems. Then,
we concentrate our attention on path-preserving-edge-ex-
changes for ATSPs, that is, edge exchanges that do not invert
the order in which paths are visited. Next, we discuss lexi-
cographic-path-preserving-edge-exchange, a path-preserving-
edge-exchange procedure that searches only in the space of
feasible exchanges. We then add to the lexicographic-path-
preserving-edge-exchange a labeling procedure whose func-
tion is to check feasibility in constant time. Finally, we
present different possible strategies to select nodes during
the search, as well as different search stopping criteria.

4.2 Path-Preserving Edge-Exchange Heuristics
We remind the reader that the SOP can be formulated as a
general case of the asymmetric traveling salesman problem
(ATSP) in which a solution connects the first and the last
node by a path that visits all nodes once, as opposed to the
ATSP in which a solution is a closed tour that visits all nodes
once. Edge-exchange techniques for TSP/ATSP problems
are therefore directly relevant for the SOP. A k-exchange
deletes k edges from the initial solution creating k disjointed
paths that are reconnected with k new edges. In some situ-
ations this operation requires an inversion in the order in
which nodes are visited within one of the paths (path-invert-
ing-edge-exchange), while in other situations this inversion is
not required (path-preserving-edge-exchange).

Consider a 2-exchange (Fig. 3) where two edges to be
removed, (h, h � 1) and (i, i � 1), have been selected. In this
situation there are only two ways to perform the exchange:
in the first case (Fig. 3b), edges (h, i) and (h � 1, i � 1) are
inserted and the traveling direction for path 	i, . . . , h � 1
 is
inverted; in the second case (Fig. 3c), edges (i, h) and (i � 1,

h � 1) are inserted inverting the traveling direction for path
	h, . . . , i � 1
.

In the case of a 3-exchange, however, there are several
possibilities to build a new solution when edges (h, h � 1), (i,
i � 1), and ( j, j � 1) are selected to be removed (Fig. 4). In
Figure 4, a path preserving 3-exchange (Fig. 4b) and a path
inverting 3-exchange (Fig. 4c) are shown.

It is then clear that any 2-exchange procedure determines
the inversion of one of the involved paths, while for k � 3
this inversion is caused only by particular choices of the
inserted edges.

In the case of TSP problems, where arc costs �ij � �ji

@(i, j), inverting a path does not modify its length. Therefore,
the quality of the new solution depends only on the length
of the inserted and deleted edges. On the other hand, for
ATSP problems, where �ij � �ji for at least one (i, j), invert-
ing a path can modify the length of the path itself, and
therefore the length of the new solution does not depend
only on the inserted and deleted edges. This situation con-
trasts with the requirement that the improving criterion be
verifiable in constant time. Therefore, the only suitable edge-
exchange procedures for sequential ordering problems,
which are a constrained version of ATSP problems, are
path-preserving-edge-exchange heuristics. In the following, we
concentrate on path-preserving-k-exchange (pp-k-exchange for
short) with k � 3, that is, the smallest k that allows a path
preserving edge exchange.

4.3 Handling Precedence Constraints
Starting from a feasible SOP sequence H, a pp-3-exchange
tries to reduce the length of H by replacing edges (h, h � 1),
(i, i � 1), and ( j, j � 1) with edges (h, i � 1), (i, j � 1), and ( j,
h � 1) (Fig. 5a). The result of a pp-3-exchange is a new
sequence H1 (Fig. 5b) where, while walking from node 0 to
node n, the order we visit path_left � 	h � 1, . . . , i
 and
path_right � 	i � 1, . . . , j
 is swapped.

In this situation, the new sequence H1 is feasible only if in
the initial solution H there were no precedence constraints
between a generic node l � path_left and a generic node r �
path_right.

Given two generic paths path_left and path_right, to test

Figure 3. A 2-exchange always inverts a path.
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the feasibility of the pp-3-exchange requires computational effort
of order O(n2) (precedence constraints must be checked be-
tween each pair of nodes in the two paths).

Savelsbergh (1990) studied how to limit the computational
effort needed for checking solution feasibility in the case of
precedence constraints for dial-a-ride problems. He introduced
a particular exploration strategy called lexicographic search strat-
egy that allows for generating and exploring only feasible ex-
changes. Savelsbergh presents a combination of the lexico-
graphic search strategy with a labeling procedure where a set
of global variables is updated so that precedence-constraint
checking can be performed in constant time.

The lexicographic search strategy was introduced to solve
dial-a-ride problems where only one precedence constraint
for each node is allowed. Nevertheless, it is independent of
the number of constraints. We have applied a version of
Savelsbergh’s lexicographic search strategy restricted to the
case k � 3, lpp-3-exchange, to sequential ordering problems
with multiple constraints for each node.

However, Savelsbergh’s labeling procedure was designed
to handle unique precedence constraints under particular

search conditions and cannot be extended to sequential or-
dering problems. Before explaining our new labeling proce-
dure for the SOP, we present the lpp-3-exchange.

4.4 Lexicographic Search Strategy in the Case of
Precedence Constraints
The lpp-3-exchange procedure identifies two paths, path_left
and path_right, which once swapped give rise to a new
feasible solution. These two paths are initially composed of
one single node and are incrementally expanded, adding
one node at each step. This feature makes it possible to test
feasibility easily because precedence conditions must be
checked only for the new added node.

To explain how an lpp-3-exchange works, let us consider a
feasible solution H in which nodes are ordered from 0 to n.
Then we consider three indexes h, i, and j, that point to
nodes in the sequence. As explained below, lpp-3-exchange is
composed of two procedures that differ in the order nodes in
the sequence H are explored. We start by explaining the
forward-lpp-3-exchange procedure, f-lpp-3-exchange for short.

The f-lpp-3-exchange procedure starts by setting the value

Figure 4. A 3-exchange without (b) and with (c) path inversion.

Figure 5. A path-preserving-3-exchange.
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of h to 0 (that is, h points to node 0 in the sequence H). Then
it sets the value of i, which identifies the rightmost node of
path_left, to h � 1 and performs a loop on the value of j,
which identifies the rightmost node of path_right (Fig. 6, a
and b). In other words, path_right � 	i � 1, . . . , j
 is iteratively
expanded by adding new edges ( j, j � 1). Once all available
nodes have been added to path_right (that is, until a precedence
constraint is violated or when j � 1 points to node n; see Fig.
6b), path_left is expanded by adding the new edge (i, i � 1) (Fig.
6c), and then path_right is searched again. Path_left � 	h � 1,
. . . , i
 is expanded until i � 1 points to node n � 1. Then h is
set to h � 1 and the process is repeated. The f-lpp-3-exchange
procedure stops when h points to node n � 2.

As we said, f-lpp-3-exchange considers only forward ex-

changes, that is, exchanges obtained considering indexes i
and j such that j � i � h. The backward-lpp-3-exchange pro-
cedure (b-lpp-3-exchange for short) considers backward ex-
changes, that is, exchanges obtained considering indexes j
and i such that j  i  h (with 2 � h  n). In b-lpp-3-exchange
(Fig. 7), path_left is identified by 	j � 1, . . . , i
 and path_right
by 	i � 1, . . . , h
. After fixing h, i is set to h � 1 and j to i �
1 (Fig. 7a). Then path_left is expanded backward (Fig. 7b),
moving j till the beginning of the sequence, that is, itera-
tively setting j to the values i � 2, i � 3, . . . , 0 (i.e., each
backward expansion adds a new node to the left of the path:
	j � 1, . . . , i
 is expanded to 	j, j � 1, . . . , i
). Then, path_right
is iteratively expanded in a backward direction with the new
edge (i, i � 1), and the loop on path_left is repeated.

Figure 6. Lexicographic forward path-preserving-3-exchange.
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The complete SOP-3-exchange procedure performs a for-
ward and a backward lexicographic search for each value h,
visiting in this way all the possible nodes in the sequence
(just like any other 3-exchange procedure).

The important point is that the method for defining path_
left and path_right permits an easy solution of the feasibility-
checking problem: the search is restricted to feasible ex-
changes only, since it can be stopped as soon as an infeasible
exchange is found. Consider for example an f-lpp-3-exchange:
once path_left � 	h � 1, . . . , i
 has been fixed, we set path-
_right to j � i � 1. In this situation it is possible to check
exchange feasibility by testing whether there is a precedence
relation between node j and nodes in path_left. Before ex-
panding path_right with the new edge ( j, j � 1), we check
whether the resulting paths are still feasible by testing again
the precedence relations between the new node j � 1 and
nodes in path_left. If the test is not feasible, we stop the
search. In fact, any further expansion of j � 1 in 	j � 2, j �
3, . . . , n
 will always generate an infeasible exchange be-
cause it still violates at least the precedence constraint be-
tween j � 1 and path_left.

Note that expanding path_left with edge (i, i � 1) does not
induce any precedence constraint violations because the
order of nodes inside path_left is not modified and the search
for a profitable f-lpp-3-exchange always starts by setting path_
right equal to element j � i � 1.

Without considering any additional labeling procedure,
the feasibility test in this situation has a computational cost
of O(n): each time a new j is selected we test if there is a
precedence relation between j and the nodes in path_left. In
the case of the SOP, this test should check whether cjl � �1
@l � path_left (recall that for sequential ordering problems,
cjl � �1 if l has to precede j, and in the final solution H1 the
order in which we visit path_left and path_right is swapped
and therefore l will follow j; see Fig. 5b).

Similar considerations should be made in the case of

b-lpp-3-exchange, where the feasibility test checks if cr,j�1 �
�1 @r � path_right.

The previous complete lexicographic search procedure re-
quires a check of all predecessors/successors of node j. This
procedure increases the computational effort to check 3-op-
timality from O(n3) to O(n4).

In order to keep the cost at O(n3), we introduce the SOP
labeling procedure to handle multiple constraints.

4.5 The SOP Labeling Procedure
The SOP labeling procedure is used to mark nodes in the
sequence with a label that allows for feasibility checking for
each selected j in constant time. The basic idea is to associate
with each node a label that indicates, given path_left and
path_right, whether or not it is feasible to expand path_right
with the following node j � 1.

We have implemented and tested different SOP labeling
procedures that set and update nodes in different phases of
the search. In the following, we will present a combination
of the best-performing SOP labeling procedure with the
lexicographic search strategy, with different selection criteria
for node h and with different search-stopping criteria.

Our SOP labeling procedure is based on a set of global
variables that are updated during the lexicographic search
procedure. As in the previous subsection, we will distin-
guish between forward and backward search.

First we introduce a global variable count_h that is set to
0 at the beginning of the search, and which is increased by 1
each time a new node h is selected. Second, we associate a
global variable f-mark(v) to each node v � H in the case of
f-lpp-3-exchange, and a global variable b-mark(v) in the case
of b-lpp-3-exchange. These global variables are initially set to
0 for each v.

An f-lpp-3-exchange starts by fixing h, i � h � 1, and
path_left � (i). At this point, for all nodes s � successor[i] we
set f_mark(s) � count_h. We repeat this operation each time

Figure 7. Lexicographic backward path-preserving-3-exchange.
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path_left is expanded with a new node i. Therefore, the
labeling procedure marks with the value count_h all the
nodes in the sequence that must follow one of the nodes
belonging to path_left. When path_right is expanded moving
j in 	i � 2, . . . , n
, if f_mark( j) � count_h we stop the search
because the label indicates that j must follow a node in path_left.
At this point, if no other search-termination condition is met,
the procedure restarts expanding again path_left. In this situa-
tion all the previous defined labels remain valid and the search
continues by labeling all the successors of the new node i.

On the other hand, when we move h forward into the
sequence we invalidate all previously set labels by setting
count_h � count_h � 1.

The same type of reasoning holds for b-lpp-3-exchange.
Each time node i is selected, we identify a new path_right �
	i � 1, . . . , h
, and for all nodes s � predecessor[i � 1] we set
b_mark(s) � count_h.

When expanding path_left by iteratively adding a new
edge ( j, j � 1), the expansion is not accepted if b_mark(j) �
count_h.

4.6 Heuristics for the Selection of Node h and Search
Stopping Criteria
This search procedure for sequential ordering problems is a
general description of how the lexicographic search works in
combination with the SOP labeling procedure. Although the
SOP labeling procedure reduces the complexity of the lexi-
cographic search to O(n3), this is still too expensive from a
practical point of view; in fact, the exploration of all the
feasible exchanges is still required. There are different ways
to reduce this effort: for example, heuristic criteria can be
introduced to reduce the number of visited nodes, or the
search can be stopped and the exchange executed as soon as
some improving condition is met.

Heuristic Selection of Node h. In order to reduce the num-
ber of explored nodes, Savelsbergh (1990) and Van der Brug-
gen et al. (1993) proposed to use a particular type of k-exchange
called OR-exchange (Or 1976) that limits the choice of i among
the three closest nodes of h. In practice, i is selected among {h �
1, h � 2, h � 3} in the case of a forward exchange, and among
{h � 1, h � 2, h � 3} in the case of a backward exchange.

Alternatives decrease the number of visited nodes, intro-
ducing two heuristics that influence how node h is chosen:
one is based on the don’t look bit data structure introduced by
Bentley (1992), while the other is based on a new data
structure called don’t push stack introduced by the authors.

The don’t look bit is a data structure in which a bit is
associated with each node of the sequence. At the beginning
of the search all bits are turned off. The bit associated with
node h is turned on when a search for an improving move
starts from node h. If a profitable exchange is executed, the
bits of the six nodes involved in the exchange (that is, j � 1,
i � 1, h � 1, j, i, h) are turned off. The use of don’t look bits
favors the exploration of nodes that have been involved in a
profitable exchange. The search procedure visits all the
nodes in the sequence, moving from the first node 0 to the
last node n, but only nodes with the don’t look bit turned off
are taken into consideration as candidates for node h. The

search procedure is repeatedly applied until all nodes have
their don’t look bit turned on.

The don’t push stack is a data structure based on a stack,
which contains the set of nodes h to be selected, associated
with a particular push operation. At the beginning of the
search the stack is initialized with all the nodes (that is, it
contains n � 1 elements). During the search, node h is
popped off the stack and feasible 3-exchange moves starting
from h are investigated. If a profitable exchange is executed,
the six nodes involved in this exchange (that is, j � 1, i � 1,
h � 1, j, i, h) are pushed onto the stack (if they do not already
belong to it). Using this heuristic, once a profitable exchange
is executed starting from node h, the top node in the don’t
push stack remains node h. In addition, the maximum size of
the stack is limited to n � 1 elements. The use of the don’t
push stack gives the following benefits. First, the search is
focused on the neighborhood of the most recent exchange:
this has been experimentally shown to result in better per-
formance than that obtained using the don’t look bit (see
Section 5.1). Second, the selection of node h is not con-
strained to be a sequential walk through the sequence H.
This is an important feature given the fact that the SOP labeling
procedure is designed to work with independent and random
choices of h, where independent means that the choice of the
new h is not constrained by the choice of the old h. In fact, it
does not require, as is the case of Savelsbergh’s labeling pro-
cedure (Savelsbergh 1990), retention of valid labeling informa-
tion while walking through the sequence from one h to the
next. In our case a new labeling is started as soon as a new h is
chosen; this allows for selecting h in any sequence position
without introducing additional computational costs.

Stopping Criteria. The number of visited nodes can be
decreased by stopping the search once an improving ex-
change is found. In our experiments we have tested three
different stopping conditions: (ExchangeFirstCriterion � h, i, j)
stops the search as soon as the first feasible exchange is found
in the h, i or j loops, respectively. We have also tested the
standard exploration strategy where the most profitable ex-
change is selected among all the possible exchanges, but this
method is not presented here because the results obtained are
much worse given the same amount of computation time.

4.7 The SOP-3-Exchange Procedure: An Example
In this section we discuss briefly the local search procedure
using a simple example. Fig. 8 presents the pseudo-code of
the SOP-3-exchange procedure with all the possible options.
The example we consider is the following: let a sequence
	0, a, b, c, d, e, f, g, n
 represent a feasible solution of a SOP in
which node e is constrained to follow a in any feasible
solution. The forward SOP-3-exchange procedure works as
follows. Initially, h is set to point to node 0 (i.e., h � 0),
variable count_h is set to zero, direction is set to forward, i is
set to a, and j to b. In this state of the computation path_left
(from node h � 1 to node i) and path_right (from node i � 1
to node j) consist of the sequences 	a
 and 	b
, respectively. In
the following, the notation [	a
 	b
] will be used to indicate
the pair path_left and path_right.
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Inside the i loop, the successor of node a, node e, is labeled
by setting f_mark(e) � count_h � 0. In the j loop, path_right
is expanded by adding nodes of the sequence until either the
end of the sequence is reached or a precedence constraint is
violated. The first expansions are [	a
 	b, c
] and [	a
 	b, c, d
].
At this point, path_right should not be extended to 	b, c, d, e

because e is labeled with a value equal to count_h. In fact, the
new sequence generated by using [	a
 	b, c, d, e
] would be 	0,
b, c, d, e, a, f, g, n
, where node a follows node e, in contrast

with the precedence constraint. Therefore, the j loop is ter-
minated and the i loop is resumed. Node i is moved through
the sequence by setting i equal to node b, and the two paths
are set to [	a, b
 	c
]. Node b does not have any successor
node to label; therefore, the j loop is executed again. Paths
are expanded to [	a, b
 	c, d
] but, as before, they should not
be extended to [	a, b
 	c, d, e
] due to the precedence con-
straint. The procedure continues generating the paths [	a, b,
c
 	d
], while the following paths [	a, b, c
 	d, e
] and [	a, b, c,

Figure 8. The SOP-3-exchange procedure.
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d
 	e
] are not feasible because of the constraint between a
and e. The next feasible steps are [	a, b, c, d, e
 	f
], [	a, b, c, d,
e
 	f, g
], and [	a, b, c, d, e, f
 	g
].

5. Computational Results
Our experiments were aimed at (i) finding the best param-
eters for the SOP-3-exchange procedure, (ii) comparing
ACS-SOP and HAS-SOP with a set of competing methods

over a significant set of test problems, and (iii) evaluating
the relative contribution to overall performance of the SOP-
3-exchange local search with respect to the constructive
methods. The results obtained are presented and discussed
in this section. Experiments were run on a SUN Ultra1
SPARC Station (167 MHz). The code was written in C��.
Before presenting and discussing the computational results,
we briefly describe the experimental setting.

Figure 9. Comparisons of selection criteria on median ranks. Each comparison involves the same value of
ExchangeFirstCriterion and WalkingCriterion. Results are obtained running five experiments for each problem (CPU time
was set to 100 seconds for the ft53.x, ft70.x, and ESCxx problems, to 300 seconds for the kro124p.x problems, and to 600
seconds for the other problems).

Table I. Ranking of Median Rank on 22 SOP Test Problems for Different Combinations of Selection and Stopping
Criteria*

SelectionCriterion ExchangeFirstCriterion WalkingCriterion Median

don’t push stack i 3-exchange 4
don’t push stack j 3-exchange 5
don’t push stack h 3-exchange 6
don’t push stack j OR_exchange 6
don’t look bit h 3-exchange 7
don’t push stack h OR_exchange 8
don’t look bit j 3-exchange 8
don’t look bit i 3-exchange 8
sequential h OR_exchange 9
don’t push stack i OR_exchange 10
don’t look bit h OR_exchange 10
sequential i OR_exchange 11
don’t look bit j OR_exchange 12
sequential j OR_exchange 12
sequential h 3-exchange 13
sequential j 3-exchange 13
sequential i 3-exchange 13
don’t look bit i OR_exchange 14

*Results are obtained running five experiments for each problem (CPU time was set to 100 seconds for the ft53.x, ft70.x, and
ESCxx problems, to 300 seconds for the kro124p.x problems, and to 600 seconds for the other problems).
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5.1 Experimental Settings: Test Problems
We tested our algorithms on the set of problems available in
the TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/
comopt/software/TSPLIB95/).

Sequential ordering problems in TSPLIB can be classified
as follows: a set of problems (rbgxxxa) are real-life problems
derived from a stacker crane application (Ascheuer 1995).
These problems were originally defined as ATSPs with time
windows: to obtain SOP instances, time window prece-
dences are relaxed to generate SOP precedences. Prob.100
(Ascheuer 1995) is a randomly generated problem, and
problems (ftxx.x and kroxxxp.x) have been generated (As-
cheuer 1995) starting from ATSP instances in TSPLIB by
adding a number �k of random precedence constraints,
where k � (n/4, n/2, 2, 2n) corresponds to the problem
extension (.1, .2, .3, .4). ESC78 is taken from Escudero (1988).

5.2 Experimental Settings: Competing Methods
The algorithms with which we compared HAS-SOP are the
following:

• MPO/AI: This was previously the best known algorithm
for the SOP (Chen and Smith 1996). MPO/AI is a genetic
algorithm explicitly designed to solve sequencing prob-
lems. Each individual is a feasible sequence represented
by an n � n Boolean matrix. An element (i, j) of the matrix
is set to 1 if node j follows (not necessarily immediately)
node i in the sequence, and is set to 0 otherwise. New
individuals are generated by a specialized crossover op-
eration. First, the two matrices are intersected; the inter-
section generates a new matrix where, in general, only
partial subsequences (with fewer than n elements) are
present. Next, the longest subsequence MPO in the new
matrix is selected and is completed by using an AI pro-

Table II. Small Problems (�100 Nodes)*

RND MPO/AI ACS-SOP RND�LS MPO/AI�LS HAS-SOP

ESC78 49.81% 0.86% 2.15% 0.00% 0.00% 0.00%
ft53.1 167.93% 0.49% 13.11% 0.10% 0.00% 0.00%
ft53.2 154.94% 0.72% 12.27% 0.36% 0.00% 0.00%
ft53.3 100.51% 0.59% 18.51% 0.00% 0.00% 0.00%
ft53.4 40.99% 0.00% 5.03% 0.00% 0.00% 0.00%
ft70.1 64.94% 0.76% 11.65% 0.37% 0.10% 0.00%
ft70.2 59.18% 0.03% 11.63% 0.85% 0.00% 0.02%
ft70.3 52.22% 0.03% 13.22% 0.49% 0.00% 0.00%
ft70.4 24.62% 0.09% 3.92% 0.08% 0.02% 0.05%
kro124p.1 301.69% 4.17% 28.81% 2.65% 0.68% 0.00%
kro124p.2 278.99% 3.00% 27.90% 2.90% 0.19% 0.26%
kro124p.3 215.49% 3.20% 24.49% 3.75% 1.40% 0.31%
kro124p.4 94.07% 0.00% 8.66% 1.23% 0.00% 0.00%

Average 123.49% 1.07% 13.95% 0.98% 0.18% 0.05%

*Shown are the average percentages of deviation from the best-known solution. Results are obtained over five runs of 120
seconds. Best results are in boldface.

Table III. Big Problems (>100 Nodes)*

RND MPO/AI ACS-SOP RND�LS MPO/AI�LS HAS-SOP

prob.100 1440.17% 134.66% 40.62% 50.07% 47.58% 17.46%
rbg109a 64.57% 0.33% 1.93% 0.08% 0.06% 0.00%
rbg150a 37.85% 0.19% 2.54% 0.08% 0.13% 0.00%
rbg174a 40.86% 0.01% 2.16% 0.15% 0.00% 0.08%
rbg253a 45.85% 0.03% 2.68% 0.21% 0.00% 0.00%
rbg323a 80.14% 1.08% 9.60% 1.27% 0.08% 0.21%
rbg341a 125.46% 3.02% 12.64% 4.41% 0.96% 1.54%
rbg358a 151.92% 7.83% 20.20% 4.98% 2.51% 1.37%
rbg378a 131.58% 5.95% 22.02% 4.17% 1.40% 0.88%

Average 235.38% 17.01% 12.71% 7.27% 5.86% 2.39%

*Shown are the average percentages of deviation from the best-known solution. Results are obtained over five runs of 600
seconds. Best results are in boldface.
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cedure. AI starts from a sub-tour, picks an arbitrary node
not already included, and inserts it in the feasible position
with minimum cost. This simple local search procedure is
applied until no further elements are available. The code
has been implemented by Chen in C�� and is available
on the Web at: http://www.cs.cmu.edu/afs/cs.cmu.
edu/user/chens/WWW/MPOAI_SOP.tar.gz.

Experiments were run setting the population to many
different dimensions. Using 500 individuals, the same pop-
ulation dimension as proposed by Chen and Smith (1996)
resulted in the best performance, and this value was used in
all the experiments presented in the following.

• MPO/AI�LS: This is MPO/AI to which we added the
SOP-3-exchange local search. The hybridization is similar
to what was done with ACS-SOP: each time a new indi-
vidual is created by the MPO/AI crossover operation, it is

optimized by the SOP-3-exchange local search (with the
main structure of the genetic algorithm remaining un-
changed).

• RND: This algorithm generates random feasible solutions.
The constructive procedure is the same as in ACS-SOP
except that pheromone trail and distance information are
not used.

• RND�LS: This is RND plus local search. As with the
other hybrid algorithms considered, each time a new in-
dividual is created, it is optimized by the SOP-3-exchange
local search.

5.3 Computational Results: Selection Criteria for Node i
and Search Stopping Criteria
In this section we test different selection criteria for node i
and different search stopping criteria. We ran five experi-
ments for each problem, setting the computational time to

Figure 10. Comparison across algorithms over small problems. Results are obtained over five runs of 120 seconds.

Figure 11. Comparison across algorithms over big problems. Results are obtained over five runs of 600 seconds.
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100 seconds for the ft53.x, ft70.x, and ESCxx problems, to 300
seconds for the kro124p.x problems, and to 600 seconds for
the other problems.

The stopping criteria tested are ExchangeFirstCriterion �
j, i, h. The selection criteria tested are sequential, don’t look bit,
and don’t push stack, coupled with either the 3-exchange or the
OR-exchange walking criterion.

For each test problem (the problems are reported in Tables II
and III), we ranked results computed by the different combi-
nations of selection and stopping criteria according to the av-
erage results obtained. In Table I the methods are ranked by the
median of each method over the set of test problems.

Results indicate that the don’t push stack is the best selec-

tion criterion, followed by the don’t look bit and finally by the
sequential selection criterion. Fig. 9 compares the three selec-
tion criteria for the same values of ExchangeFirstCriterion
and WalkingCriterion. Again, it is clear that don’t push stack
performs better than the other two criteria.

These results were obtained using HAS-SOP. That is, the
SOP-3-exchange local search was applied to feasible solu-
tions generated by ACS-SOP. We ran the same experiment
using the other solution generation methods (i.e., MPO/AI
and RND), and we found that also in these cases the best
performance was obtained by setting SelectionCriterion �
don’t push stack, ExchangeFirstCriterion � i, and WalkingCri-
terion � 3-exchange. These parameters are therefore used in

Figure 12. Comparison between MPO/AI�LS and HAS-SOP over small problems. Results are obtained over five runs of
120 seconds. Error bars (one standard deviation) are shown.

Figure 13. Comparison between MPO/AI�LS and HAS-SOP over big problems. Results are obtained over five runs of 600
seconds. Error bars (one standard deviation) are shown.
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all the experiments involving local search presented in the
following sections. (It should otherwise be noted that, for
MPO/AI and RND, although the best parameter settings
remained the same, the ordering of the other possible com-
binations of parameter values was different.)

5.4 Computational Results and Comparisons with Other
Methods
In this section, we compare the ACS-SOP, RND, and
MPO/AI algorithms and their hybrid versions (using the
local search with the best parameters experimentally found
as explained in Section 5.3). To run the comparisons we
divided the set of test problems into two sets: smaller easier
problems and larger more difficult problems. The separation
point was set to be 100 nodes: small problems have 100 or
fewer nodes, big problems have more than 100 nodes (with
the exception of prob.100 that, because of its difficulty, al-
though having 100 nodes was assigned to the set of big
problems). Experiments were run giving a fixed amount of
CPU time to the algorithms. The CPU time was fixed to be
the same for all algorithms running on the same set of

problems: 120 seconds for each small problem, 600 seconds
for each big problem.

Results at the end of the experiment are reported in Tables
II and III for small and big problems, respectively, while the
runtime behavior of the various algorithms is shown in Figs.
10 and 11.

If we observe the average performance of the algorithms
on the set of small problems (Table II) we can make the
following observations: (i) RND is, as it was expected, the
worst performing algorithm; (ii) ACS-SOP performs better
than RND, which means that the additional use of phero-
mone trails and local heuristic information (i.e., distance
between nodes) is useful, (iii) MPO/AI is the best of the
algorithms not using our local search (in fact, MPO/AI uses
a simple form of local search, which can explain its better
performance), and (iv) when the SOP-3-exchange local
search is added, all the algorithms, as expected, increase
their performance, and HAS-SOP with an average 0.05%
deviation from the best-known solutions is the best perform-
ing algorithm.

Similar observations can be done for the set of big prob-
lems (Table III). The only difference is that, on the average,
ACS-SOP performs better than MPO/AI. This is mainly due
to problem prob.100, a difficult problem that ACS-SOP
solves much better than the competing methods. Also, in the
case of big problems, HAS-SOP is the best performing algo-
rithm, with an average error of 2.39% from the best-known
solutions.

Fig. 10 shows the runtime behavior of HAS-SOP, MPO/
AI, MPO/AI�LS, and RND�LS on small problems (RND
and ACS-SOP are not plotted because they are out of scale).
It is clear that, besides reaching slightly better results than
MPO/AI�LS, HAS-SOP has also a better convergence
speed: it reaches after 12 seconds the same performance
level reached by MPO/AI�LS after approximately 60 sec-
onds. Similar considerations can be done for big problems
(Fig. 11), where all algorithms are plotted (with the excep-
tion of RND, which is out of scale). Note the small difference
in behavior between RND�LS and MPO/AI�LS.

A more detailed version of Figs. 10 and 11 showing the
performance of the two best algorithms, HAS-SOP and
MPO/AI�LS, with error bars is given in Figs. 12 and 13.

Table IV shows the percentage improvement due to local
search (this is computed as the difference between the per-
formance of the basic algorithm and the performance of the
corresponding hybrid algorithm reported in Tables II and
III). Data show that MPO/AI profits from local search less
than ACS-SOP and RND. This is probably due to the fact
that MPO/AI generates solutions that are already close to
local optima, and therefore the SOP-3-exchange procedure
quickly gets stuck. On the contrary, RND is the algorithm
that best exploits local search. Unfortunately, this is due to
the very poor quality of the solution given as a starting point
to the local search: notwithstanding the great improvement
caused by the local search, the final result is not competitive
with that produced by HAS-SOP. In some sense it seems that
solutions generated by ACS-SOP are good enough to let
local search work fruitfully, yet they are not so “good” as to

Table IV. Percentage of Improvement Due to Local
Search*

�% RND �% MPO/AI �% ACS-SOP

ESC78 49.81% 0.86% 2.15%
ft53.1 167.83% 0.49% 13.11%
ft53.2 154.58% 0.72% 12.27%
ft53.3 100.51% 0.59% 18.51%
ft53.4 40.99% 0.00% 5.03%
ft70.1 64.57% 0.66% 11.65%
ft70.2 58.33% 0.03% 11.61%
ft70.3 51.73% 0.03% 13.22%
ft70.4 24.55% 0.06% 3.88%
kro124p.1 299.04% 3.50% 28.81%
kro124p.2 276.09% 2.81% 27.65%
kro124p.3 211.74% 1.81% 24.18%
kro124p.4 92.84% 0.00% 8.66%
prob.100 1390.10% 87.08% 23.16%
rbg109a 64.49% 0.27% 1.93%
rbg150a 37.77% 0.07% 2.54%
rbg174a 40.71% 0.01% 2.09%
rbg253a 45.64% 0.03% 2.68%
rbg323a 78.87% 1.00% 9.39%
rbg341a 121.05% 2.06% 11.10%
rbg358a 146.94% 5.31% 18.83%
rbg378a 127.41% 4.55% 21.14%

Small Average 122.51% 0.89% 13.90%
Big Average 228.11% 11.15% 10.32%
All Average 165.71% 5.09% 12.44%

*The last three rows report, respectively, the average over
the small, big, and all problems. Results are obtained over
five runs of 120 seconds (small problems, that is, ft53.x,
ft70.x, ESCxx, and kro124p.x problems) and 600 seconds for
the others.
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impede the work of the local search, as is the case for
MPO/AI.

In Table V we compare HAS-SOP with MPO/AI�LS. As
in the previous experiment, runs lasted different amounts of
CPU time: 120 seconds for small problems and 600 seconds
for big problems. Each experiment was run five times. For
both algorithms in Table V we report:

• Best Result: the best result obtained over five experiments.
• Average Result: average of the best results obtained in

each experiment.
• Std. Dev.: standard deviation of the best results obtained

in each experiment.
• Average Time: average time (in seconds) needed to reach

the best result in each experiment.

In the table we have marked in boldface the results ac-
cording to the following criteria. First we consider the Best
Result columns, and for each problem we mark in boldface
the best of the best results obtained by the two algorithms.
Similarly we compare and mark in boldface the best average
results. Then, only for those problems on which the two
algorithms obtained the same average result, we mark with
boldface the lowest average time.

In the last row of Table V we report the number of wins,
that is, the number of times one algorithm was better than
the other, one for each of the considered criteria (this corre-
sponds to the number of boldface entries in each column).
The “Total wins” row synthetically shows that HAS-SOP
has a better performance than MPO/AI�LS on all the mea-
sured criteria.

In conclusion, in Table VI we report the new upper
bounds obtained by HAS-SOP and by MPO/AI�LS, as well
as new lower bounds obtained by a branch-and-cut program
run by Ascheuer (1997) starting from HAS-SOP solutions.
The first column gives the problem names, the second col-
umn gives the size of the problem in terms of the number n
of nodes, the third columns gives the number �R� of con-
straints, and the fourth column the bounds reported in
TSPLIB. The other columns report the new upper and lower
bounds we computed, and finally the “All Best” columns
report the best solutions computed by the HAS-SOP and
MPO/AI�LS algorithms. In parentheses are the results ob-
tained applying a post-optimization consisting of rerunning
the algorithm (HAS-SOP or MPO/AI), starting from the best
found solution but using as local search one of the variants
presented in Table I (the post-optimization was run for all

Table V. Results Obtained by HAS-SOP and MPO/AI�LS on a Set of 22 Test Problems*

PROB

MPO/AI�LS HAS-SOP

Best
Result

Avg.
Result Std. Dev.

Avg.
Time
(sec)

Best
Result

Avg.
Result Std. Dev.

Avg.
Time
(sec)

ESC78 18,230 18,230.0 0.0 12.4 18,230 18,230.0 0.0 3.5
ft53.1 7,531 7,531.0 0.0 16.6 7,531 7,531.0 0.0 16.3
ft53.2 8,026 8,026.0 0.0 14.0 8,026 8,026.0 0.0 17.0
ft53.3 10,262 10,262.0 0.0 7.8 10,262 10,262.0 0.0 3.8
ft53.4 14,425 14,425.0 0.0 11.4 14,425 14,425.0 0.0 0.5
ft70.1 39,313 39,352.4 33.2 81.4 39,313 39,313.0 0.0 20.9
ft70.2 40,419 40,419.6 1.2 81.6 40,419 40,428.6 12.0 41.0
ft70.3 42,535 42,535.0 0.0 27.0 42,535 42,535.0 0.0 36.8
ft70.4 53,530 53,542.8 15.7 42.2 53,530 53,554.6 20.5 58.3
kro124p.1 39,502 39,686.2 214.0 97.4 39,420 39,420.0 0.0 60.8
kro124p.2 41,336 41,415.4 114.2 95.2 41,336 41,442.8 127.8 53.2
kro124p.3 49,835 50,189.6 298.0 97.4 49,499 49,653.2 66.3 24.2
kro124p.4 76,103 76,103.0 0.0 47.8 76,103 76,103.0 0.0 34.2
prob.100 1,722 1,756.2 30.6 333.0 1,344 1,397.8 38.5 404.4
rbg109a 1,038 1,038.6 0.5 75.8 1,038 1,038.0 0.0 27.5
rbg150a 1,751 1,752.2 0.7 17.2 1,750 1,750.0 0.0 128.1
rbg174a 2,033 2,033.0 0.0 82.8 2,033 2,034.6 1.1 189.4
rbg253a 2,950 2,950.0 0.0 68.6 2,950 2,950.0 0.0 145.0
rbg323a 3,143 3,143.6 0.4 458.8 3,146 3,147.6 2.2 271.1
rbg341a 2,588 2,598.8 2.0 553.6 2,609 2,613.6 18.1 421.3
rbg358a 2,602 2,609.0 6.2 482.8 2,574 2,579.8 4.8 454.1
rbg378a 2,841 2,856.4 8.1 516.0 2,831 2,841.8 6.8 500.6

Total wins 2 6 — 3 6 8 — 5

*See text for explanation of boldface and “Total wins” row. Results are obtained over five runs of 120 seconds (small problems,
that is, ft53.x, ft70.x, ESCxx, and kro124p.x problems) and 600 seconds for the others.
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the problems, but only in four cases was it able to improve
the best solution found in the first optimization phase).

6. Conclusions
The contribution of this paper is two-fold. First, we have
introduced a novel local search procedure for the SOP called
SOP-3-exchange. This procedure has been shown to produce
solutions of quality higher than those produced by MPO/
AI, the previous best-known algorithm for the SOP. This has
been shown to be the case even when the local search is
applied to poor-quality, randomly generated initial solu-
tions. Second, we have shown that the performance of the
algorithm obtained by coupling MPO/AI with SOP-3-ex-
change can still be improved by coupling the local search
with ACS-SOP, a straightforward extension of Ant Colony
System (Dorigo and Gambardella 1997). The resulting algo-
rithm, called HAS-SOP, is currently the best available algo-
rithm for the SOP. Both HAS-SOP and MPO/AI with local
search were able to improve the upper bounds for most of
the standard test problems used (and available in TSPLIB).
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