
What Is a Learning Classifier System?

John H. Holland1, Lashon B. Booker2, Marco Colombetti3, Marco Dorigo4,
David E. Goldberg5, Stephanie Forrest6, Rick L. Riolo7, Robert E. Smith8,

Pier Luca Lanzi3, Wolfgang Stolzmann9, and Stewart W. Wilson5,10

1 University of Michigan, USA
2 The MITRE Corporation, USA

3 Politecnico di Milano, Italy
4 IRIDIA, Université Libre de Bruxelles, Belgium

5 University of Illinois at Urbana-Champaign, USA
6 Santa Fe Institute, USA

7 Center for Study of Complex Systems
University of Michigan, USA

8 The Intelligent Computer Systems Centre
The University of The West of England, UK

9 University of Wuerzburg, Germany
10 Prediction Dynamics, USA

Abstract. We asked “What is a Learning Classifier System” to some of
the best-known researchers in the field. These are their answers.

1 John H. Holland

Classifier systems are intended as a framework that uses genetic algorithms to
study learning in condition/action, rule-based systems. They simplify the “bro-
adcast language” introduced in [26] by (i) eliminating the ability of rules to
generate other rules, and (ii) by simplifying the specification of conditions and
actions. They were introduced in [27] and were later revised to the current “stan-
dard” form in [28]. [31] gives a comprehensive description of this “standard”
form, with examples. There are, however, many significant variants (e.g., Boo-
ker [9, this volume], Riolo [59], Smith [67, this volume], Wilson [83]).

In defining classifier systems I adopted the common view that the state of the
environment is conveyed to the system via a set of detectors (e.g., rods and cones
in a retina). The outputs of the detectors are treated as standardized packets
of information, messages. Messages are used for internal processing as well, and
some messages, by directing the system’s effectors (e.g., its muscles), determine
the system’s actions upon its environment. There is a further environmental
interaction that is critical to the learning process: the environment must, in
certain situations, provide the system with some measure of its performance.
Here, as earlier [26], I will use the term payoff as the general term for this
measure.

P.L. Lanzi, W. Stolzmann, and S.W. Wilson (Eds.): LCS ’99, LNAI 1813, pp. 3–32, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



4 J.H. Holland et al.

1.1 Basic Questions

Classifier systems address three basic problems in machine learning:

Parallelism and coordination. A system is unlikely to have enough single,
monolithic rules to handle situations like “a red Saab by the side of the road
with a flat tire”, but such a situation is easily handled by simultaneously ac-
tivating rules for the building blocks of the situation: “car”, “roadside”, “flat
tire”, and the like. In short, a rule-based system can handle a broad range of
novel situations if it can act on them with combinations of “building block”
rules. Then combinatorics works for the system instead of against it. Moreover,
because appropriate building blocks appear frequently, in a wide range of situa-
tions, they are tested and confirmed at a high rate. The problem is to provide
for the interaction and coordination of a large number of rules that are active
simultaneously.

Credit assignment. Deciding which rules in a rule-based system are responsi-
ble for its successes, particularly when long sequences of “stage-setting” actions
precede success, is an interesting and difficult problem. If the system is not con-
tinually monitored by a referee, solution of this problem is a sine qua non for
learning. The problem is to credit an early action, which may look poor (as in
the sacrifice of a piece in chess), for making possible a later positive action (as
in setting the stage for the capture of a major piece).

In realistic situations, exhaustive exploration of all possible action paths (as
in dynamic programming and Q-learning) is not feasible. So the credit assign-
ment scheme must be “local”. When many rules are active simultaneously the
situation is exacerbated. Only a few of the early-acting rules may set the stage,
while other rules active at the same time may be ineffective or, even, obstruc-
tive. Samuel’s early work [65], using prediction over extended action sequences,
points the way, but few have exploited his insights.

Rule discovery. Rule discovery (or its equivalent) is the most recondite pro-
blem in machine learning. It was not even well-handled in Samuel’s remarkable
work. We know that rules receiving little credit (“low strength”) should be repla-
ced, but random generation of new rules can only work for the smallest problems.
The key to effectiveness is use of past experience to generate plausible hypothe-
ses (rules) about situations as yet poorly understood – hypotheses not obviously
contradicted by past experience.

Behind these three basic problems is a deeper question: How does a system
improve its performance in a perpetually novel environment where overt ratings
of performance are only rarely available? Obviously such improvement is not
possible unless the environment has repeating (sub-)patterns. A learning task of
this kind is more easily described if we think of the system as playing a game
of strategy, like checkers or chess. After a long sequence of actions (moves), the
system receives some notification of a “win” or a “loss” and, perhaps, some
indication of the size of the win or loss. There is little information about specific



What Is a Learning Classifier System? 5

changes that would improve performance. Most learning situations for animals,
including humans, have this characteristic – an extended sequence of actions is
followed by some general indication of the level of performance.

1.2 How Classifier Systems Address These Questions

In classifier systems, parallelism and coordination are addressed by restricting
rule action to the emission of messages. Tags in the messages allow flexible “ad-
dressing”, providing coordination of activities. Detectors translate the current
state of the environment into messages, and effectors translate selected messages
into actions on that environment. The overall classifier system, then, can be vie-
wed as a message processing system acting on the current list (set) of messages.
Because messages only serve to activate rules, questions of “rule consistency”
and “consistency maintenance” are avoided. More messages simply mean more
active rules, and vice-versa.

Credit assignment is handled by setting up a market situation. In that market
each rule acts as a go-between (broker, middleman) in chains leading from the
current situation to (possible) favorable outcomes. At each instant, rules with
satisfied conditions bid for the right to become active. If a rule becomes active,
it pays its bid to the active predecessor(s) that sent messages satisfying its
conditions (its “suppliers”). As an active rule, it then stands to profit from bids
of subsequent bidders (its “consumers”). Rules active at the time of external
payoff (reward, reinforcement) are apportioned the payoff as if it were income
from “ultimate consumers”.

Credit is accumulated by the rule as a strength (a kind of capital). Many
of the variants of classifier systems offer alternative schemes for apportioning or
accumulating credit. In general, whatever the apportionment scheme, stronger
rules bid more, thereby being more likely to win the bidding process. That, in
turn, makes those rules more likely to influence the system’s behavior.

Rule discovery exploits the genetic algorithm’s ability to discover and recom-
bine building blocks. Classifier systems have “building blocks” at two levels: the
parts (schemata) from which the condition and action parts of individual rules
are constructed, and the rules themselves, as components of the overall system.
The genetic algorithm works on this “ecology” at both levels. Because it is desi-
gned to work on populations (sets of rules), it is well suited to the task. Indeed
classifier systems were designed with just this objective in mind.

Rule strength enters at both levels, being treated as a fitness (likelihood of
being the parent of new rules) by the genetic algorithm. Variants offer different
ways of translating strength into fitness, contingent on the particular variant
used for credit assignment.

Each of the mechanisms used by the classifier system has been designed to
enable the system to continue to adapt to its environment, while using its extant
capabilities to respond instant-by-instant to that environment. In so doing the
system is constantly trying to balance exploration (acquisition of new infor-
mation and capabilities) with exploitation (the efficient use of information and
capabilities already available).



6 J.H. Holland et al.

1.3 Implementation

The computational basis for classifier systems is provided by a set of condition-
action rules, called classifiers. A typical (single condition) rule has the form:

IF there is (a message from the detectors indicating)
an object left of center in the field of vision,

THEN (by issuing a message to the effectors)
cause the eyes to look left.

More generally, the condition part of the rule “looks for” certain kinds of
messages; when the rule’s conditions are satisfied, the action part specifies a
message to be sent. Messages both pass information from the environment and
provide communication between classifiers. Because many rules can be active
simultaneously, many messages may be present at any given instant. From a
computational point of view, it is convenient to think of the messages as collected
in a list.

A computer-based definition of these rules requires a proper language for
representing classifiers. It is convenient to think of the messages as bit strings
(though representation via any alphabet or set of functions is equally possible).
We can, in addition, think of each bit position as representing the value of a
predicate (1 for true, 0 for false) though, again, this is only a convenience and
not necessary for more complex representations. Classifier conditions then define
equivalence classes (hyperplanes) over the message space using the don’t care
symbol ’#’. More recently, it has proved useful to introduce a symmetry that
allows messages to act over equivalence classes of conditions, using the ’fits all’
symbol ’?’. Other variants have been studied (e.g., [86, this volume], [1]).

If messages are bit strings of length m over the alphabet 1,0, then conditions
are strings of length m over the alphabet 1,0,# and actions are strings of length
m over the alphabet 1,0,?. The genetic algorithm mates these strings to produce
new competing rules.

1.4 Future Research

In recent years there has been a focus on classifier systems as performance sy-
stems or evolutionary incarnations of reinforcement systems (e.g., Lanzi [47],
Wilson [87, this volume]). This has been fruitful but, I think, falls short of the
potential of classifier systems. Smith [67, this volume] makes the point that clas-
sifier systems, in their ability to innovate, offer broader vistas than reinforcement
learning.

In my opinion the single most important area for investigation vis-a-vis clas-
sifier systems is the formation of default hierarchies, in both time (“bridging
classifiers” that stay active over extended periods of time) and space (hierarchies
of defaults and exceptions). Having been unable to convince either colleagues or
students of the importance of such an investigation, I intend to pursue it myself
next summer (year 2000).



What Is a Learning Classifier System? 7

2 Lashon B. Booker

Speculations about future directions for classifier system research can benefit
from a look at Holland’s original research goals in formulating the classifier sy-
stem framework [27,31]. The early motivations for classifier system research were
derived from the many difficulties that a learning system encounters in a com-
plex environment. Realistic environments are both rich and continually varying.
They force a learning system to deal with perpetually novel streams of informa-
tion, and often impose continual requirements for action given sparse payoff or
reinforcement. There are many examples of natural systems and processes that
handle such challenges effectively: the central nervous system, co-adapted sets
of genes, the immune system, economies and ecologies. Most artificial systems,
on the other hand, tend to be brittle in the sense that substantial human inter-
vention is often required in order to realign system responses to address changes
in the environment. Holland identified a list of criteria for avoiding brittle be-
havior. These criteria summarize key aspects of what appears to lie behind the
flexibility exhibited by natural systems: they implement processes that build
and refine models of the environment. Moreover, these models typically involve
massive numbers of elements adapting to the environment and to each other
through many local nonlinear interactions. Classifier systems were proposed as
an example of a rule-based system capable of learning and using multi-element
models of this kind.

While initial research on classifier systems focused on many of the now-
familiar computational mechanisms and algorithms, it is important to keep in
mind that “The essence of classifier systems is a parallelism and standardization
that permit both a ‘building block’ approach to the processing of information
and the use of competition to resolve conflicts.” [31, p. 611]. The “standard”
computational procedures are significant because they illustrate how it is possi-
ble, in principle, to design and build a system that meets the criteria for avoiding
brittleness. However, in my view, it is the design principles that provide the insi-
ghts about what a classifier system “is”. For that reason, I find it useful to think
of the classifier system framework in the broadest sense as a general-purpose ap-
proach to learning and representation. This approach provides a way of looking
at problems and structuring flexible systems to solve them, but it does not neces-
sarily prescribe the detailed methods that are best suited for solving a particular
problem class. Research in classifier systems typically focuses on computational
methods, but too often advances in methodology are not leveraged to further
our understanding of the broader issues that the classifier system framework was
designed to address. I believe that the most important goal for classifier system
research is to develop deeper insights about how our computational methods
bring us closer to realizing the capabilities Holland envisioned in his original
concept.

One way to achieve this goal is to develop more formal characterizations of
classifier system methods and processes. There has been relatively little work
along these lines since Holland’s [30] early attempt to characterize what a regu-
larity is in a perpetually novel environment, and what it means for a classifier



8 J.H. Holland et al.

system to exploit these regularities. An agenda of theoretical issues that need
to be pursued was proposed more than a decade ago [10] and it remains rele-
vant today. Research like this is needed so that classifier system design decisions
can be grounded in clear, preferably formal statements of the technical issues
being addressed. We also need need to be able to characterize the capabilities
and limitations of classifier systems more carefully, including some expectations
regarding the quality of the solutions the system is likely to learn.

Another way to broaden our understanding of classifier system design princi-
ples is to study them from a wider variety of perspectives. The classifier system
research to date has focused almost exclusively on the learning and representa-
tion issues that are prominent in reinforcement learning problems. Recently there
have been systems and methods proposed that emphasize other perspectives on
learning and representation. These perspectives have been derived from studies
of the immune system [64], agent-based economic models [18], and ecologies [9].
New computational methods will emerge from this research, and similar excur-
sions should be encouraged. Hopefully, this will lead to new insights about how
to build systems that confirm Holland’s original intuitions about the potential
of the classifier system framework.

3 Marco Colombetti and Marco Dorigo

During most of the nineties, we have been using learning classifier systems (LCSs)
to develop simulated animats and real robots able to learn their behavior. The
types of behavior we focussed on were quite zoomorphic (exploring an environ-
ment, searching for and chasing a prey, fleeing from a predator, and so on).
However, we were more interested in investigating ways of using reinforcement
to shape the behavior of an agent, rather than in studying how a system can
spontaneously adapt to a natural environment. We viewed our work mostly as
a contribution to behavior engineering, as we call the discipline concerned with
the development of flexible autonomous robots. Most of the results of this work
were finally collected in a book [17].

Throughout our research, we regarded LCSs as a promising model for rein-
forcement learning (RL). For this reason, we have been surprised to see that
LCSs are often contrasted with RL, as if they were different approaches. In our
opinion, it is important to distinguish between RL as a class of problems, on
one side, and the learning techniques typically studied by the RL community, on
the other side. As is well known, the fundamental problem of RL is defined in
the following setting (Fig. 1). An agent interacts with an environment through
sensors and effectors. At times, the agent receives from the environment a scalar
signal, called reinforcement (r). The problem is to exploit the agent’s experience
(i.e., the history of its interactions with the environment) to develop a behavior
policy that maximizes some functional of reinforcement over time.

RL problems can be studied from two different viewpoints. They can be
regarded as abstract problems, and dealt with in a purely mathematical way. The
main point here is to define learning algorithms of low computational complexity



What Is a Learning Classifier System? 9

environment

agent

sensors effectors

Fig. 1. The reinforcement learning setting.

that are guaranteed to converge to an optimal behavior policy. Alternatively, an
RL researcher may take a more concrete standpoint, and focus on the agent
as a software system. The main questions now become, H ow can we represent
behavioral policies in a compact way? How can we efficiently implement RL
algorithms on such representations? Should we trade policy optimality for higher
computational efficiency, and how? Can we develop RL systems that scale up
to problems of realistic size? These are the questions we had in mind when we
started to apply RL techniques to robot shaping.

Since the beginning of our work, we felt that LCSs were fit for solving the
RL problems we wanted to tackle. The features we found most appealing were
the overall architecture of LCSs, and the use of a genetic algorithm (GA) in the
discovery component. As far as architecture is concerned, we believe that the
production rule paradigm, of which LCSs are an example, is particularly suita-
ble for implementing adaptive agents. This paradigm allows for a very peculiar
interaction of simple behavioral rules, in such a way that both cooperation and
competition among several rules are exploited to generate opportunistic beha-
vior. Production rules have been very successful within the classical approach of
symbolic artificial intelligence, and we think that the reasons of such a success
are still valid in a more low-level approach.

The main reason of our interest in LCSs, however, was due to its evolutio-
nary component. As we have argued elsewhere [13], a major aspect of behavior
engineering is the attempt to go beyond the limits of “rational design.” By this
we mean that the behavior of a real robot cannot be completely predefined.
Learning, quite obviously, is a way of overcoming ignorance. However, ignorance
is a problem not only for the learning agent, but also for the robot’s designer.
For an agent interacting with a physical environment, learning is going to be not
only a matter of optimally tuning a set of parameters, but also of discovering
structure. An optimal coupling of an agent with its environment is only possi-
ble if the dynamical structure of the environment is somehow mirrored by the
structure of the agent’s representation of its own behavior policy.

The evolutionary component of an LCS has the remarkable ability to produce
a compact representation of a relevant subspace of all possible behavior rules.
In principle, this gives LCSs the power to scale up to problems of realistic size.
Unfortunately, in our work we found that the learning power of LCSs is still
too weak to deal with the kinds of problems involved in concrete applications of



10 J.H. Holland et al.

autonomous robots. We tackled this difficulty in the following way. First, we gave
our learning agents as much input information as possible, by adopting a step-by-
step reinforcement schedule. Second, we endowed our agents with some “innate”
structure, by predesigning a hierarchical architecture for behavior control. To do
so, we exploited Alecsys [16,15], a transputer-based system that allows for the
implementation of a network of interconnected LCSs. As a result, a substantial
part of the final agent behavior is actually suggested by the designer, through
the development of a suitable architecture and through a skillful definition of
the reinforcement function. Notwithstanding this, we believe that the results are
still of great interest for behavior engineering. In particular, the use of an RL
approach allows the robot designer to concentrate on a high-level specification of
the target behavior (through the definition of the reinforcement function), thus
avoiding the risk of being caught up in a bundle of details.

Since we completed our work on robot shaping, much water has flown under
the bridge of LCSs. The introduction of the XCS model by Wilson [83] appears
to us to be a major achievement, for both theoretical and practical reasons. From
a theoretical point of view, the main virtues of XCS are that it is a very neat
model, and that it stresses the belonging of LCSs to the field of RL. We hope
that, in the future, the RL community will be more inclined to regard LCSs as an
interesting approach to the solution of RL problems. From the practical point of
view, XCS has the advantage, at least to our eyes, that it gets rid of some aspects
of the LCS model that, although very interesting in principle, have not proved
to work effectively in practical applications. In particular, we want to mention
the mechanism by which an LCS is expected to form rule chains that may be
considered as simple behavior plans. In our experiments, we never happened to
observe such a phenomenon. The current approach based on the use of memory
registers [46,52] seems to us to be a more promising way of overcoming the
limitations of simple reactive behavior.

4 Stephanie Forrest

Classifier systems were originally proposed as a model of inductive processes in
human-like cognitive systems [25]. The basic classifier system architecture incor-
porates ideas from artificial intelligence, machine learning, cognitive psychology,
economics, evolution, and computer design into one framework. The system has
the following components: parallel forward-chaining rules, a reinforcement lear-
ning algorithm (the bucket brigade), a set of ”genetic operators” for evolving
the rule set, a simple interface with the external environment, and a theory of
model construction based on homomorphic maps.

Classifier systems represented an advance in our thinking about cognitive mo-
deling in several ways. Representations in classifier systems were (and are still)
fine-grained—the execution of a single rule represented a much smaller reasoning
step that those commonly found in symbolic production systems [56], and infor-
mation was encoded as simple bit strings, rather than complex data structures,
as in semantic networks or conceptual dependency theory. One hypothesis about



What Is a Learning Classifier System? 11

classifier systems was that symbolic-level reasoning would arise spontaneously
from fortuitous interactions and combinations of individual rules. Such symbols
would be discovered and manipulated naturally by the system, fluidly and im-
plicitly, without the need for explicitly named locations in memory such as those
found in the symbolic reasoning systems mentioned earlier. Many rules could be
active simultaneously, thus allowing the system to consider multiple, and even
conflicting, hypotheses up until the time that an output decision was made.
But because the message list had finite size, there was also the possibility of
competition among rules, allowing the system to focus. By contrast, most other
reasoning systems of the day required that the system be maintained in a logi-
cally consistent state at all times. Classifier systems incorporated two important
forms of learning—the bucket brigade to assign credit (reward) among among
classifiers, and various discovery operators for generating variants and recombi-
nations of existing successful rules. These learning mechanisms, combined with
the 1,0,# vocabulary of rules, allow the system to discover and represent kno-
wledge in terms of equivalence classes. This is important in environments with
large numbers of states, where methods such as Q-learning [79] are problematic
because of the huge number of possible state/action pairs. Finally, and in my
view, most importantly, classifier systems were constructed as the realization of
a formal theory about how intelligent systems construct internal models of their
environment and use those models to enhance their existence. This theory, based
on homomorphic maps and an extension, known as quasi-morphisms, remains
as one of the central contributions of classifier systems.

With a few notable exceptions, for example [60], the past twenty years of
research on classifier systems has focused on engineering the architecture so
that it exhibits plausible computational behavior and can solve interesting real-
world problems. Although great progress has been made on this front, there has
been relatively little emphasis on the cognitive modeling issues that classifier
systems were intended to address. Of these, perhaps the most central outstanding
question is what symbols are and how they are discovered, maintained, and
used effectively. It is commonly believed that higher animals, such as humans,
rely heavily on the use of symbols to represent and manipulate models of the
environment, for language, and other abstract cognitive tasks. However, we still
have little understanding of how symbols are stored and processed in the brain.
These and other questions related to classifier systems as a model of cognitive
activity are an important direction for future research.

Ideas about situated intelligence, such as those described in [23,12], have
changed our views about the nature of intelligent artifacts. Natural systems ex-
hibiting intelligent behavior are now understood as having co-evolved with their
environments, rather than as isolated designs. The interactions between these in-
telligences and their environments are central to their success, even in the case of
brains where the majority of neural activity is internal to the system (e.g., when
we are asleep and dreaming). Brains are structurally organized around impor-
tant sources of sensory input, such as the visual system, and are continuously
exposed to environmental signals, even during embryonic development, where



12 J.H. Holland et al.

spontaneous retinal activity allows topographic mapping of the retina onto the
developing visual cortex. Situated intelligent artifacts are perhaps more complex
to think about, because they cannot be neatly separated from their environ-
ments, but they can in some cases use their environments in ways that simplify
their computations.

Thus, a second important area of future research is to rethink our assumpti-
ons about classifier design from the perspective of situated intelligence. Classifier
systems were originally intended as a generic architecture for cognitive systems,
one that could be placed in a wide variety of different environments, and this has
biased our ideas about how to deploy classifier systems. For example, most clas-
sifier systems have narrow-bandwidth interactions with their environments, and
it might be appropriate to think about designing them from a more perceptual
perspective, creating systems that are ”awash” in environmental messages, as
for example, in ref. [64] where a system resembling a classifier system is situated
in a live local area network, exposed to a constant flow of TCP/IP packets.

One missing component in classifier systems is the ability to aggregate sets
of rules into encapsulated components, analogous to subroutines in conventional
programming languages. Classifier systems are ”flat” in the sense that all rules
have the same status, and groupings of rules into subroutines (corresponding
to subassemblies in Hebbian models) are intended to occur automatically, with-
out an explicit reinforcing mechanism. Although it may be technically possible
to design rule sets that have this property, through the use of tags and brid-
ging classifiers, it is highly unlikely that robust logically isolated components
will be discovered and sustained through the learning operations of the classifier
system. Rather than trying to improve our learning algorithms or to devise cle-
verer representations, I believe that an explicit mechanism is needed, analogous
to Koza’s automatic function definition for genetic programming [43]. Such a
mechanism would recognize effective clusters of classifiers, aggregate them into
a single unit such that the individual rules were not directly accessible from ou-
tside the cluster, define a limited interface to the rest of the system, and protect
them from the ongoing pressures of mutation and crossover.

The original insights which inspired the design of classifier systems remain
compelling, and they address important and unresolved issues in our under-
standing of intelligent systems. Few would argue that the exact mechanisms
employed by classifier systems are those used in human brains, but the classifier
system serves as an illustration of a set of design principles that are central in
the design, and our understanding of the design, of many intelligent systems,
including the brain. I believe that it is important for researchers to focus more
on the basic principles exhibited by classifier systems and less on the specific
implementation that was introduced nearly twenty years ago.

As an example, Steven Hofmeyr recently developed a model immune system
which resembles the spirit of classifier systems, but implements few of the archi-
tectural details in the same way [24]. Detectors in this system represent generic
immune cells, combining properties of T-cells, B-cells, and antibodies, and cor-
respond to the condition parts of classifiers. However, instead of using a match



What Is a Learning Classifier System? 13

rule based on the 1, 0, ] alphabet traditionally used in classifier systems, Hof-
meyr adopted one called r-contiguous bits [58] based only on bit strings. To
extend the immune detector into a full-fledged condition/action classifier rule,
a few bits can be concatenated to each detector to specify a response (analo-
gous to different antibody isotypes). Instead of associating a strength with each
rule, each detector in the model immune system has a life cycle, consisting of
immature, naive, activated, memory, and death states. These states reflect how
successful the detector is and how long it will live. The mechanisms that control
how detectors move through their life cycle correspond to the role of the bucket
brigade (credit assignment) in classifier systems. However, learning in the mo-
del immune system is simpler than classifier systems in the sense that credit
is assigned directly from the environment to the detectors, and strength is not
passed among immune cells. Internal feedbacks and self-regulation are modeled
through a primitive form of a cytokine system (signalling molecules secreted by
immune cells, which diffuse locally and either stimulate or downregulate other
immune cells). In place of the message list, the system is intended to live in a
computer network environment, constantly exposed to new signals. Bidding for
messages in classifier systems is analogous to immune cells competing to bind to
foreign datapaths. Although the mapping between this model immune system
and classifier systems is not 1−1, it captures many of the important properties of
classifier systems and provides an example of how the spirit of classifier systems
might be realized in new ways.

5 David Goldberg

Some Reflections on Learning Classifier Systems. I appreciate the edi-
tors’ invitation to contribute to this important volume marking what must be
called a renaissance of learning classifier systems (LCSs). Although I have kept
my finger in the LCS pie through occasional papers on LCS subjects, the main
body of my work shifted following my 1983 dissertation applying genetic algo-
rithms (GAs) and LCSs to gas pipeline control; in recent years, I have largely
focused my efforts to develop (1) an effective methodology for the design of
GAs, (2) an integrated design theory for selectorecombinative GA design, (3)
competent genetic algorithms—GAs that solve hard problems, quickly, reliably,
and accurately, and (4) efficiency enhancement technologies (EETs) for faster
solutions.

In this short essay, I’d like to give some personal reflections on why I shifted
my work away from learning classifier systems, what I learned from those efforts,
and why I am renewing a more active program in LCS research. I start by
reflecting on my involvement in classifier systems back in the eighties.

Some Ancient LCS History. When I first proposed my dissertation topic
in 1980, I was under the impression that these things called classifier systems
were well understood and that my dissertation would be a relatively simple
exercise in application. After all, as I sat through John Holland’s lectures at the



14 J.H. Holland et al.

University of Michigan, it all sounded so plausible: roving bands of rules fighting,
mating, competing, dying, giving birth, and so forth. The first indication that
there might be some work to do was when I went to look for some computer
code to build on and found that there wasn’t any available to me. The second
indication of difficulty came when I actually built a classifer system on my little
Apple II computer in Pascal, turned it on, and realized that productive system
performance was completely drowned out by the action of myriad parasitic rules.

Thereafter, I realized that I couldn’t shotgun my way to success. I knew that
I needed to engineer the system well using bounding analyses, careful experi-
ments, and intuition, and I proceeded to construct what I believe was the first
classifier system to exhibit a default hierarchy. True, by today’s standards, the
accomplishment was modest, but I did succeed in creating a system with ru-
les and messages, apportionment-of-credit, and genetic learning. The university
granted me my PhD, and I moved on to the University of Alabama, wondering
what I should do next.

A Quest for Competent GAs and 3 Lessons. Some pointed questioning
in my dissertation defense helped me realize that EVERY aspect of classifier
system design at the time was built on intellectual quicksand. Elsewhere, I have
called classifier systems a glorious quagmire, and I believe this description at that
time was apt. Genetic algorithms had bounding schema theory, but competent
GAs had not yet been designed. The bucket brigade had the right idea, but
the theorems of reinforcement learning were not yet available to us, and no
one knew what rule syntax was necessary to solve the problems at hand. This
situation seemed untenable to me. After all, in physical system design, engineers
are used to having the laws of physics to guide system design. Here, the design
environment was shifty, to say the least.

My immediate reaction to that environment was to look at the heart of
genetics-based machine learning (GBML), the genetic algorithm, and see if I
could tame GA design somewhat. My reasoning was that with effective GAs in
hand, I would be able to return one day to classifier system design without the
core rule induction method as a big question mark. This is not the forum for a
detailed discussion of these explorations in competent GAs; various papers and a
forthcoming monograph will better serve this function for the reader. Instead, I
would like to briefly discuss three fairly high-level lessons of this journey, lessons
that I believe carry over to the problem of competent LCS design.

Specifically, my explorations in competent GA design have taught me the
importance of three things:

1. a proper methodology of invention and design,
2. the right kind of design theory, and
3. the right kind of test functions.

I briefly discuss each somewhat further.
Elsewhere I have borrowed from my colleague Gary Bradshaw and used the

Wright brothers and their method of invention and design to help designers of
complex conceptual machines such as genetic algorithms and classifier systems



What Is a Learning Classifier System? 15

to understand how to build conceptual machines that work. Too often in the
domain of the conceptual, mathematical rigor is a siren song that wrecks the
design voyage on the shoals of proof. It is important in designing any complex
system to (1) decompose the design problem, (2) use effective, economic design
theory to organize experimentation and guide design efforts, and (3) integrate
the pieces of the design with dimensional reasoning. This method of invention is
commonplace in the design of material machines such as airplanes, automobiles,
and toasters, but it is not so frequently adopted in algorithmic circles. Design
is design is design, and the rules of design don’t change just because we are
designing a genetic algorithm or a classifier system instead of an airplane or an
automobile.

A key ingredient of this methodological prescription is economic design theory.
By “economic” I mean that the models need to have low costs in use. In aero-
dynamics, designers use “little models” such as lift coefficients and drag coeffi-
cients to quickly and cheaply understand the magnitude of lift and drag forces
an aircraft is likely to encounter and how those forces will scale as the aircraft
is made larger and smaller. Genetic algorithmists and classifier system designers
need to find and use appropriate “little” models to understand the various facets
of GA and LCS design and how the “forces” acting on our systems scale as the
systems change “size.” Too much of our theory literature is devoted to elegant
equations that tell us little about the design of our systems. The Wright brothers
eschewed the Navier-Stokes equation in favor of lift and drag coefficients, much
to the betterment of modern aviation. Perhaps we should do likewise.

One aspect of design theory that comes up in all contexts is the use of bo-
undedly difficult test functions. In the domain of GAs, I have used the term
deception to describe a key facet of GA problem difficulty. Some researchers are
confused about the goals of such work, but the main idea is to imagine a system’s
problem from hell and use boundedly hellish problems to test the procedure. In
general, we know the problem from hell is too difficult to solve quickly, but we
should not give up on designing procedures that scale nicely on problems of les-
ser or bounded difficulty. Competent GAs being designed today have this nice
scaling property and similar continuing concern for problem difficulty in LCS
work should pay dividends.

A Return to LCSs. Recently, I have returned to a more active role in LCS
research through collaborations with a number of LCS researchers, and I have
been pleased (1) by the amount of fun that I’m having, (2) by the amount of
progress that has been made in the field, (3) that my old LCS knowledge isn’t
completely useless, and (4) that the lessons of my competent GA journey appear
to be quite applicable to the project of competent LCSs. I suppose I shouldn’t
be surprised by having fun with LCSs. The design of general-purpose learning
devices such as LCSs is an engaging business, pure and simple. And I suppose
that I shouldn’t be surprised by the progress in the field. For a time it almost
looked as if LCSs might die off, but stalwarts led largely by Stewart Wilson have
kept the fire burning with important ties to the reinforcement learning literature
and a number of novel approaches.



16 J.H. Holland et al.

It does strike me that much of the progress has been made on the apportionment-
of-credit/reinforcement-learning side of the ledger. The nature of the genetic
algorithms in use appears not to have been much affected by the GA/ES/GP
innovations of the last decade, and I hope that this an area where I might be able
to make a contribution. At the very least, the competent GAs that have been
developed over the last decade should be adapted to LCS usage and this should
benefit the search for appropriate rules in difficult problems. Finally, it seems to
me that the very complexity of the LCS design task deserves a systematic design
methodology, a tractable design theory, and a systematic means of integrating
and coordinating the function of different subsystems. My struggle with the de-
sign of competent GAs was greatly aided by discovering and using these things,
and I believe that our continued struggle toward competent learning classifier
systems will be similarly rewarded by adopting an analogous approach.

6 Rick L. Riolo

There are many answers to the question “What is a classifier system,” all of them
reflecting different views of the field and different uses for classifier systems. For
me, the most interesting way to view a Holland/Burks (Michigan-style) classifier
system [34] is as a way to model adaptive systems [33]. To that end, such a
classifier system should have most or all of these general characteristics:

– A message board for communication.
– Rule-based representation of knowledge.
– A competition for rules to become active, biased by inputs, past performance,

and predictions of expected outcomes.
– Parallel firing of rules, with consistency and coordination of activity arising

endogenously, as an emergent property established and maintained by the
dynamics of the bidding processing. Explicit conflict resolution is strictly
enforced only at the effector interface.

– Credit allocation is done by temporal difference (TD) methods of some type,
e.g., the traditional bucket-brigade algorithm, some kind of profit-sharing
scheme, Q-learning algorithms, and so on. Note that there might be multile
kinds of credit being allocated at the same time, e.g, traditional strength
representing expected payoff based on past performance, some measure of
rule payoff accuracy or consistency [83] or some measure of a rules ability to
predict future state [59,69].

– Rule discovery is done by heuristics appropriate to the system being mo-
deled. Examples include triggered coupling to capture asynchronic causal
connections [29,63], surprise-triggered prediction [35], or traditional genetic
algorithms with with mutation and recombination.

When it doesn’t conflict with other modeling goals, a classifier system should
also have one other feature which I think was in Holland’s original view, namely
it should use a simple rule syntax and semantics. One reason to use simple
rules (and a simple architecture and mechanisms in general) is to retain the



What Is a Learning Classifier System? 17

possibility of taking advantage of parallel hardware [62,75]. But in addition, the
use of simple rules (and mechanisms) makes it easier to build mathematical
models which might be analytically tractable [30,80]. However, despite these
arguments for simplicity, both for some modeling goals and for classifier systems
being designed to do a particular task, it may be more productive to allow more
complex rules, both in terms of matching capabilities and processing power.

Over the past ten years there has been much emphasis on using classifier
systems as just that, i.e., systems to solve classification problems of one kind or
another. In that context, much progress has been made in improving classifier
system performance on a wide variety of problems [49]. However, when using
classifier system for modeling purposes, the goal is not just to get the best per-
formance for the least computational effort. Instead, a more important criteria is
how well the classifier system exhibits the relevant behavior of the system being
modeled, using mechanisms plausible in that context. Thus studies which most
interest me are those that either: (A) explicitly have as a goal modeling some
cognitive or other adaptive system, as in [36,8,35,19,38,2,70,14], or (B) explore
the fundamental dynamical properties of classifier systems with particular ar-
chitectures and mechanisms, with an an eye toward understanding what kinds
of models could be built with such systems [81,22,61,69].

Finally, I must admit that the kinds of systems that are most interesting to
me also are the most difficult to study and understand. There is no question
that in the past five to ten years much has been learned by studying simpler
systems like ZCS [82], and that what we have learned will serve as a good base
for future research. However, for classifier systems to reach the full potential
originally outlined for them by Holland, I think we must move toward research
on more complex systems. In particular, these include classifier systems which
allow multiple rules to fire and post messages in parallel, which have the potential
to link rule activation over time by way of tagging mechanisms, and which are
set in environments that only give “payoff” occassionally and are rich enough
to require extensive generalization. These are, then, environments which will
require classifier systems to construct and use general, multi-step models if they
are to perform well. Thus the recent work on multi-step environments and non-
markov environments [51], and anticipatory cfsystems [71] are, to me, signs that
the field is advancing very well.

Of course as we again move toward running more complex classifier systems,
we should expect difficult issues and problems to arise which are not generally
seen in simpler systems. In particular, I expect the biggest challenges to be a
result of the fact that such classifier systems will have a rich “ecology” of rules,
consisting of intricate interactions and complicated dependencies between ru-
les which are involved in both competitive and cooperative relations with each
other. For instance, we shall again be faced with the emergence of various kinds
of parasites and free riders, which are ubiquitous in natural ecologies and other
similarly complex adaptive systems. Since natural ecologies don’t have an exter-
nally imposed task or performance metric, parasites are just another part of the
glory of nature. On the other hand, complex adaptive systems that do have an



18 J.H. Holland et al.

external performance metric (e.g., individual metazoans must survive to repro-
duce) have developed a host of complex mechanisms to manage problems that
always arise in multi-level organizations of competing entities which also must
cooperate to perform best [11,7,55]. Both for those who are taking an enginee-
ring approach to classifier systems, i.e. who want to design and use them for
particular exogenously determined tasks, and for those who want to use classi-
fier systems to model complex adaptive systems, these and other unanticipated
side effects will provide great challenges [39].

7 Robert E. Smith

To begin to consider learning classifier systems (LCSs), one must first consider
what an LCS is.

This is not as clear as one might imagine. A typical description of a LCS will
include rules, usually taken from the common {1,0,#} syntax, that are acting
as population members in a genetic algorithm. The typical description will also
include some form of match-and-act, conflict resolution, and credit assignment
mechanisms, that facilitate the rules interacting to influence some “environ-
ment”. There are typically two variations of LCS, the “Michigan approach”,
where each rule is a separate individual in the GA population, and the “Pitt
approach”, where each GA population member is a complete set of rules for
the given application environment. Comments in this section will begin with an
assumption of the “Michigan approach” LCS, but it is important to note bridges
between these two approaches are an important area for further investigation.
Although the elements discussed above are typical to LCS descriptions, they
may not define the LCS approach. In particular, specific implementation details
of LCS syntax, and the system components that facilitate rule interactions with
the environment, may obscure the essence of the LCS approach. Fundamentally,
the LCS is defined by a population of entities that

– act individually, responding to, and taking actions on, an external environ-
ment,

– while evolving as population members, under the action of evolutionary com-
putation.

This definition is independent of syntax or implementation details. Given
this definition, the most significant complexity in the LCS approach is the need
for co-evolution of entities.

Co-evolution as an approach to solving complex problems is the key thrust
of the LCS approach. Co-evolution is at the cutting-edge of evolutionary com-
putation research. In general, it involves a complex balancing act between the
competitive pressures of evolution, and the cooperative interactions needed to
positively effect the environment. Co-evolution brings in some of the most com-
plex issues of evolutionary systems, including emergence the maintenance of
steady-state diversity, emergence of species, symbiosis, parasitism, and others.



What Is a Learning Classifier System? 19

Because these issues involve evaluating the utility of functional interdepen-
dent entities, the issue of credit assignment (and related issues of conflict re-
solution) must be carefully considered. Fortunately, recent advances in machine
learning (specifically in reinforcement learning) have substantially clarified these
issues. While the LCS credit assignment and conflict resolution schemes of the
past relied on tenuous analogies as their bases, well established reinforcement
learning schemes now provide a firmer foundation upon which to build LCS
advances.

Within the field of reinforcement learning, there are substantial questions
to which the co-evolutionary approach of the LCS may provide answers. Chief
amongst these is the need for schemes that automatically form generalizations.
Another issue of importance is the formation of internal memory processing to
cope with non-Markovian environments. Both of these issues depend on complex
interactions of entities (like rules and associated messages), for which the co-
evolutionary approach of the LCS may be well suited.

Although reinforcement learning provides a framework in which LCSs are
likely to advance, it is important that this framework not become a limitation.
In particular, reinforcement learning usually focuses on well-defined concepts
of Bellman optimality. While these formalisms provide a well-defined basis for
evaluating and developing LCS technology, they may not encompass all the ways
in which LCSs may be used.

So-called “artificial intelligence” and “machine learning” technologies have
often responded to an antiquated vision of computation, where computers pro-
vide faster, more accurate solutions than humans. In this vision, concepts of
well-defined optimality are the goals of AI. However, these goals are not those
we would usually assign to humans. Humans are usually asked simply find so-
lutions that are “better” than those found in the past, in some sense that has
no clear mathematical definition. Moreover, there is often a real world premium
on human solutions that are simply innovative or creative. Such concepts are
unlikely to receive mathematical definition.

Given the ubiquity of networked computers, more modern visions of compu-
tation are emerging, where computers may be expected to provide innovation
and creativity, like their human counterparts. When one observes that evolution
is directed at ongoing adaptation and new ways of exploiting available resources,
the co-evolutionary approach of the LCS may be of particular value within this
new vision of computation.

In summary, important areas for immediate, formal investigation of LCSs
include:

– Formal consideration of co-evolution,
– Integration of LCSs within the framework of reinforcement learning (inclu-

ding generalization and application to non-Markovian tasks).

As these investigations advance, application of LCSs should continue to be
explored, both within realms of formally defined problems, and in systems that
required automated innovation, novelty, and creativity.



20 J.H. Holland et al.

8 The Editors

8.1 Pier Luca Lanzi

Since spring 1997, I have been teaching learning classifier systems as a part of a
course on Knowledge Engineering and Expert Systems for Master students at the
Politecnico di Milano. Teaching requires neat definitions to improve the students’
understanding of new concepts and clear motivations to ground abstract models
to real world problems. Thus teaching learning classifier systems necessitates an
answer to two basic, though important, questions: what is a learning classifier
system? And why do we use learning classifier systems?

As this chapter witnesses, there are many ways of answering the former
question. Among the possible ones, my favourite answer is:

Learning classifier systems are a Machine Learning paradigm introduced
by John Holland in 1978. In learning classifier systems an agent learns
to perform a certain task by interacting with a partially unknown envi-
ronment from which the agent receives feedback in the form of numerical
reward. The incoming reward is exploited to guide the evolution of the
agent’s behavior which, in learning classifier systems, is represented by a
set of rules, the classifiers. In particular, temporal difference learning is
used to estimate the goodness of classifiers in terms of future reward; ge-
netic algorithms are used to favour the reproduction and recombination
of better classifiers.

I like the term “paradigm” because it stresses the fact that classifier systems
do not specify an algorithm but they characterize an entire class of algorithms.
I use “interacting” and “reward” to point out that learning classifier systems
tackle also reinforcement learning problems and therefore should be considered
a reinforcement learning technique. The terms “evolution,” “genetic algorithms,”
and “behavior” highlight the fact that, in classifier systems, learning is viewed
as a process of ongoing adaptation to a partially unknown environment, not as
an optimization problem as in most reinforcement learning. Finally, the term
“temporal difference learning” states that the methods used to distribute the
incoming reward to classifiers are analogous to (and sometimes the same as)
those techniques employed in “traditional” reinforcement learning.

Given that there is a general agreement on what is a classifier system yet a
question remains: why do we use learning classifier systems?

This question can be answered according to two different perspectives. First,
we can look at learning classifier systems as reinforcement learning techniques.
In such a case to answer the question above we should present a set of applica-
tions in which learning classifier systems prove to be better than “traditional”
reinforcement learning techniques. Alternatively, we can observe that learning
classifier systems are more general than those traditional reinforcement lear-
ning techniques that are inspired by methods of Dynamic Programming (e.g.,
Watkins’ Q-learning [79]). Those techniques in fact usually make a number of as-
sumptions on the environment (e.g., the environment must be a Markov Decision



What Is a Learning Classifier System? 21

Process) and on the agent’s goal (e.g., the agent’s goal must be formally defined
as a maximization problem) that learning classifier systems do not require. For
instance, the goal of a learning classifier system might be very general (e.g., to
survive) and not expressible in terms of an optimization problem. From this vie-
wpoint, to answer the question “Why do we use learning classifier systems?” we
should present a number of problems that classifier systems can solve but other
reinforcement learning techniques cannot.

Whether we look at classifier systems as a reinforcement learning technique
or as a more general framework it is interesting to note that in the literature only
a few people have presented experimental results to support the use of learning
classifier systems in place of other techniques.

Consider for example the area of reinforcement learning applications. It is
general recognized that a sure advantage of learning classifier systems is their
generalization capability. By means of don’t care symbols (#) classifier systems
can develop a compact representation of the concepts learned, whereas the com-
plexity of traditional reinforcement learning technique grows exponentially in
the problem size. At this point, the reader may argue that since generalization
supports the use of learning classifier systems, then there are many papers that
discuss the generalization capabilities of classifier systems. But, if we look at the
works published in these twenty years, we note that most of the papers concer-
ning generalization focus on the representational capabilities of classifier systems
rather than on the degree of generalization that classifier systems can develop.
Some authors (e.g., Riolo [61]) showed that classifier systems can develop inte-
resting generalizations. But until 1996 no author provided extensive results to
support the hypothesis that classifier systems could tackle reinforcement lear-
ning problems better than tabular techniques because of their generalization
capabilities.

In 1996 Wilson [84] (see also [85]) presented a set of initial results showing
that the solutions developed by his XCS classifier systems can be significantly
more compact than that required by tabular techniques. Wilson’s work was later
extended by Kovacs [40] who hypothesized that Wilson’s XCS develops the most
general and accurate representation of the concept learned by the agent; Kovacs
supported his optimality hypothesis experimentally.

I think that when looking at Wilson’s results most people focused more on
the novel classifier system architecture that Wilson proposed (XCS) rather than
on the raw results that his XCS was able to achieve in terms of generalization
capabilities. For instance, in this volume two papers, Booker [9] and Kovacs [41],
discuss what is an adequate definition of classifiers fitness, while generalization
is just partially discussed by Kovacs [41] and by Shaun and Barry [66].

On the other hand if we give a “crude” look at Wilson’s results [85] we find
that XCS was able to evolve a solution made of nearly 30 classifiers for a rein-
forcement learning problem which would require a Q-table equivalent to more
or less 550 classifiers. Although these results are limited to a set of grid envi-
ronments, they represent the first direct and crude comparison between classifier
systems and tabular reinforcement learning. For this reason, I believe that these



22 J.H. Holland et al.

results, as well as those in [40], should be consider fundamental to classifier sy-
stem research since they contribute (with respect to the reinforcement learning
framework) to give an answer to a very important question, i.e., why do we use
learning classifier systems?

For this reason, I think that the generalization capabilities of classifier sy-
stems should be extensively investigated in the next years so to provide a more
solid basis and stronger motivations to the research in this area.

Reinforcement learning represents only one possible way of looking at clas-
sifier systems. As I previously observed, reinforcement learning make strong as-
sumptions on the environment and, most important, on the goal of the learning
process. In contrast, learning classifier systems do not make particular assump-
tions on the environment and on the agent’s goal which is generally defined in
terms of adaptation to the environment. But even of we change our viewpoint
on classifier systems the question “Why do we use learning classifier systems?”
is still important.

One possible answer to this question is provided by the many applications of
classifier systems to the problem of modeling the emergence of complex behaviors
in real systems. For instance, learning classifier systems can be used to model
adaptive agents in artificial stock markets (e.g., Brian Arthur et al. [2], Lebaron
et al. [53], Vriend [76,77,78], Marimon et al. [54]). On the other hand, it is not
completely clear at the moment whether classifier systems are the only approach
to tackle these types of applications. For instance a number of researchers are
currently applying other techniques (e.g., reinforcement learning [57]) to model
artificial stock markets.

Recently, Smith et al. [68] (see also [67, this volume]) presented an appli-
cation of classifier systems which undoubtedly cannot be easily modeled with
other learning paradigm and thus strongly supports classifier systems. In parti-
cular Smith et al. [68] developed a classifier systems that can discover innovation
in terms of novel fighting aircraft maneuvering strategies. Their results, in my
opinion, are fundamental to classifier system research because they prove that
learning classifier systems can successfully tackle problems that are beyond the
plain reinforcement learning framework; for this reason they also provide motiva-
tion to the use of classifier systems in very diverse and “previously unthinkable”
application areas.

Since the early days of classifier systems, more than 400 papers on classifier
systems have been published. Looking at the bibliography at the end of this
book we note that there was a time in the mid 1990s when there was only a
little research on classifier systems. I remember that in 1997 when I presented
my first work on XCS [45] at ICGA97 [3], there were only three papers on
learning classifier systems: mine, Holmes’ [37], and Federman’s [20]. Basically,
we were not enough even to fill one session; at that time I thought that the
area I was working in was actually quite small. In 1998, during GP98 [44], there
were two sessions on learning classifier systems and more than ten papers. In
1999, at GECCO [4] there were four sessions on learning classifier systems and



What Is a Learning Classifier System? 23

one workshop: more or less thirty papers were presented. But why are classifier
systems experiencing this renaissance?

There are surely different interpretations of what happened in the last five
years, of this reborn interest in learning classifier systems. My belief is that
much of this is due to the effort of a number of people who traced novel research
directions, suggesting new motivations so to provide answers to some impor-
tant questions about classifier systems. These people renewed part of this area
without giving up original Holland’s principles and their unique flavor. And cer-
tainly, part of the current renaissance is also due to the people who followed and
currently follow those directions.

8.2 Wolfgang Stolzmann

The field of learning classifier systems (LCS) is young. However, two approa-
ches have been developed: the Michigan Approach and the Pitt Approach. I
restrict myself to the Michigan approach because it is the classical approach.
The foundations for LCS were laid by Holland [26] within the framework of his
theoretical studies of genetic algorithms. The first LCS, called CS-1, was intro-
duced by Holland and Reitman [36]. Since then many different types of LCS have
been described in the literature. Thus, it is difficult to give a unified definition
for an LCS. Therefore I would like to focus on the points that I consider most
important.

A learning classifier system (LCS) is a machine learning system that learns a
collection of simple production rules, called classifiers. Its knowledge is represen-
ted in a classifier list. An LCS can be regarded as a learning agent that acts in an
arbitrary environment. In order to interact with the environment it has an input
interface with detectors for sensory information from the environment and an
output interface with effectors for motor actions. Each detector of the input in-
terface contains information about one attribute of the environmental state and
delivers values 0 and 1. Thus, all an LCS knows about the environmental state
is represented in a bit-string called message. A message is the internal repre-
sentation of an environmental state. Each component contains the information
of one detector. Formally messages belong to the set {0,1}k (k is the number
of detectors). A classifier is a condition/action-rule. If the condition-part of a
classifier matches the current message, then the classifier can become active.
The action-part of an active classifier interacts with the effectors and causes a
motor action of the LCS. Conditions belong to the set {0,1,#}k. A condition is
matched by any message that has 0’s and 1’s in exactly the same positions as the
0’s and 1’s in the condition. A ’#’ in a condition is called a “don’t care”-symbol.
It matches both a 0 and a 1. For example the condition 1## is matched by any
message that starts with a 1; #00 is matched by 100 and 000 and the condition
010 is only matched by the message 010. A learning classifier system derives its
name from its ability to learn to classify messages from the environment into
general sets like {m — m starts with a 1}, {100 , 000} and {010}.

The basic execution cycle of an LCS consists in an iteration of the following
steps:



24 J.H. Holland et al.

1. A message m is perceived by the input interface.
2. m is compared with the condition parts of all classifiers of the current clas-

sifier list. The matching classifiers form a match set.
3. One classifier out of the match set is selected by roulette-wheel selection [21]

or another kind of competition.
4. The selected classifier becomes active. Its action part interacts with the

output interface and causes a motor action of the LCS.
5. Reinforcement learning is applied (see below).
6. Rule discovery is applied to produce new classifiers while replacing other,

low- strength classifiers (see below).

As mentioned above I focus on the points that I consider most important.
I ignored the fact that classifiers can produce new messages so that the LCS
has to deal with a message list, I ignored that a classifier can contain more
than one condition and I ignored the possibility that more than one classifier
can become active during one execution cycle. If there is more than one active
classifier, then the LCS has to deal with inconsistent information for the output
interface. There are two levels of learning in an LCS: A first level of learning
called credit assignment, consists of reinforcement learning on the classifiers.
A classifier is reinforced (i.e. its rule strength is modified) in dependence on
environmental reward called payoff (Bucket Brigade Algorithm, Profit Sharing
Plan, Q-Learning, ...). A second level that is usually independent of the first
one consists of rule discovery in order to generate new classifiers. For that an
LCS typically uses genetic algorithms. Up to now Stewart W. Wilson’s XCS is
the most important kind of LCS (cf. ”State of XCS Classifier System Research”,
this volume). Tim Kovacs’s LCS bibliography [42], contains 33 entries out of
479 that deal with XCS. XCS were applied in various environments like the
(n+2n)-Multiplexer (e.g. [83]) Woods-environments (e.g. [83,48]), and Finite-
State-Worlds (e.g. [5,6]. The results show that an XCS is capable of forming
complete reward-maps, i.e. X × A ⇒ P maps where X is the set of states, A
is the set of actions and P is the set of expected payoffs. “It does not learn
what input sensation will follow a given action. That is, it does not learn an
X × A ⇒ Y map, where Y is the following sensation” (Wilson [83, p. 173]). Or
in other words it does not learn an internal world model. Holland [32], Riolo [59],
and Stolzmann [72, this volume] show how internal world models can be learned
in LCS. Very simple internal world models are used in reinforcement learning
especially in Dyna-Q (e.g. Sutton [73]; Sutton & Barto [74, p. 233]) Future work
will have to show how LCS can be used to learn internal world models with
a minimum number of classifiers and how these internal world models can be
used in reinforcement learning. Furthermore, in my opinion future LCS research
should include:

– real world applications,
– a definition of standard test environments like the (n+2n)-Multiplexer, Woods-

environments and Finite-State-Worlds in order to facilitate the comparison
of different approaches,



What Is a Learning Classifier System? 25

– applications in non-deterministic environments, especially in non-Markov
environments (cf. Lanzi & Wilson [52, in press]),

– and LCS work should include comparisons to relevant reinforcement learning
work.

8.3 Stewart W. Wilson

A classifier system is a learning system based on Darwinian principles. The
system consists of two parts: a collection or “population” of condition-action
rules called classifiers; and an algorithm for utilizing, evaluating, and improving
the rules. Holland’s great insight was to see that a learning system might be
based on a Darwinian process applied to a rule base. To me, his idea is intriguing
and inspiring because it represents a plausible computational picture of our
mental world. Moreover, it is a proposal that seems rich enough to encompass,
eventually, very difficult questions like multi-level autonomous adaptation.

Besides animals’ more-or-less well-learned and reflexive condition-action re-
sponses, we are constantly making predictions, often relative to rewards, about
the consequences of behavior, and choosing accordingly. But there is a “fog of
uncertainty”: we are not quite sure what will result in the present situation, not
even sure if the present situation is what we think it is. But we go with what we
have, try things, and attempt to register the outcomes. In short, everything we
know is hypothetical, whether perceptual or cognitive. We hope to find better
hypotheses, ones that more accurately define the antecedent condition and the-
refore predict better, and also cover the largest domain and reduce our mental
effort. New hypotheses come largely from pieces of what works already—where
else?—but the process is mostly unclear and mysterious. It is often invisible. A
new hypothesis arrives suddenly; it is not consciously cranked out. There may
be mental work, but then the key steps just happen.

To all this would seem to correspond, in Holland’s scheme, the population
of classifiers viewed as a set of competing hypotheses, each in some state of
relative confirmation, subject to modification and replacement by a better hy-
pothesis born suddenly from chance recombination and mutation of existing
above-average material. Some classifiers generalize over sensory inputs, provi-
ding a rudimentary imitation of early-stage perception and an example of symbol
grounding—the classifiers’ messages being the symbols. Other classifiers respond
to internal messages by posting further messages, affording computational com-
pleteness but more importantly, room to erect any so-called cognitive structure.
Still other classifiers cause actions and thus complete the loop with the envi-
ronment, whose response keeps the system viable and fuels the Darwinian cal-
culation. The principles of variation and selection being ubiquitous elsewhere in
life, it is natural to look seriously for them inside the head, and for this Holland
has provided a splendid computational framework that merits every effort to
understand and develop its implications.

The framework is many-faceted, and it’s not surprising that besides successes,
research over the past twenty years has identified certain tensions among the
framework’s elements. Two seem most important. One tension arises because



26 J.H. Holland et al.

the classifiers are in Darwinian competition, but a certain amount of cooperation
among classifiers is necessary. For example, to reach external payoff the system
may depend on a chain of classifiers acting sequentially through time: the chain
members cooperate in the sense that each member depends on the activation of
its predecessors and on the ability of its successors to push on to payoff. But
the competition may disturb this. Selection of one member of the chain reduces
the survival chances of the other members, so that the chain may break causing
all members to lose out. This competitive/cooperative tension occurs in several
guises, and the consequence is often instability leading to reduced performance.

A key part of the solution was the early proposal—made mainly for other
reasons—to restrict the action of the genetic algorithm to the match sets, i.e., it
was proposed to replace the panmictic (population-wide) GA with a GA opera-
ting just in the niches defined by each match set. This lessens the competition
between sequential classifiers, since sequential classifiers occur in distinct match
sets. The cost in discovery capability seems to be minor, since classifiers in sepa-
rate match sets are basically solving different problems and crosses between them
are not particularly fruitful. However, the niche GA introduces a new hazard:
overgeneralization. A more general classifier will tend to show up in more match
sets. With a niche GA, it will have more reproductive opportunities so that
generality becomes an advantage in itself, and increasingly general—eventually
overgeneral—classifiers will tend to multiply in the population.

The second major tension is between performance and generality. Consider
an individual classifier. Its current prediction (“strength” in the older termi-
nology) is an average of payoffs received in the situations (niches) in which it
matches and its action is taken. Some situations may have large payoffs, others
quite small ones: all are averaged in the prediction, which masks any underlying
variance. However, if the variance is great, there can be a negative effect on sy-
stem performance. In low-payoff situations one classifier’s action may be chosen
over a better action if the first classifier’s prediction is misleadingly high due to
averaging in of payoffs received in higher-payoff niches. The result will be degra-
dation of performance in some degree. Moreover, the offending classifier, and the
degradation, will persist since selection under the GA is based on the prediction.
Thus the framework’s potential for generalizing classifier conditions—essential
for formation of percepts and concepts—is at odds with performance.

The first step toward solution was to ask: What would happen if fitness for
the GA were based not on the prediction, but on some measure of the prediction’s
accuracy? Then the offending high-variance classifier above would not receive a
high fitness, and would be eliminated from the system. On the other hand, a
classifier with low prediction variance would survive and multiply; desirably, such
a classifier would not cause the kind of performance error cited earlier. However,
this solution is not complete since basing fitness on prediction accuracy does not
in itself address the framework’s need to find classifiers that are both general and
accurate. Fitness based on accuracy would tend to favor very specific classifiers,
since greater accuracy usually goes with greater specificity.



What Is a Learning Classifier System? 27

I would argue that these two tensions, competition vs. cooperation and per-
formance vs. generality, were at the root of much of the field’s earlier difficulties.
Interestingly, the full solutions to each of them are complementary. I said that
the first step in solving competition/cooperation was the niche GA. The second
step turns out to be fitness based on accuracy, because that stops the niche
GA’s tendency toward overgeneralization. I said the first step in solving perfor-
mance/generality was fitness based on accuracy. The second step turns out to
be a niche GA, since its generalization pressure is just what is needed to push
toward classifiers that are maximally general as well as accurate. Thus fitness
based on accuracy and a niche GA in combination appear to overcome the prin-
cipal problems of classifier systems’ first twenty years, opening the way to a
strong advance in the period just beginning.

There are many promising directions for classifier system research. Some are
suggested at the end of my “State” paper in this volume. But an important
one not listed there would take a new look at an old subject—the full Holland
framework itself. In recent years there has been something of a retreat from
research on the full system with its message list and other aspects. Progress
has come from paring the system down and putting a simpler beast under the
microscope to see more clearly the function of various mechanisms. The principal
result, in my opinion, has been understanding the two tensions discussed above,
and their solution. Now it is time to go back to the full framework and see
what happens if in it fitness is indeed based on accuracy and the GA occurs in
the niches. As far as I know, that has not been done. The tests occurred and
were successful in the simpler systems. It seems quite possible, and worth the
effort required, to try the changes in the full system, testing on a problem in
which the message list’s capacity to represent internal state is essential for high
performance.

References

1. Manu Ahluwalia and Larry Bull. A Genetic Programming-based Classifier System.
In Banzhaf et al. [4], pages 11–18.

2. W. Brian Arthur, John H. Holland, Blake LeBaron, Richard Palmer, and Paul
Talyer. Asset Pricing Under Endogenous Expectations in an Artificial Stock Mar-
ket. Technical report, Santa Fe Institute, 1996. This is the original version of
LeBaron1999a.

3. Thomas Bäck, editor. Proceedings of the 7th International Conference on Genetic
Algorithms (ICGA97). Morgan Kaufmann: San Francisco CA, 1997.

4. Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Ho-
navar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San
Francisco, CA, 1999.

5. Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 1 – Effects. In
Banzhaf et al. [4], pages 19–26.

6. Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 2 – Solutions.
In Banzhaf et al. [4], pages 27–34.



28 J.H. Holland et al.

7. John Tyler Bonner. The Evolution of Complexity. Princeton University Press,
Princeton, New Jersey, 1988.

8. Lashon B. Booker. Intelligent Behavior as an Adaptation to the Task Environment.
PhD thesis, The University of Michigan, 1982.

9. Lashon B. Booker. Do We Really Need to Estimate Rule Utilities in Classifier
Systems? In Lanzi et al. [50], pages 125–142. (this volume).

10. Lashon B. Booker, David E. Goldberg, and John H. Holland. Classifier Systems
and Genetic Algorithms. Artificial Intelligence, 40:235–282, 1989.

11. Leo W. Buss. The Evolution of Individuality. Princeton University Press, Prince-
ton, New Jersey, 1987.

12. H. J. Chiel and R. D. Beer. The brain has a body: Adaptive behavior emerges from
interactions of nervous system, body and environment. Trends in Neurosciences,
20:553–557, 1997.

13. Marco Colombetti and Marco Dorigo. Evolutionary Computation in Behavior
Engineering. In Evolutionary Computation: Theory and Applications, chapter 2,
pages 37–80. World Scientific Publishing Co.: Singapore, 1999. Also Tech. Report.
TR/IRIDIA/1996-1, IRIDIA, Université Libre de Bruxelles.

14. Michael Sean Davis. A Computational Model of Affect Theory: Simulations of Re-
ducer/Augmenter and Learned Helplessness Phenomena. PhD thesis, Department
of Psychology, University of Michigan, 2000.

15. Marco Dorigo. Alecsys and the AutonoMouse: Learning to Control a Real Robot
by Distributed Classifier Systems. Machine Learning, 19:209–240, 1995.

16. Marco Dorigo and Marco Colombetti. Robot shaping: Developing auto-
nomous agents through learning. Artificial Intelligence, 2:321–370, 1994.
ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.05-AIJ94.ps.gz.

17. Marco Dorigo and Marco Colombetti. Robot Shaping: An Experiment in Behavior
Engineering. MIT Press/Bradford Books, 1998.

18. E.B. Baum. Toward a model of intelligence as an economy of agents. Machine
Learning, 35:155–185, 1999.

19. J. Doyne Farmer, N. H. Packard, and A. S. Perelson. The Immune System, Adap-
tation & Learning. Physica D, 22:187–204, 1986.

20. Francine Federman and Susan Fife Dorchak. Information Theory and NEXT-
PITCH: A Learning Classifier System. In Bäck [3], pages 442–449.

21. David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, Mass., 1989.

22. David E. Goldberg. Probability Matching, the Magnitude of Reinforcement, and
Classifier System Bidding. Machine Learning, 5:407–425, 1990. (Also TCGA tech
report 88002, U. of Alabama).

23. H. Hendriks-Jansen. Catching Ourselves in the Act. MIT Press, Cambridge, MA,
1996.

24. S. Hofmeyr and S. Forrest. Immunity by design: An artificial immune system. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pages 1289–1296, San Francisco, CA, 1999. Morgan-Kaufmann.

25. J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard. Induction: Processes
of Inference, Learning, and Discovery. MIT Press, 1986.

26. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.

27. John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors, Progress in
theoretical biology. New York: Plenum, 1976.



What Is a Learning Classifier System? 29

28. John H. Holland. Adaptive algorithms for discovering and using general patterns
in growing knowledge bases. International Journal of Policy Analysis and Infor-
mation Systems, 4(3):245–268, 1980.

29. John H. Holland. Escaping brittleness. In Proceedings Second International Works-
hop on Machine Learning, pages 92–95, 1983.

30. John H. Holland. A Mathematical Framework for Studying Learning in Classifier
Systems. Physica D, 22:307–317, 1986.

31. John H. Holland. Escaping Brittleness: The possibilities of General-Purpose Lear-
ning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski,
and Carbonell, editors, Machine learning, an artificial intelligence approach. Vo-
lume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.

32. John H. Holland. Concerning the Emergence of Tag-Mediated Lookahead in Clas-
sifier Systems. Special issue of Physica D (Vol. 42), 42:188–201, 1989.

33. John H. Holland. Hidden Order: How Adaptation Builds Complexity. Addison-
Wesley, Reading, MA, 1995.

34. John H. Holland and Arthur W. Burks. Adaptive Computing System Capable of
Learning and Discovery. Patent 4697242 United States 29 Sept., 1987.

35. John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard. In-
duction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge,
1986.

36. John H. Holland and J. S. Reitman. Cognitive systems based on adaptive algo-
rithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed inference
systems. New York: Academic Press, 1978. Reprinted in: Evolutionary Computa-
tion. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-
3481-7.

37. John H. Holmes. Discovering Risk of Disease with a Learning Classifier System.
In Bäck [3]. http://cceb.med.upenn.edu/holmes/icga97.ps.gz.

38. Keith J. Holyoak, K. Koh, and Richard E. Nisbett. A Theory of Conditioning:
Inductive Learning within Rule-Based Default Hierarchies. Psych. Review, 96:315–
340, 1990.

39. Kevin Kelly. Out of Control. Addison-Wesley, Reading, MA, 1994.
40. Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems.

Master’s thesis, School of Computer Science, University of Birmingham,
Birmingham, U.K., 1996. Also tech. report CSR-96-17 and CSRP-96-17
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz.

41. Tim Kovacs. Strength or Accuracy? Fitness calculation in learning classifier sy-
stems. In Lanzi et al. [50], pages 143–160. (this volume).

42. Tim Kovacs and Pier Luca Lanzi. A Learning Classifier Systems Bibliography. In
Lanzi et al. [50], pages 323–350. (this volume).

43. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. The MIT Press, Cambridge, MA, 1994.

44. John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and
Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual
Conference. Morgan Kaufmann: San Francisco, CA, 1998.

45. Pier Luca Lanzi. A Study of the Generalization Capabilities of XCS. In Bäck [3],
pages 418–425. http://ftp.elet.polimi.it/people/lanzi/icga97.ps.gz.

46. Pier Luca Lanzi. Adding Memory to XCS. In Proceedings of the
IEEE Conference on Evolutionary Computation (ICEC98). IEEE Press, 1998.
http://ftp.elet.polimi.it/people/lanzi/icec98.ps.gz.



30 J.H. Holland et al.

47. Pier Luca Lanzi. Reinforcement Learning by Learning Classifier Systems. PhD
thesis, Politecnico di Milano, 1998.

48. Pier Luca Lanzi. An Analysis of Generalization in the XCS Classifier System.
Evolutionary Computation, 7(2):125–149, 1999.

49. Pier Luca Lanzi and Rick L. Riolo. A Roadmap to the Last Decade of Learning
Classifier System Research (from 1989 to 1999). In Lanzi et al. [50], pages 33–62.
(this volume).

50. Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning
Classifier Systems: An Introduction to Contemporary Research, volume 1813 of
LNAI. Springer-Verlag, Berlin, 2000.

51. Pier Luca Lanzi and Stewart W. Wilson. Optimal classifier system performance in
non-Markov environments. Technical Report 99.36, Dipartimento di Elettronica
e Informazione - Politecnico di Milano, 1999. Also IlliGAL tech. report 99022,
University of Illinois.

52. P.L. Lanzi and S. W. Wilson. Toward optimal classifier system performance in
non-Markov environments. Evolutionary Computation, 2000. to appear.

53. Blake Lebaron, W. Brian Arthur, and R. Palmer. The Time Series Properties of
an Artificial Stock Market. Journal of Economic Dynamics and Control, 1999.

54. Ramon Marimon, Ellen McGrattan, and Thomas J. Sargent. Money as a Medium of
Exchange in an Economy with Artificially Intelligent Agents. Journal of Economic
Dynamics and Control, 14:329–373, 1990. Also Tech. Report 89-004, Santa Fe
Institute, 1989.

55. Richard E. Michod. Darwinian Dynamics: Evolutionary Transitions in Fitness and
Individuality. Princeton University Press, Princeton, New Jersey, 1999.

56. Alan Newell and Herbert Simon. Human Problem Solving. Prentice Hall, Engel-
wood Cliffs, NJ.

57. E. Oliveira, J.M. Fonseca, and N. Jennings. Learning to be competitive in the
Market. 1999. Proceedings of the AAAI Workshop on Negotiation, Orlando (FL).

58. J. K. Percus, O. Percus, and A. S. Perelson. Predicting the size of the antibody
combining region from consideration of efficient self/non-self discrimination. Pro-
ceedings of the National Academy of Science, 90:1691–1695, 1993.

59. Rick L. Riolo. Lookahead Planning and Latent Learning in a Classifier System.
pages 316–326. A Bradford Book. MIT Press, 1990.

60. Rick L. Riolo. Lookahead planning and latent learning in a classifier system.
Ann Arbor, MI, 1991. In the Proceedings of the Simulation of Adaptive Behavior
Conference, MIT Press, 1991.

61. Rick L. Riolo. Modeling Simple Human Category Learning with a Classifier Sy-
stem. pages 324–333. Morgan Kaufmann: San Francisco CA, July 1991.

62. George G. Robertson. Parallel Implementation of Genetic Algorithms in a Classifier
System. In John J. Grefenstette, editor, Proceedings of the 2nd International Con-
ference on Genetic Algorithms (ICGA87), pages 140–147, Cambridge, MA, July
1987. Lawrence Erlbaum Associates. Also Tech. Report TR-159 RL87-5 Thinking
Machines Corporation.

63. George G. Robertson and Rick L. Riolo. A Tale of Two Classifier Systems. Machine
Learning, 3:139–159, 1988.

64. S. A Hofmeyr and S. Forrest. Architecture for an Artificial Im-
mune System. Submitted to Evolutionary Computation. Available at
http://www.cs.unm.edu/ steveah/ecs.ps, 1999.

65. Samuel, A. L. Some Studies in Machine Learning Using the Game of Checkers.
IBM Journ. R & D, 3:211–229, 1959. Reprinted in Feigenbaum, E., and Feldman,
J. (eds.), Computer and Thoughts, pp. 71–105, New York: McGraw-Hill, 1963.



What Is a Learning Classifier System? 31

66. Shaun Saxon and Alwyn Barry. XCS and the Monk’s Problems. In Lanzi et al.
[50], pages 223–242. (this volume).

67. R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra. The
Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques. In Lanzi
et al. [50], pages 285–302. (this volume).

68. Robert E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-Fallah.
Classifier Systems in Combat: Two-sided Learning of Maneuvers for Advanced
Fighter Aircraft. In Computer Methods in Applied Mechanics and Engineering.
Elsevier, 1999.

69. Wolfgang Stolzmann. Learning Classifier Systems using the Cognitive Mecha-
nism of Anticipatory Behavioral Control, detailed version. In Proceedings of the
First European Workshop on Cognitive Modelling, pages 82–89. Berlin: TU, 1996.
http://www.psychologie.uni-wuerzburg.de/stolzmann/.

70. Wolfgang Stolzmann. Two Applications of Anticipatory Classifier Systems (ACSs).
In Proceedings of the 2nd European Conference on Cognitive Science, pages 68–73.
Manchester, U.K., 1997. http://www.psychologie.uni-wuerzburg.de/stolzmann/.

71. Wolfgang Stolzmann. Anticipatory classifier systems. In Proceedings of the Third
Annual Genetic Programming Conference, pages 658–664, San Francisco, CA, 1998.
Morgan Kaufmann. http://www.psychologie.uni-wuerzburg.de/stolzmann/gp-
98.ps.gz.

72. Wolfgang Stolzmann. An Introduction to Anticipatory Classifier Systems. In Lanzi
et al. [50], pages 175–194. (this volume).

73. Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, pages 216–224, Austin, TX, 1990.
Morgan Kaufmann.

74. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning – An Introduc-
tion. MIT Press, 1998.

75. Kirk Twardowski. Implementation of a Genetic Algorithm based Associative Clas-
sifier System (ACS). In Proceedings International Conference on Tools for Artificial
Intelligence, 1990.

76. Nicolaas J. Vriend. On Two Types of GA-Learning. In S.H. Chen, editor, Evolu-
tionary Computation in Economics and Finance. Springer, 1999. in press.

77. Nicolaas J. Vriend. The Difference Between Individual and Population Genetic
Algorithms. In Banzhaf et al. [4], pages 812–812.

78. Nicolaas J. Vriend. An Illustration of the Essential Difference between Individual
and Social Learning, and its Consequences for Computational Analyses. Journal
of Economic Dynamics and Control, 24:1–19, 2000.

79. C.J.C.H. Watkins. Learning from delayed reward. PhD Thesis, Cambridge Uni-
versity, Cambridge, England, 1989.

80. Thomas H. Westerdale. An Approach to Credit Assignment in Classifier Systems.
Complexity, 4(2), 1999.

81. Stewart W. Wilson. Adaptive “cortical” pattern recognition. pages 188–196. La-
wrence Erlbaum Associates: Pittsburgh, PA, July 1985.

82. Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computa-
tion, 2(1):1–18, 1994. http://prediction-dynamics.com/.

83. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Compu-
tation, 3(2):149–175, 1995. http://prediction-dynamics.com/.

84. Stewart W. Wilson. Generalization in XCS. Unpublished contribution to
the ICML ’96 Workshop on Evolutionary Computing and Machine Learning.
http://prediction-dynamics.com/, 1996.



32 J.H. Holland et al.

85. Stewart W. Wilson. Generalization in the XCS classifier system. In Koza et al.
[44], pages 665–674. http://prediction-dynamics.com/.

86. Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Lanzi et al.
[50], pages 209–220. (this volume).

87. Stewart W. Wilson. State of XCS Classifier System Research. In Lanzi et al. [50],
pages 63–82. (this volume).


	John H. Holland
	Basic Questions
	How Classifier Systems Address These Questions
	Implementation
	Future Research

	Lashon B. Booker
	Marco Colombetti and Marco Dorigo
	Stephanie Forrest
	David Goldberg
	Rick L. Riolo
	Robert E. Smith
	The Editors
	Pier Luca Lanzi
	Wolfgang Stolzmann
	Stewart W. Wilson


