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Abstract. This paper introduces a set of algorithmic modifications
that improve the partitioning results obtained with ant-based cluster-
ing. Moreover, general parameter settings and a self-adaptation scheme
are devised, which afford the algorithm’s robust performance across vary-
ing data sets. We study the sensitivity of the resulting algorithm with
respect to two distinct, and generally important, features of data sets:
(i) unequal-sized clusters and (ii) overlapping clusters. Results are com-
pared to those obtained using k-means, one-dimensional self-organising
maps, and average-link agglomerative clustering. The impressive capacity
of ant-based clustering to automatically identify the number of clusters
in the data is additionally underlined by comparing its performance to
that of the Gap statistic.

1 Introduction

Ant-based clustering is a heuristic clustering method that draws its inspiration
from the behaviour of ants in nature [1]. In particular, it models the clustering
and sorting that can be observed in some ant species: where real ants gather
corpses to clean up their nest, or transport larvae to order them by size, artificial
ants transport data items that are laid out in an artificial environment, and
spatially arrange them in a sorted fashion.

Thus, the working principles of ant-based clustering are quite different from
those of ordinary clustering algorithms. While well-known clustering methods
like k-means or agglomerative clustering gradually build or refine an explicit rep-
resentation of a data set’s partitioning, ant-based clustering uses no such model
but only implicitly generates the partitioning: all information on the number of
clusters and the cluster memberships of individual data items is contained in the
final spatial distribution of the data. Also, this outcome is obtained without the
explicit specification of an optimisation criterion or global goal, it emerges in
a self-organised fashion as the result of local actions and positive feedback only.

As no a priori assumptions on the number, the shape or the size of the clus-
ters in the data need to be made, the risk of producing solutions that are mere
artefacts of such assumptions, and which do not reveal any actual information
about true data structures, is reduced. In spite of these favourable features,

G. Di Marzo Serugendo et al. (Eds.): AAMAS 2003 Ws ESOA, LNAI 2977, pp. 90–104, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Strategies for the Increased Robustness of Ant-Based Clustering 91

applications of ant-based clustering are rare, as not much is known about the al-
gorithm’s real performance and robustness. In this paper we take a step towards
a wider application of ant-based clustering by introducing an improved version
of the algorithm, and devising generalised parameter settings that permit its
application across varying data sets. The algorithm’s robustness towards differ-
ent data properties is then studied using two series of synthetic benchmarks.
The obtained results are analysed in terms of the number of clusters identified
and in terms of the F-measure; we compare to the number of clusters predicted
by the Gap statistic, and to the partitionings generated by each of k-means,
average-link agglomerative clustering, and one-dimensional self-organising maps
(see Section 4 for details).

The remainder of this paper is structured as follows. Section 2 briefly sum-
marises previous work on ant-based clustering. In Section 3 our new version of
the algorithm is described. Section 4 describes the experimental setup, Section 5
discusses results and Section 6 concludes.

2 Ant-Based Clustering

The first ant-based clustering and sorting algorithm was introduced by Deneu-
bourg et al. [2] in 1990, to produce clustering behaviour in simple groups of
robots. In the proposed simulation model, ants are modeled as simple agents
that randomly move in a square, toroidal environment. The data items that are
to be clustered / sorted are initially randomly scattered in this environment and
they can be picked up, transported and dropped by the agents. A clustering
and sorting of these items is obtained by introducing a bias for the picking and
dropping operations, such that data items that are isolated or surrounded by
dissimilar ones are likely to be picked up, and transported data items are likely
to be dropped in the vicinity of similar ones.

Deneubourg et al. implement this bias by applying the following probabilities
for picking and dropping operations:

ppick(i) = (
k+

k+ + f(i)
)2

pdrop(i) = (
f(i)

k− + f(i)
)2

Here, k+ and k− are parameters, which determine the influence of the neighbour-
hood functions f(i) and which Deneubourg et al. set to 0.1 and 0.3 respectively.
f(i) is an estimation of the fraction of data items in the ant’s immediate envi-
ronment that are similar to the data item i the ant currently considers to pick
up / drop. In Deneubourg et al.’s original implementation this estimate is ob-
tained using a short-term memory of each agent, where the contents of the last
encountered grid cells are stored, and it therefore only permits the discrimina-
tion between a limited number of classes of data items. This limitation has been
overcome by Lumer and Faieta [6], who, moving away from the use in robotics,
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introduced a more general definition of f(i) that permits the algorithm’s appli-
cation to numerical data. An agent deciding whether to manipulate an item i
now considers the average similarity of i to all items j in its local neighbourhood:

f(i) = max

⎛
⎝0,

1
σ2

∑
j

(1− d(i, j)
α

)

⎞
⎠ (1)

Here, d(i, j) ∈ [0, 1] is a dissimilarity function defined between points in data
space, α ∈ [0, 1] is a data-dependent scaling parameter, and σ2 is the size of the
local neighbourhood (typically, σ2 ∈ {9, 25}). The agent is located in the centre
of this neighbourhood; its radius of perception in each direction is therefore σ−1

2 .
The resulting algorithm still suffers from convergence problems and an un-

favourable runtime behaviour, and several attempts to overcome these limita-
tions have therefore been proposed [6, 4].

3 Our Algorithm

In this section, we build upon the work of [2, 6, 4] to develop a general and
robust version of ant-based clustering. In particular, we describe how parameter
settings for the algorithm can be automatically derived from the data, and we
introduce a number of modifications that improve the quality of the clustering
solutions generated by the algorithm. In this context, our criteria for ‘quality’ are
twofold: first, in the distribution generated by the ant algorithm on the grid, we
desire a clear spatial separation between clusters, as this is a requirement both
for unambiguously interpreting the solutions and for evaluating them; second,
we are interested in a high accuracy of the resulting classification.

Results on the effect of individual modifications are not provided in this
paper, but can be found in [3]. Here, we focus on a study of the algorithm’s
overall performance, in particular its sensitivity with respect to different data
properties.

3.1 Basics

The basic ant algorithm (see Algorithm 1) starts with an initialisation phase,
in which (i) all data items are randomly scattered on the toroidal grid; (ii)
each agent randomly picks up one data item; and (iii) each agent is placed
at a random position on the grid. Subsequently, the sorting phase starts: this
is a simple loop, in which (i) one agent is randomly selected; (ii) the agent
performs a step of a given stepsize (in a randomly determined direction) on
the grid; and (iii) the agent (probabilistically) decides whether to drop its data
item. In the case of a ‘drop’-decision, the agent drops the data item at its current
grid position (if this grid cell is not occupied by another data item), or in the
immediate neighbourhood of it (it locates a nearby free grid cell by means of
a random search). It then immediately searches for a new data item to pick up.
This is done using an index that stores the positions of all ‘free’ data items on
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Algorithm 1 basic ant

1: begin
2: INITIALISATION PHASE
3: Randomly scatter data items on the toroidal grid
4: for each j in 1 to #agents do
5: i := random select(remaining items)
6: pick up(agent(j), i)
7: g := random select(remaining empty grid locations)
8: place agent(agent(j), g)
9: end for

10: MAIN LOOP
11: for each it ctr in 1 to #iterations do
12: j := random select(all agents)
13: step(agent(j), stepsize)
14: i := carried item(agent(j))
15: drop := drop item?(f∗(i)) // see equations 3 and 4
16: if drop = TRUE then
17: while pick = FALSE do
18: i := random select(free data items)
19: pick := pick item?(f∗(i)) // see equations 2 and 4
20: end while
21: end if
22: end for
23: end

the grid: the agent randomly selects one data item i out of the index, proceeds
to its position on the grid, evaluates the neighbourhood function f∗(i), and
(probabilistically) decides whether to pick up the data item. It continues this
search until a successful picking operation occurs. Only then the loop is repeated
with another agent.

For the picking and dropping decisions the following threshold formulae are
used:

p∗pick(i) =
{

1.0 iff∗(i) ≤ 1.0
1

f∗(i)2 else (2)

p∗drop(i) =
{

1.0 iff∗(i) ≥ 1.0
f∗(i)4 else, (3)

where f∗(i) is a modified version of Lumer and Faieta’s [6] neighbourhood func-
tion (Equation 1):

f∗(i) =

{
max

(
0, 1

σ2

∑
j(1− d(i,j)

α )
)

if ∀j (1− d(i,j)
α > 0

0 otherwise
(4)

This definition of f∗(i) combines two important properties. First, as in the orig-
inal neighbourhood function f(i), the division by the neighbourhood size σ2

penalises empty grid cells, thus inducing a tight clustering (rather than just
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a loose sorting). Secondly, the additional constraint ∀j (1− d(i,j)
α ) > 0 serves the

purpose of heavily penalising high dissimilarities, which significantly improves
spatial separation between clusters.

Note that the above given threshold formulae are quite different from the ones
suggested by Deneubourg et al. and are not applicable to the basic ant algorithm.
They have been experimentally derived for the use with our enhanced version
(for which they significantly speed up the clustering process) and have to be
seen in light of the shift of the range of attainable values f∗(i) resulting from
our increase of the radius of perception (see Section 3.3 below).

3.2 Short-Term Memory

A modified version of the ‘short-term memory’ introduced by Lumer and Faieta
in [6] is employed. In their approach, each agent remembers the last few carried
data items and their respective dropping positions. When a new data item is
picked up, the position of the ‘best matching’ memorised data item is used to
bias the direction of the agent’s random walk. Here, the ‘best matching’ item is
the one of minimal dissimilarity d(i, j) to the currently carried data item i. We
have extended this idea as follows.

In a multi-agent system the items stored in the memory might already have
been removed from the remembered position. In order to determine more ro-
bustly the direction of bias, we therefore permit each ant to exploit its memory
as follows: An ant situated at grid cell p, and carrying a data item i, uses its
memory to proceed to all remembered positions, one after the other. Each of
them is evaluated using the neighbourhood function f∗(i), that is, the suitabil-
ity of each of them as a dropping site for the currently carried data item i is
examined. Subsequently, the ant returns to its starting point p.

Out of all evaluated positions, the one of ‘best match’ is the grid cell for
which the neighbourhood function yields the highest value. For the following step
of the ant on the grid, we replace the use of a biased random walk with an
agent ‘jump’ directly to the position of ‘best match’. However, this jump is
only made with some probability, dependent on the quality of the match; the
same probability threshold that we use for a dropping operation p∗drop(i) is used
for this purpose. If the jump is not made, the agent’s memory is de-activated,
and in future iterations it reverts to trying random dropping positions until it
successfully drops the item.

3.3 Increasing Radius of Perception

The size of the local neighbourhood perceived by the ants limits the information
used during the sorting process. It is therefore attractive to employ larger neigh-
bourhoods in order to improve the quality of the clustering and sorting on the
grid. However, the use of a larger neighbourhood is not only more expensive (as
the number of cells to be considered for each action grows quadratically with the
radius of perception), but it also inhibits the quick formation of clusters during
the initial sorting phase.
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We therefore use a radius of perception that gradually increases over time.
This saves computations in the first stage of the clustering process and prevents
difficulties with the initial cluster formation. At the same time it accelerates
the dissolution of preliminary small clusters, a problem that has already been
addressed in [6, 4]. In the current implementation, we start with an initial per-
ceptive radius of 1 and linearly increase it to be 5 in the end. While doing so, we
leave the scaling parameter 1

σ2 in Equation 4 unchanged, as its increase results
in a loss of spatial separation.

This brings about the gradual shift in the range of attainable values f∗(i) that
we have mentioned in Section 3.1. In the starting phase of the algorithm, f∗(i) is
limited to the interval [0, 1]; the upper bound, however, increases with each incre-
ment of the neighbourhood radius, such that, in our implementation, f∗(i) can
yield values within the interval [0, 15] after the last increment. Consequently, the
picking operation is purely deterministic in the beginning, and, at this stage, it
is the dropping operation solely that favours dense and similar neighbourhoods.
Gradually, with the rise of f∗(i), an additional bias towards the picking of mis-
placed data items is introduced. The shift of the values of f∗(i) combined with
the use of the threshold functions (Equations 2 and 3) has the effect of decreasing
the impact of density for the dropping threshold while, simultaneously, increas-
ing it for the picking threshold. This results in an improved spatial separation
between clusters.

3.4 Spatial Separation

As stated above, the spatial separation of clusters on the grid is crucial in order
for individual clusters to be well-defined. Spatial closeness, when it occurs, is, to
a large degree, an artefact of early cluster formation. This is because, early on in
a run, clusters will tend to form wherever there are locally dense regions of simi-
lar data items; and thereafter these clusters tend to drift only very slowly on the
grid. After an initial clustering phase, we therefore use a short interlude (from
time tstart to tend) with a modified neighbourhood function, which replaces the
scaling parameter 1

σ2 by 1
Nocc

in Equation 4, where Nocc is the actual observed
number of occupied grid cells within the local neighbourhood. Hence only simi-
larity, not density, is taken into account, which has the effect of spreading out
data items on the grid again, but in a sorted fashion; the data items belonging to
different clusters will now occupy individual ‘regions’ on the grid. Subsequently,
we turn back to using the traditional neighbourhood function. Once again, clear
clusters are formed, but they now have a high likelihood of being generated along
the centres of these ‘regions’, due to the lower neighbourhood quality at their
boundaries.

3.5 Parameter Settings

Ant-based clustering requires a number of different parameters to be set, some of
which have been experimentally observed to be independent of the data. These
include the number of agents, which we set to be 10, the size of the agents’
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short-term memory, which we equally set to 10, and tstart and tend, which we
set to 0.45 ·#iterations and 0.55 ·#iterations.

Parameters to Be Set as a Function of the Size of the Data Set. Sev-
eral other parameters should however be selected in dependence of the size of
the data set tackled, as they otherwise impair convergence speed. Given a set
of Nitems items, the grid (comprising a total of Ncells cells) should offer a suf-
ficient amount of ‘free’ space to permit the quick dropping of data items (note
that each grid cell can only be occupied by one data item). This can be achieved
by keeping the ratio roccupied = Nitems

Ncells
constant and sufficiently low. A good

value, found experimentally, is roccupied = 1
10 . We obtain this by using a square

grid with a resolution of
√

10Nitems×
√

10Nitems grid cells. The stepsize should
permit sampling of each possible grid position within one move, which is ob-
tained by setting it to stepsize =

√
20Nitems. The total number of iterations

has to grow with the size of the data set. Linear growth proves to be sufficient,
as this keeps the average number of times each grid cell is visited constant. Here,
#iterations = 2000 ·Nitems, with a minimal number of 1 million iterations im-
posed.

Activity-Based α-Adaptation. An issue already addressed in [4] is the auto-
matic determination of the parameter α (recall that α is the parameter scaling
the dissimilarities within the neighbourhood function f∗(i)), which the func-
tioning of the algorithm crucially depends on. During the sorting process, α
determines the percentage of data items on the grid that are classified as simi-
lar, such that: a too small choice of α prevents the formation of clusters on the
grid; on the other hand, a too large choice of α results in the fusion of individual
clusters, and in the limit, all data items would be gathered within one cluster.

Unfortunately, a suitable choice of the parameter α depends on the distribu-
tion of pairwise dissimilarities within the collection and, hence, cannot be fixed
without regard to the data. However, a mismatch of α is reflected by an ex-
cessive or extremely low sorting activity on the grid. Therefore, an automatic
adaptation of α can be obtained through the tracking of the amount of activity,
which is reflected by the frequency of the agents’ successful picking and dropping
operations. The scheme for α-adaptation used in our experiments is described
below.

A heterogenous population of agents is used, that is, each agent makes use
of its own parameter α. All agents start with an α parameter randomly selected
from the interval [0, 1]. An agent considers an adaptation of its own parameter
after it has performed Nactive moves. During this time, it keeps track of the failed
dropping operations Nfail. The rate of failure is determined as rfail = Nfail

Nactive

where Nactive is fixed to 100. The agent’s individual parameter α is then updated
using the rule

α←
{

α + 0.01 if rfail > 0.99
α− 0.01 if rfail ≤ 0.99
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which has been experimentally derived. α is kept adaptive during the entire sort-
ing process. This makes the approach more robust than an adaptation method
with a fixed stopping criterion. Also, it permits for the specific adaptation of α
within different phases of the sorting process.

4 Evaluation

In the following we briefly describe the main experimental setup used for the
evaluation of the described algorithm.

Comparison. The performance of a clustering algorithm can best be judged
with respect to its relative performance when compared to other algorithms.
We therefore choose three popular clustering methods from the literature, the
partitioning method k-means [7], the hierarchical clustering algorithm average-
link agglomerative clustering [12], and one-dimensional self-organising maps (1D-
SOM, [5]).

All three of these algorithms require the correct number of clusters as an input
parameter. While automatic and semi-automatic methods for the determination
of the number of clusters within a data set exist (cf. [8] for a survey), none of
these is infallible. In order to avoid the introduction of an additional source of
error we therefore provide the correct number of clusters to k-means, average
link agglomerative clustering and 1D-SOM, thus giving the same advantage to
all three algorithms.

Other implementation details are as follows: The standard version of average-
link agglomerative clustering is used. k-means is implemented using batch train-
ing and random initialisation, and only the best result out of 20 runs (in terms
of the minimal intra-cluster variance) is returned. 1D-SOM is implemented in
accordance with the description given in [11]: Sequential training, uniform ini-
tialisation of the weight vectors, a rectangular grid and a ‘bubble’ neighbour-
hood are used. The training consists of two phases: a first ‘coarse’ approximation
phase of 10 iterations, with a learning rate of lr = 0.5 and the neighbourhood
size decreasing exponentially from max(1.0, k

4 ) to max(1.0, k
16 ), and a second

fine-tuning phase of 40 iterations, with a learning rate of lr = 0.05 and the
neighbourhood size decreasing exponentially from max(1.0, k

16 ) to 1.0 (here, k is
again the number of clusters). In each iteration all data elements are presented
to the SOM.

For the evaluation of ant-based clustering’s performance at identifying the
correct number of clusters in the data, we additionally compare against the
results returned by the Gap statistic, a recently proposed automated method for
the determination of the number of clusters in a data set [9]. This statistic is
based on the expectation that the most suitable number of clusters appears as
a significant ‘knee’ in a plot of the performance of a clustering algorithm versus
the number of clusters, k. For this purpose, the clustering problem is solved
for a range of different values of k and, for each k, the resulting partitioning



98 Julia Handl et al.

C = {C1, .., Ck} is evaluated by means of the intra-cluster variance, which is
given by

V (k) =
∑

Ci∈C

∑
j∈Ci

(d(j, µi))2.

Here Ci is the ith cluster in the partitioning, µi is the corresponding cluster
centre, and d(j, µi) gives the dissimilarity between data item j and µi. The
intra-cluster variance is affected by the number of clusters, such that a plot of
V (k) exhibits a decreasing trend that is solely caused by the finer partitioning
and not by the actual capturing of structure within the data. The Gap statistic
overcomes this effect through a normalisation of the performance curve. B refer-
ence curves Rb(k) (with b ∈ {1, ...B}) are computed, which are the performance
curves obtained with the same clustering algorithm for uniform random refer-
ence distributions. Using these, the normalised performance curve (‘Gap curve’)
for V (k) is then given as

Gap(k) =
1
B

B∑
b=1

log(Rb(k))− log(V (k)).

The most suitable number of clusters is determined by finding the first significant
local maximum of Gap(k).

For our implementation of the Gap statistic we use the above described k-
means algorithm. We compute the performance curves for k ∈ {1, ..., 20}, and,
for each k, we generate B = 20 reference distributions.

Benchmark Data. The benchmarks used in our experiments are synthetic
data sets with each cluster generated by a two-dimensional normal distribution
N(µ, σ). The number of clusters, the sizes of the individual clusters, and the
mean vector µ and vector of the standard deviation σ, for each normal distri-
bution, are manually fixed. In the experiments, each algorithm is run 50 times
on each type of benchmark, and for every individual run, the actual data items
are newly sampled from the normal distributions.

Table 1 gives the definition of the benchmarks, and Figure 1 shows four
sample instances. The benchmarks are variations of the Square data set, a data
set that has been frequently employed in the literature on ant-based clustering.
It is two-dimensional and consists of four clusters of equal size (250 data items
each), which are generated by normal distributions with a standard deviation of
2 in both dimensions and are arranged in a square.

The data sets Square1 to Square7 only differ by the distance between the
individual clusters (i.e., the length of the edges of the square), which is 10, 9,
8, 7, 6, 5 and 4 respectively. They were generated in order to study the relative
sensitivity of the algorithms to increasing overlap between clusters.

In the Sizes1 to Sizes5 data sets, edge length and standard deviation are
kept constant, and, instead, they differ in the sizes of the individual clusters. In
particular, the ratio between the smallest and the largest cluster increases from
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Fig. 1. Four sample instances of the Square1, the Square5, the Sizes1 and the Sizes5
benchmark data

the Sizes1 (where it is 2) to the Sizes5 data (where it is 10). This is used to
investigate the algorithms’ sensitivity to unequally-sized clusters.

Data Preprocessing. Prior to clustering, the data is normalised in each dimen-
sion. The Euclidean distance is used as a distance measure between individual
data items, and, for average-link agglomerative clustering and ant-based cluster-
ing the complete dissimilarity matrix is precomputed.1 The entries of the matrix
are normalised to lie within the interval [0, 1].

Analytical Evaluation. The analytical evaluation of the performance of ant-
based clustering requires that the solution generated by the algorithm be made
explicit, that is, that the spatial distribution produced by the algorithm be
converted to an explicit partitioning of the data. In our experiments this was
done using the automated method described in [3].

We evaluate the obtained partitioning using the F -Measure [10], which com-
bines information on the purity and the completeness of the generated clusters
1 Note that this is not possible for k-means and 1D-SOM, as these work with cluster

representatives that do not necessarily correspond to actual data items within the
collection and can change in each iteration.
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Table 1. Summary of the used data sets. dim is the dimensionality, k gives the number
of clusters, and nj gives the number of data elements for cluster Cj . The test sets are
generated by multidimensional normal distributions N(µ, σ), where µ is the vector of
means and σ is the vector of the standard deviations

Name k nj dim Source

Square1 4 4 × 250 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

Square2 4 4 × 250 2 N([0, 0], [2, 2]), N([9, 9], [2, 2])
N([0, 9], [2, 2]), N([9, 0], [2, 2])

Square3 4 4 × 250 2 N([0, 0], [2, 2]), N([8, 8], [2, 2])
N([0, 8], [2, 2]), N([8, 0], [2, 2])

Square4 4 4 × 250 2 N([0, 0], [2, 2]), N([7, 7], [2, 2])
N([0, 7], [2, 2]), N([7, 0], [2, 2])

Square5 4 4 × 250 2 N([0, 0], [2, 2]), N([6, 6], [2, 2])
N([0, 6], [2, 2]), N([6, 0], [2, 2])

Square6 4 4 × 250 2 N([0, 0], [2, 2]), N([5, 5], [2, 2])
N([0, 5], [2, 2]), N([5, 0], [2, 2])

Square7 4 4 × 250 2 N([0, 0], [2, 2]), N([4, 4], [2, 2])
N([0, 4], [2, 2]), N([4, 0], [2, 2])

Sizes1 4 400, 200, 200, 200 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

Sizes2 4 571, 143, 143, 143 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

Sizes3 4 667, 111, 111, 111 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

Sizes4 4 727, 91, 91, 91 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

Sizes5 4 769, 77, 77, 77 2 N([0, 0], [2, 2]), N([10, 10], [2, 2])
N([0, 10], [2, 2]), N([10, 0], [2, 2])

with respect to the real class memberships. In particular, it adopts the ideas of
precision and recall from information retrieval: Each class Ti (inherent to the
data) is regarded as the set of ni items desired for a query; each cluster Cj

(generated by the algorithm) is regarded as the set of nj items retrieved for
a query; nij gives the number of elements of class Ti within cluster Cj . For each
class Ti and cluster Cj precision and recall are then defined as p(i, j) = nij

nj
and
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r(i, j) = nij

ni
, respectively, and the corresponding value under the F-Measure is

F (i, j) =
(b2 + 1) · p(i, j) · r(i, j)

b2 · p(i, j) + r(i, j)
,

where equal weighting for p(i, j) and r(i, j) is obtained if b = 1. The overall
F-value for the partitioning is computed as

F =
∑

i

ni

n
max

j
{F (i, j)}.

It is limited to the interval [0, 1] and should be maximised.

5 Results

We now summarise the results obtained in our comparison of the ant-based
clustering algorithm with the standard clustering techniques k-means, average-
link agglomerative clustering and 1D-SOM. While, in this paper, we limit the
discussion to the qualitative performance of ant-based clustering on the two
types of synthetic data presented in the above section, results for more general
synthetic and real data sets (including runtimes) can be found in [3].

Sensitivity to Overlapping Clusters. We study the sensitivity to overlap-
ping clusters using the Square1 to Square7 data sets. It is clear that the perfor-
mance of all four algorithms necessarily has to decrease with a shrinking distance
between the clusters, as points within the region of overlap cannot be correctly
classified. It is however interesting to see whether the performance of the in-
dividual algorithms degrades gracefully or more catastrophically, as a graceful
degradation would indicate that the main cluster structures are still correctly
identified.

Figure 2a shows a plot of the algorithms’ performance (as reflected by the F-
measure) versus the distance between neighbouring clusters. A number of trends
can be observed in this graph. There is the very strong performance of k-means,
which performs best on the first four data sets. The 1D-SOM starts on a lower
quality level, but its relative drop in performance is less than that of k-means: it
clearly profits from its topology preserving behaviour, which makes it less sus-
ceptible to noise. Average-link agglomerative clustering, in contrast, has trouble
in identifying the principal clusters and performs quite badly, especially on the
data sets with a lower inter-cluster distance.

The results of ant-based clustering are very close to those for k-means on
the simplest data set, Square1, but its performance drops slightly more quickly.
Still, it performs significantly better than average-link agglomerative clustering
on the first five test sets. Also, in spite of the fact that the clusters ‘touch’,
the ant-algorithm reliably identifies the correct number of clusters on the first
five test sets, and it can thus be concluded that the algorithm does not rely on
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Fig. 2. Performance as a function of the distance between the cluster centres on the
Square data sets. (a) F-Measure (b) Number of identified clusters
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Fig. 3. Theoretical density distribution along the connecting line between two clus-
ter centres in the Square5, the Square6 and the Square7 test set (from left to right).
Constructed as the superimposition of two one-dimensional normal distributions with
standard deviation 2 and a distance of 6, 5 and 4 respectively

the spatial separation between clusters, but that distinct changes in the density
distribution are sufficient for it to detect the clusters.

For the Square6 and Square7 test data, the performance of ant-based clus-
tering drops significantly, as it fails to reliably detect the four clusters. For the
Square6 test set the number of identified clusters varies between 1 and 4, for the
Square7 only 1 cluster is identified (see Figure 2b). However, a plot of the theo-
retical density distribution along the ‘edge’ between two neighbouring clusters in
this data set, puts this failure into perspective: Figure 3 makes clear, that, due
to the closeness of the clusters, the density gradient is very weak for the Square6
data, and the distribution of data items is nearly uniform for the Square7 data.

The reader should keep in mind that, different from its competitors, ant-based
clustering has not been provided with the correct number of clusters. In order to
get a more precise idea of the performance of ant-based clustering, we therefore
additionally analyse its success at identifying the correct number of clusters in
the data. The comparison in Figure 2b shows that ant-based clustering performs
very well, it is much less affected by the lack of spatial separation between the
clusters than the Gap statistic.
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Fig. 4. Performance as a function of the ratio between cluster sizes. (a) F-Measure
(b) Number of identified clusters

Sensitivity to Unequally-Sized Clusters. The sensitivity to unequally-sized
clusters is studied using the Sizes1 to Sizes5 data sets. Again, we show the algo-
rithms’ performance on these data sets as reflected by the F-Measure (Figure 4).

Ant-based clustering performs very well on all five test sets, in fact it is
hardly affected at all by the increasing deviations between cluster sizes. Out of its
three contestants, only average-link agglomerative clustering performs similarly
robustly. 1D-SOM is very strongly affected by the increase of the ratio between
cluster sizes, and the performance of k-means also suffers. The performance of
the Gap statistic is again very weak when compared to ant-based clustering.

6 Conclusion

In this paper we have introduced algorithmic modifications and parameter set-
tings for ant-based clustering that permit its direct application to arbitrary nu-
merical data sets. While the robust performance of the algorithm across a wide
range of test data has been demonstrated elsewhere [3], our analysis in this paper
has focused on studying two particular data properties that can pose problems
to clustering algorithms.

The results presented demonstrate the robust performance of ant-based clus-
tering. The algorithm is largely unaffected by data sets in which the clusters are
unequally sized, and it succeeds at reliably separating clusters up to a high degree
of overlap. In both cases, it clearly outperforms the Gap statistic at identifying
the correct number of clusters.
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