
Population Coding: A New Design Paradigm
for Embodied Distributed Systems

Heiko Hamann1(B), Gabriele Valentini2, and Marco Dorigo2(B)

1 Department of Computer Science, Heinz Nixdorf Institute,
University of Paderborn, Paderborn, Germany

heiko.hamann@uni-paderborn.de
2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

{gvalenti,mdorigo}@ulb.ac.be

Abstract. Designing embodied distributed systems, such as multi-robot
systems, is challenging especially if the individual components have lim-
ited capabilities due to hardware restrictions. In self-organizing systems
each component has only limited information and a global, organized
system behavior (macro-level) has to emerge from local interactions only
(micro-level). A general, structured design approach to self-organizing
distributed systems is still lacking. We develop a general approach based
on behaviorally heterogeneous systems. Inspired by the concept of popu-
lation coding from neuroscience, we show in two case studies how design-
ing an embodied distributed system is reduced to picking the right com-
ponents from a predefined set of controller types. In this way, the design
challenge is reduced to an optimization problem that can be solved by a
variety of optimization techniques. Our approach is applicable to scenar-
ios that allow for representing the component behavior as (probabilistic)
finite state machine. We anticipate the paradigm of population coding
to be applicable to a wide range of distributed systems.

1 Introduction

The complexity of engineered systems is getting more and more difficult to gov-
ern. We require novel methodologies to enable us to reliably engineer systems
also in the future. Combining distributed systems with self-organization has high
potential to solve this curse of complexity and is a promising pathway. However,
distributed computing systems are more difficult to program than a single-CPU
computer due to parallelism, asynchronism, and uncertain interactions between
components. This problem is even more pronounced for self-organizing systems
whose high standards of scalability and robustness are usually achieved through
methods restricted to local interactions and local information. In embodied
distributed systems we additionally face hardware limitations concerning com-
putational power, communication range, and energy autonomy. Examples of
embodied self-organizing systems are self-organizing networks [8], multi-robot
systems [11], and robot swarms [6]. The main challenge is due to the strict
locality of individual components which requires the program code to be writ-
ten from the local component perspective (micro-level) while tasks are defined
c© Springer International Publishing Switzerland 2016
M. Dorigo et al. (Eds.): ANTS 2016, LNCS 9882, pp. 173–184, 2016.
DOI: 10.1007/978-3-319-44427-7 15



174 H. Hamann et al.

at the system level (macro-level) [1,2]. An exhaustive design strategy needs to
establish a so-called micro-macro link [3,14] that connects the micro-level infor-
mation processing with its effect on the macro-level. An additional challenge of
distributed systems that have mobile components (e.g., robot swarms) is their
dynamic interaction network (time-variant neighborhoods) which complicates
the derivation of a micro-macro link.

In some applications of embodied distributed systems, as nanorobotics [15],
the hardware requirements are extremely strict [17] and limit the core func-
tions of such robots. While robots are usually built as reprogrammable devices,
it might prove difficult to build nanorobots with that property. In certain sce-
narios the only feasible approach might be to hardwire the control logics. This
potential lack of flexibility in programming individual robots motivates us to
implement flexibility at the macro-level. We do so by composing heterogeneous
swarms of robots with different hardwired controllers to obtain a desired macro-
level behavior. In other words, our swarm is behaviorally heterogeneous, that is,
individual components or subpopulations are allowed to differ in their controller.
Examples of heterogeneous robot swarms include the Swarmanoid project [7] and
an approach inspired by honeybees [16].

Related to our approach are the methods proposed by Berman et al. [4] and
Prorok et al. [19]. These methods have the advantage of high scalability because
they operate on continuous, macroscopic models. Their disadvantage is that they
either rely on non-communicating agents or they require a centralized authority
that gathers information. Hence, there is either no cooperation or a single point
of failure which is not coherent with swarm intelligence.

2 Population Coding and Hardwired Controllers

Our main idea is inspired by the concept of population coding which is a method
from neuroscience to relate a stimulus to the activity of a neuron population
[10,18]. For example, the direction of movement can be encoded within a pop-
ulation of neurons with each of them representing a preferred direction. Popula-
tion coding, according to Georgopoulos et al. [10, p. 1416], can be understood in
the following way: “When individual cells were represented as vectors that make
weighted contributions along the axis of their preferred direction [. . . ] the resulting
vector sum of all cell vectors (population vector) was in a direction congruent with
the direction of movement”. Population coding can be mathematically interpreted
as a function approximation with basis functions [18]. Each neuron’s preference for
a certain direction is represented by a Gaussian function as basis function and each
neuron’s activity gives the weight of the respective basis function to approximate a
‘stimulus function’. We define an approach to compose heterogeneous distributed
systems by combining subpopulations of components of different predetermined,
possibly hardwired behavioral types (see Fig. 1). In analogy to population cod-
ing, we select quantities of different controller types of the micro-level (weighted
contributions of neurons) that sum up to a system behavior of the macro-level
(population vector). The choice of controller type compositions is implemented



Population Coding: A New Design Paradigm 175

Fig. 1. Schematic representation of our approach. A user specifies the desired sys-
tem behavior, for example, in the form of a potential field. Our algorithm derives an
appropriate heterogeneous composition of controller types (microscopic behavior), and
outputs the respective type numbers to compose the macroscopic behavior.

as an optimization process that minimizes deviations from the user-specified sys-
tem behavior.

We allow to specify the desired system behavior in two different ways. The
preferable approach is to define the macroscopic behavior, that is, working at the
same level at which the actual task is defined. However, this approach requires to
first define the control states and possible transitions and then, in a second step,
to analytically derive a micro-macro link [14] to guide the optimization process.
The alternative approach is to skip the second step. Then control states and a
performance measure of the macroscopic behavior are required but not the micro-
macro link. For example, one specifies the states of a finite state machine (FSM)
where the conditions of state transitions are undetermined but parameterized.
In this way we define a simple, user-friendly methodology to design the behavior
of a distributed system. In the following, we give an example for both options:
the definition of the desired system via a macroscopic behavior together with a
micro-macro link or via a microscopic behavior using a FSM.

3 Scenario A: Task Allocation

As first example we investigate a task allocation problem in the form of a spe-
cial collective decision-making scenario [20]. Instead of having a single optimal
assignment of agents to tasks, we assume that our task allocation problem allows
two or more different assignments of equal utility. This is therefore a collective
decision-making problem because the group of agents is free to choose one of the
different assignments but has to collectively agree on which option to choose.



176 H. Hamann et al.

We allow the agent group to switch between the desired task assignments at
stochastic time intervals to allow for a probabilistic control approach. We focus
on a binary task allocation problem [5] that requires a group of robots to obtain
a desired allocation to tasks T1 and T2. All robots in the swarm are capable of
performing both tasks and the overall goal is to reach an appropriate distribu-
tion of workforce that maximizes the swarm performance. For example, the user
could specify a swarm fraction s = N1/(N1+N2) of how many robots N1 should
be assigned to task T1 which in turn defines the fraction 1 − s = N2/(N1 + N2)
to be assigned to task T2. The user can also specify several swarm fractions
s1, s2, etc., which requires a multistable system. We take a bistable distribution
as an example (e.g., see Fig. 3b). Both peaks in the distribution define a particu-
lar allocation of robots (the variance around each peak influences the switching
time between allocations).

Similarly to [13,20] we define the controller types (i.e., the microscopic behav-
ior) as a chemical reaction network. We assume that a robot perceives the cur-
rent task allocations of its neighbors and decides to switch between tasks or to
recruit a neighbor based on this information. For simplicity, we define reaction
rules depending on a fixed neighborhood size of seven (i.e., the considered robot
and its six neighbors). We define a rule for each neighborhood configuration
(except for neighborhoods where all robots are assigned to the same task):

(7 − x)T1 + xT2
r−→ (7 − x + δi)T1 + (x − δi)T2, (1)

where x ∈ {1, 2, . . . , 6} is the number of neighbors assigned to task T2, δi ∈
{+1,−1} define the behavior of the focal robot, i ∈ {1, . . . , 6} is the rule index,
and r is the reaction rate coefficient. The parameter δi defines the effect of a rule,
that is, whether the current number of robots assigned to task T1 is increased
or decreasded by 1 unit. Depending on its current task, the considered robot
either switches its own task assignment or recruits a neighbor to do so. The
combinatorics of all assignments δi, i ∈ {1, 2, . . . , 6} gives 26 = 64 different con-
troller types that we enumerate and their index gives the δi as binary encoding.
For example, controller type R56 = (+ + + − −−) implements a majority rule
because an observed majority of T1 (respectively T2) has the effect of increasing
the majority by one robot. Type R7 = (− − − + ++) implements a minor-
ity rule because an observed minority of T2 (respectively T1) has the effect of
increasing the minority by one robot. Finally, we define two more reactions to
model a spontaneous switching behavior: T1

e−→ T2 and T2
e−→ T1 with a reaction

rate coefficient e. Spontaneous switching is required to avoid absorption in the
macroscopic states where all robots of the swarm are assigned to one of the two
tasks.

We defined 64 different robot controller types that we can use to compose
heterogeneous swarms. The idea of producing 64 different hardwired controllers
might seem to come with considerable overhead, however, in the following we
show that only a few types are used in a controller composition and minimiz-
ing the number of controller types can be an additional optimization objective
(sparsity).



Population Coding: A New Design Paradigm 177

3.1 Micro-macro Model

In the second step of our approach we need to establish a micro-macro link to
model mathematically the contribution of each controller type to the macroscopic
behavior of the swarm. Based on this micro-macro link we can derive a proper
composition C of controller types that forms a heterogeneous swarm satisfying
the input of the user. A composition is defined as C = (n1, . . . , n64) based on the
above defined 64 controller types, where each ni gives the number of required
robots of the corresponding type and

∑
i ni = N for swarm size N . Similarly to

[13], we define a micro-macro link based on the expected contribution of each
controller type to the change of the swarm state (macro-level). The swarm state is
the current fraction s ∈ [0, 1] of robots that are assigned to task T1 (respectively,
1 − s for task T2). The swarm state s varies because robots interact with each
other. The dynamics of the swarm state is modeled by the expected change Δs
of s which, in turn, is the sum over the contributions of each controller type.

In the following we assume for simplicity that the robots are spatially well-
mixed with respect to their current task allocation. That allows us to calculate
the probability of a certain configuration of a robot’s neighborhood using the
hypergeometric distribution

P (k,m) =

(
N−m
G−k

)(
m
k

)

(
N
G

) , (2)

whereas k is the number of robots allocated to task T1 in the neighborhood
and m is the number of robots allocated to task T1 in the whole swarm. With
probability P (k,m) a controller of type j contributes to the swarm behavior with
a change ΔRj

k ∈ {+1,−1}. As a consequence, its contribution to the expected
change is ΔRj

kP (k,m). A robot also contributes by spontaneously switching its
task allocation. With probability P = s a robot allocated to task T1 switches to
task T2 contributing a change of −1 robots allocated to T1 and vice versa. The
contribution to the expected change is −1s + 1(1 − s) = (1 − 2s).

Fig. 2. Examples of individual contributions to the expected change Δs of the swarm
behaviors according to Eq. 3 with e = 0. Symbols ‘+’ and ‘−’ corresponds to values of
δi ∈ {+1, −1}.



178 H. Hamann et al.

In Fig. 2 we give examples of the expected change Δs for a few controller
types. The main effect of Δs on the system can be interpreted visually. For
s > 0.5 in Fig. 2, Δs > 0 represents positive feedback that drives the system
towards the extreme of s = 1, while Δs < 0 represents negative feedback that
drives the system towards the balanced state of s = 0.5. In Fig. 2a we show the
symmetric expected change Δs of ‘symmetric’ controller types. In Fig. 2b we
give expected changes of ‘asymmetric’ controller types.

The micro-macro link is established by calculating the expected swarm
change Δs which is a sum over all controller types in a chosen composition
C and for each of them all possible neighborhood configurations are considered.
We obtain

Δs(s, C) =
64∑

j=1

nj

N

[
r

r + e

G−1∑

k=1

ΔRj
kP (k,m = sN) +

e

r + e
(1 − 2s)

]

, (3)

where nj is the number of robots of controller type j in the swarm and hence
nj/N weights the contribution of each controller type.

3.2 Evolutionary Approach

For a given user input, we formulate the derivation of the appropriate hetero-
geneous swarm as an optimization problem using the micro-macro link. A user
provides as input a potential field p(x) that characterizes the desired allocation
of robots. For swarm size N the potential field p is defined by N +1 data points
p(i) = y, i ∈ {0, 1, . . . , N}. Each maximum defines a desired allocation. For
example, a maximum p(j) = cmax defines that the user requires the allocation of
j robots to T1 and N − j robots to T2. First, we translate the desired potential
field to its corresponding expected change Δ̂s via the discrete derivative

Δ̂s(s) =
d

ds
p(sN). (4)

Second, we formulate an optimization problem. We consider the error between
the user input Δ̂s(s) and the micro-macro link Δs as defined in Eq. 3. We want
to find the optimal controller type composition Copt (and optimal rates r and
e) that minimizes the squared error

Copt = arg min
C

∑

x∈{0,1,...,N}
(Δ̂s(xN) − Δs(xN,C))2. (5)

Third, we solve the optimization problem with an appropriate technique. There
are many options, in [21] we present an efficient, model-driven approach using
lasso regression. In this paper, we use a genetic algorithm1.

1 We use an implementation for the R project “NMOF: Numerical Methods and Opti-
mization in Finance” (‘NMOF’) by Enrico Schumann, see http://cran.r-project.org/
web/packages/NMOF/.

http://cran.r-project.org/web/packages/NMOF/
http://cran.r-project.org/web/packages/NMOF/


Population Coding: A New Design Paradigm 179

We evolve controller type compositions with a population size of 50 compo-
sitions for 50 generations. Mutation is implemented as bit flip with probability
0.02 and mutated compositions are corrected to guarantee

∑
i ni = N . The fit-

ness function is defined by the sum in the right side of Eq. 5. We have tested this
approach for the two different user inputs shown in Fig. 3. Figures 3a and b show
the user input as potential fields (2 maxima, hence 2 optimal task assignments,
which requires collective decision-making at runtime). The desired macroscopic
behavior can be understood as a hill climber that is greedily walking uphill
towards the peaks but is also subject to fluctuations. In Figs. 3c and d we give
the expected change Δ̂s as defined by the user input (Eq. 4) and the resulting
expected change of the evolved (fitted) controller type composition. In the first

Fig. 3. Scenario A, (a, b) examples of potential fields p(x) defined using sine waves as

user input, (c, d) expected change ̂Δs, resulting expected change using the evolved con-
troller type compositions, and the validation (urn model and agent-based simulations),
(e, f) steady states for the evolved controller type compositions.



180 H. Hamann et al.

example, we obtain an almost perfect fit (Fig. 3c) by a composition of n25 = 7
and n56 = 44 (all other nj = 0). Controller type 56 corresponds to decision rule
(+ + + − −−) that implements a majority decision. Controller type 25 corre-
sponds to rule (− + + − −+) which shifts the maxima towards the boundaries
(s = 0, s = 1) and lowers the amplitude of the expected change Δs to match
the user input. In the second example we obtain a controller type composition
consisting of types n11 = 4 (−−+−++) and n25 = 47 (−++−−+), see Fig. 3d.
Despite some errors, the zeros of the user input (i.e., desired task allocations)
are well approximated. We validate our approach using a simple urn model fol-
lowing [12] and determine the expected change and the steady state numerically
(see Fig. 3c–f). We also use a simple, agent-based simulator. Agents are massless
points randomly walking in a square area. Each agent is characterized by its
controller type and task allocation. Results are averaged over 104 simulations of
104 time units each (see Fig. 3). We obtain very good fits.

4 Scenario B: Sensor-Based Transitions

As a second example, we test the alternative method without a micro-macro
link where the user specifies a template of a micro-behavior as a FSM. We take
a scenario loosely inspired by leafcutter ants as described by Ferrante et al. [9].
While Ferrante et al. focus on the emergence of task specialization and evolve
individual behaviors starting from predefined low-level primitives, we get a pre-
defined task specialization (e.g., cutting, collecting) as user input in the form
of the control states of a FSM (see Fig. 4a). This can be considered as a tem-
plate of a class of allowed microscopic behaviors and is in contrast to scenario A
where the macroscopic behavior was predefined but not the microscopic behav-
ior. We then enumerate a finite set of FSMs with determined conditions of state
transitions and evolve the desired macroscopic behavior (here, maximization of
the number of collected leaves) by composing a heterogeneous swarm of these
predefined individual behaviors.

Leaves are added to the system at a rate rin and decay with a rate of rout. An
agent can be in one of three states (see Fig. 4a): cutting leaves (A), collecting leaves

Fig. 4. Scenario B, finite state machine (FSM) and schematic representation of FSM
showing a tree, leaves on tree α, leaves at ground β.



Population Coding: A New Design Paradigm 181

(B), or resting (C). The area is divided into two spaces: leaf cutting agents A are on
the tree and collecting agents B are at the ground. Once an agent has cut a leaf α on
the tree, the leaf falls down to the floor and becomesβ (α → β, see Fig. 4b).We only
allow transitions between states A and C and between B and C but not directly
between A and B to simplify the scenario. Leaf cutting agents A can only perceive
20 %of other leaf cutting agents and 20 %of the leaves on the tree.Collecting agents
B can only perceive 20 % of other collecting agents and 20 % of leaves on the floor.
The desired global behavior is an efficient system that maximizes the number of
collected leaves. We say that agents in state resting (C) save energy and give a
reward for each agent spending a time step in C.

Next, we define the controller types used to compose a heterogeneous system.
Each agent locally perceives the number of neighboring agents that are in the
same state and also the number of nearby leaves. For each transition as labeled
in Fig. 4a, we define a rule using the notation of reaction equations:

a : x1α + C −→ x1α + A, (6)
b : x2β + C −→ x2β + B, (7)

c : x3α + y1A −→ x3α + (y1 − 1)A + C, (8)
d : x4β + y2B −→ x4β + (y2 − 1)B + C, (9)

and for two transitions that model the leaves we have α+A −→ β+A and β+B −→
B (associated with a reward for collecting a leaf). We limit the six parameters
xi, yj ∈ {0, 1, 2, 3} for simplicity giving us a total of 64 = 1296 rules to choose
from. We can represent a controller type by a 6-tuple: (x1, x2, x3, x4, y1, y2). A
particular controller type can have any choice of xi and yj for each individual
rule (Eqs. 6–9). An example controller is

a : α + C → α + A, (10)
b : 2β + C → 2β + B, (11)

c : 3α + 2A → 3α + A + C, (12)
d : 2β + B → 2β + C. (13)

We test a setup with N = 50 agents. The experiment is done in four phases
by changing the leaf adding rate rin every 50 time steps for a total of 200 time
steps. We evaluate each controller type composition in six tests (the fitness is the
average over these six tests) with different sequences of rin: (0, 50, 0, 20), (50, 0,
20, 0), (20, 20, 20, 20), (10, 10, 10, 10), (1, 5, 10, 15), (15, 10, 5, 1). Such a task
allocation problem could be solved with adaptive response thresholds in each
agent, but we restrict the agents to be non-adaptive. Hence, the adaptivity has
to emerge at the macro-level. We use a genetic algorithm to find good controller
type compositions. We reward (each with equal weight) for each collected leaf,
for agents staying in state C (rest) per time step, and for sparsity (i.e., use
of few different controller types). In Fig. 5 we give results for the best evolved
controller type composition. It receives a fitness of 0.64 averaged over all six
tested leaf inflow sequences. The best homogeneous swarm (i.e., using the same



182 H. Hamann et al.

controller type for all agents) received a fitness of 0.56. The best heterogeneous
composition assigns 17 different controller types to the 50 agents, most agents
(eight) are assigned the controller type with values (x1 = 3, x2 = 3, x3 = 0, y1 =
2, x4 = 2, y2 = 0) (cf. Eqs. 6–9). Figures 5a and b give the cumulative number of
agents with transitions for 0, 1 or less, 2 or less, and any number of seen leaves
as sum over all controller types used by the evolved composition for reaction
rules 6 and 7 that depend on leaves only. We observe that fewer leaves suffice
for transition a while transition b requires more leaves, hence a switch from C
to state A is done more easily. Figures 5c and d give the cumulative number of
agents with transitions as weighted sum over all controller types used by the
evolved composition for reaction rules 8 and 9 that depend on two variables
each (agents and leaves). We notice that few leaves suffice for transition c while
transition d requires more. Hence, a switch back from A to C is done more
easily which corresponds to our finding for transition a. Figures 5e and f give the
number of agents per state, their transitions, and the number of leaves in the
system over time for the fitness evaluation with leaf adding rate sequence (0, 50,
0, 20). For t < 50 we observe only up to 12 agents that are not in state C which
is efficient although suboptimal. For 50 < t < 100 there are 32 agents cutting
leaves (A), 18 agents collecting leaves (B), and none resting. Having no resting
agents in this period is important because otherwise more α leaves would be lost
due to rout > 0 (see Fig. 5f). For t < 100 the number of collecting agents B is
increased at the cost of cutting agents A which is reasonable to process the pile
of β leaves. Note that an optimal solution for this particular leaf inflow sequence
may limit the success for other sequences, hence, the controller type composition
needs to be a compromise.

Fig. 5. Scenario B, (a–d) resulting number of state transitions (transition labels as in
Fig. 4a) for evolved controller type composition based on 17 different controller types,
(e) number of agents per state, their transitions, and (f) the number of leaves in the
system over time for the evaluation with leaf inflow rin sequence (0, 50, 0, 20).



Population Coding: A New Design Paradigm 183

5 Discussion and Conclusion

We have described our new design paradigm for embodied distributed systems
which is inspired by population coding. Our approach relies on predetermined
controller types that can be combined in appropriate amounts to compose a
heterogeneous swarm. In scenario A, we have shown how we can evolve a het-
erogeneous swarm with the desired behavior for a user-specified macroscopic
behavior by leveraging on a micro-macro link. In scenario B, we have shown how
a heterogeneous swarm can be evolved for a user-specified microscopic behavior
template in the form of a FSM using agent-based simulations. Scalability and
robustness might impose a challenge to our approach.

Scaling the number of states and state transitions in the FSM is potentially
problematic due to the combinatorial explosion of the search space. This issue
can be addressed by limiting a priori the number of possible state transitions
as done in scenario B where the FSM is not a complete graph. An alternative
approach is to leverage on optimization methods specifically conceived to achieve
sparsity and that are computationally efficient also in high-dimensional search
spaces (e.g., lasso for regularized regression as done in [21]).

Robustness might be problematic due to the heterogeneity of the system. In
a homogeneous system any loss of an agent is compensated by all other agents.
In a heterogeneous system, however, agents are different and cannot be replaced
by every other agent. In our approach we tackle this problem by pushing towards
sparse solutions, that is, controller type compositions that make use of only a
few different controllers. With this approach, the probability that a single con-
troller type is represented by few agents is lowered. Still, sparsity is not sufficient
because only few robots may be assigned to a certain controller type. A solu-
tion could be to maximize this quantity in addition to minimizing the number
of controller types. Furthermore, a radical approach could be to provide each
agent with all controller types (i.e., back to homogeneous swarms) and to allow
the agents to switch between controller types probabilistically. Then each agent
would execute each controller from the composition with an appropriate prob-
ability that depends on how many agents are assigned to that controller type
in the composition. However, we would loose the property that we can prefabri-
cate the different controller types. Hence, it seems that there is an unavoidable
tradeoff between robustness and design flexibility at the macro-level.

In future work, we plan to experiment with many different case studies both
in simulation and in hardware to show the generality of our approach and also
to show how it scales to more complex tasks.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T., Nagpal, R.,
Rauch, E., Sussman, G., Weiss, R.: Amorphous computing. Commun. ACM 43(5),
74–82 (2000)



184 H. Hamann et al.

2. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of Domain-
Specific Languages, pp. 436–501. Information Science Reference (2012)

3. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. Artif. Life 4, 181–189 (1994)

4. Berman, S., Halasz, A., Hsieh, M., Kumar, V.: Optimized stochastic policies for
task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

5. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents
Multi-Agent Syst. 28(1), 101–125 (2014)

6. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

7. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robot. Autom. Mag. 20, 60–71 (2013)

8. Dressler, F.: Self-organization in Sensor and Actor Networks. Wiley, New York
(2008)

9. Ferrante, E., Turgut, A.E., Duez-Guzmn, E., Dorigo, M., Wenseleers, T.: Evolution
of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8),
1–21 (2015)

10. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of
movement direction. Science 233(4771), 1416–1419 (1986)

11. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in
multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

12. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013)

13. Hamann, H., Valentini, G., Khaluf, Y., Dorigo, M.: Derivation of a micro-macro
link for collective decision-making systems. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 181–190. Springer,
Heidelberg (2014)

14. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

15. Hogg, T.: Coordinating microscopic robots in viscous fluids. Auton. Agents Multi-
Agent Syst. 14(3), 271–305 (2006)

16. Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., Schmickl, T.:
Potential of heterogeneity in collective behaviors: a case study on heterogeneous
swarms. In: Chen, Q., Torroni, P., Villata, S., Hsu, J. (eds.) PRIMA 2015. LNCS,
vol. 9387, pp. 201–217. Springer, Heidelberg (2015)

17. Lenaghan, S., Wang, Y., Xi, N., Fukuda, T., Tarn, T., Hamel, W., Zhang, M.:
Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans.
Biomed. Eng. 60(3), 667–673 (2013)

18. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes.
Nat. Rev. Neurosci. 1, 125–132 (2000)

19. Prorok, A., Hsieh, M.A., Kumar, V.: Fast redistribution of a swarm of heteroge-
neous robots. In: International Conference on Bio-inspired Information and Com-
munications Technologies (BICT) (2015)

20. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2015)

21. Valentini, G., Hamann, H., Dorigo, M.: Global-to-local design for self-organized
task allocation in swarms. Technical report TR/IRIDIA/2016-002, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, March 2016


	Population Coding: A New Design Paradigm for Embodied Distributed Systems
	1 Introduction
	2 Population Coding and Hardwired Controllers
	3 Scenario A: Task Allocation
	3.1 Micro-macro Model
	3.2 Evolutionary Approach

	4 Scenario B: Sensor-Based Transitions
	5 Discussion and Conclusion
	References


