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In collective perception, agents sample spatial data and use the samples to agree on some estimate. In this 
paper, we identify the sources of statistical uncertainty that occur in collective perception and note that 
improving the accuracy of fully decentralized approaches, beyond a certain threshold, might be intractable. 
We propose self-organizing hierarchy as an approach to improve accuracy in collective perception by reducing 
or eliminating some of the sources of uncertainty. Using self-organizing hierarchy, aspects of centralization 
and decentralization can be combined: robots can understand their relative positions system-wide and fuse 
their information at one point, without requiring, e.g., a fully connected or static communication network. In 
this way, multi-sensor fusion techniques that were designed for fully centralized systems can be applied to 
a self-organized system for the first time, without losing the key practical benefits of decentralization. We 
implement simple proof-of-concept fusion in a self-organizing hierarchy approach and test it against three 
fully decentralized benchmark approaches. We test the perceptual accuracy of the approaches for absolute 
conditions that are uniform time-invariant, time-varying, and spatially nonuniform with high heterogeneity, 
as well as the scalability and fault tolerance of their accuracy. We show that, under our tested conditions, 
the self-organizing hierarchy approach is generally more accurate, more consistent, and faster than the 
other approaches and also that its accuracy is more scalable and comparably fault-tolerant. Under spatially 
nonuniform conditions, our results indicate that the four approaches are comparable in terms of similarity 
to the reference samples. In future work, extending these results to additional methods, such as collective 
probability distribution fitting, is likely to be much more straightforward in the self-organizing hierarchy 
approach than in the decentralized approaches.

Introduction

Increased autonomy in robot swarms is an open challenge. For 
example, in collective decision making, robot swarms cannot 
yet autonomously identify when a collective decision needs to 
be made and trigger the process [1]. Full collective autonomy 
would require task-general approaches to several constituent 
capabilities, including accurate collective perception and man-
ageable collective actuation. However, existing approaches are 
often task-specific and features such as accuracy and manage-
ability are challenging in swarm robotics—innovation is required 
if swarm autonomy is to increase markedly.

One approach to these challenges would be introducing some 
hierarchy into an otherwise fully decentralized system. Self-
organizing hierarchy has been identified as a crucial research 
direction for the future of robot swarms [2,3]. However, if hierar-
chy is implemented in robot swarms, features such as scalability 
and fault tolerance must not be lost. Indeed, the motivation for 
studying self-organizing hierarchy is to combine aspects of cen-
tralized and decentralized control, ideally to get the benefits of 
both in one system. In this paper, we propose a self-organizing 
hierarchy approach to collective perception based on the existing 
concept of mergeable nervous systems (MNS) [4,5]. We empiri-
cally compared the proposed method to three fully decentralized 

approaches as benchmarks, assessing whether accuracy is 
improved and scalability and fault tolerance are preserved.

In robot swarms, collective perception—i.e., the perception 
of an environment by a group of agents collaborating in a self-
organized manner—can be viewed as a type of collective decision-
making [6]. The swarm must both collect information and 
converge on a shared understanding of that information. Swarm 
robotics approaches to collective perception (e.g., [7,8]) are gen-
erally scalable and fault-tolerant because they do not rely on fully 
connected or static communication networks and do not have 
single points of failure, such as base stations or fixed leaders. 
These approaches also have strong potential for autonomy 
because they do not require access to external infrastructure or 
extensive prior knowledge. However, because fully decentralized 
approaches reach a collective decision via consensus, accuracy is 
challenging (compared to fully centralized approaches), and con-
vergence times can be long [9].

Centralized approaches to perception generally make use 
of information fusion. Multi-sensor and multi-robot fusion 
problems are well understood, and existing methods are pow-
erful [10–13]. However, these approaches typically know the 
positions and often also the poses of all robots or sensors in the 
system, using global positioning infrastructure, predefined or 
static positions, or other solutions that restrict scalability or 
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fault tolerance (compared to swarm robotics approaches). For 
most perception problems, fully decentralized information 
fusion has not yet been developed.

We propose self-organizing hierarchy as a way for robots 
to understand their relative positions system-wide and fuse 
their collective information at one point, without relying on 
restrictive features such as fixed positions, a fully connected 
or fixed communication topology, external infrastructure, or 
prior knowledge.

Related work
In this subsection, we give an overview of the existing fully decen-
tralized approaches to collective perception with robots, in which 
perception is usually formulated as a best-of-n decision-making 
problem. We also give an overview of the existing multi-robot 
perception approaches that are not fully decentralized, which 
usually focus on the information fusion problem. We then discuss 
the topic of information fusion in self-organized systems, for 
which there are almost no existing approaches. Finally, we briefly 
discuss the perception of absolute versus relative conditions.

Collective and multi-robot perception approaches are sum-
marized in the Table. They are organized according to whether 
perceptual information is fused at the data-level (e.g., images), 
feature-level, or decision-level, based on the multi-sensor fusion 
levels defined in [13]. They are also organized according to the 
type of perceptual decision being made: discrete best-of-n deci-
sions [6], estimates of continuous values [6], or target tracking, 
e.g., of moving objects or stationary landmarks, including for 
mapping or simultaneous localization and mapping (SLAM).

Fully decentralized perception
All fully decentralized approaches to collective perception use 
a dynamic communication network that is not fully connected 
(i.e., robots cannot broadcast globally, and local connections 
are not static). The majority of these approaches are set up as 
best-of-n decision-making problems (see [6]), where a robot 
swarm compares multiple options according to a given crite-
rion. In one common setup, robots sense colors in an environ-
ment and compare them according to the criterion of highest 

representation [8,14–18]. In another setup, robots compare 
discrete zones according to a criterion of quality, which can be 
sensed from anywhere in the zone [7,19,20]. In similar setups, 
robots aggregate at a certain type of environmental feature, by 
either collectively deciding on an appropriate threshold to detect 
it [21] or sharing detected maximums so robots at a local opti-
mum are triggered to explore further [22]. In [23], robots esti-
mate the density of tiles scattered in the environment by sharing 
perceptual information, including sample counts and values for 
time-based decrementation. In [24], robots collaboratively 
track a moving target by sharing locally based beliefs about the 
target position with their neighbors, using incomplete knowl-
edge of robot positions and orientations.

Not fully decentralized perception
All approaches that are not fully decentralized use fixed or known 
robot positions during information fusion. In most of these 
approaches, robots collaboratively track targets using known 
robot positions, e.g., by data-level fusion of sensor readings [26], 
feature-level fusion of perceptual information and associated 
uncertainties [28], or decision-level fusion of estimated positions 
[27], which can be supported by manual annotations merged at 
a base station [30]. In some tracking approaches, targets are 
tracked as part of mapping or SLAM, e.g., by decision-level 
fusion of estimated positions at a base station [29], and some-
times supported by prior information about the environment 
[31]. In SLAM, the positions of robots are not known before-
hand, but the information needed to estimate all robot positions 
is available during the process of fusing information about the 
tracked targets (e.g., stationary landmarks). Besides target track-
ing, the literature also includes a few non-fully decentralized 
approaches for best-of-n decision making. In [32], robots estab-
lish a fixed communication network to train a system-wide arti-
ficial neural network that classifies a global light pattern in the 
environment. In [33], static robots with known relative positions 
send infrared sensor readings to a base station to identify objects 
from a predefined set. In [34], robots identify hand gestures from 
a predefined set and merge their opinions according to known 
robot positions. In this approach, the communication network 
is fully connected during information fusion (although the 
impact of packet loss is studied).

Fusion for robot swarms
Access to explicit or implicit positional information is required 
for the majority of existing multi-sensor fusion approaches (see 
[10–13]). These approaches are well-developed and would be 
useful for many applications if they could be implemented in 
robot systems. However, if these approaches were applied to 
robot systems using global broadcast or networks with fixed 
topologies, the systems' scalability and fault tolerance would be 
insufficient. Ideally, existing approaches that require posi-
tional information would be implemented in robot systems 
in a self-organized manner, but this combination is challenging. 
In the Table, there is one approach [27] that both fuses informa-
tion based on known robot positions (i.e., starred in the Table) 
and can operate under dynamic topologies (i.e., blue and bold 
in the Table). However, this approach assumes full knowledge 
of absolute robot positions and orientations, the availability of 
which cannot always be guaranteed. In short, position-guided 
information fusion methods cannot currently be used for 
self-organized collective perception. In this paper, we propose 
self-organizing hierarchy based on the MNS concept as a general 

Table. Existing approaches to collective perception and multi-
robot perception, organized according to the level at which per-
ceptual information is fused (see [13]) and the type of decision 
being made (best-of-n; continuous, see [6]; or tracking). In the 
bold blue references, the topology of the communication net-
work is dynamic and not fully connected. In starred (*) referenc-
es, all relative robot positions in the system are either fixed or 
globally known and are used explicitly or implicitly during infor-
mation fusion.
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framework in which existing multi-sensor fusion techniques 
could be implemented for collective perception, without using 
restrictive mechanisms (e.g., a fixed central coordinating entity 
or fixed communication topology) that impede desirable swarm 
robotics traits.

Perceiving absolutes
The fully decentralized approaches in the literature are applied 
to either the perception of a relative condition (e.g., whether 
red or blue is more represented) or the completion of a targeted 
action using sensed information (e.g., aggregation [22]). Results 
of these studies are not necessarily directly transferable to per-
ception of an absolute condition. For instance, when perceiving 
a more represented color, if a swarm underestimates or overes-
timates absolute density, it might do so for each color somewhat 
consistently and therefore might still be able to accurately deter-
mine which color is more represented. The one exception in the 
literature is [23], in which perception of absolute density is 
assessed as an auxiliary contribution (the primary focus is com-
pletion of a targeted action). In the reported results, the swarm’s 
perception of density diverges widely from the ground truth. In 
short, collective perception of absolute conditions still requires 
further study. In this study, we have tested some of the most 
accurate approaches for relative conditions in a new experimen-
tal setup in order to benchmark the approximate error (incor-
porating both bias and variance) present in fully decentralized 
approaches when perceiving an absolute condition.

Paper structure
The remainder of this paper is organized as follows. In Materials 
and Methods, we first discuss statistical uncertainty in collective 
perception and identify two sources of uncertainty that are not 
present in all spatial sampling and inference problems, but are 
crucial when sampling with mobile robots. We then introduce 
and describe the proposed self-organizing hierarchy approach, 
the three fully decentralized approaches selected as benchmarks 
for comparison, and the design and setup of the experiments. 
We report the results of the comparative experiments in Results, 
discuss the results and future work in Discussion, and finally 
summarize our conclusions in Conclusion.

Materials and Methods

Uncertainty in collective perception
Collective perception by ground robots is generally a two-
dimensional (2D) spatial sampling and inference problem (cf. 
[35]). In other words, robots need to collect samples of infor-
mation that varies spatially in two dimensions and use the 
samples to make some estimate, such as a mean or total value 
for an area (e.g., mean temperature, mean noise level, total 
daylight coverage, or total soil toxicity) or the positions of some 
objects within a relative coordinate system.

Spatial sampling and inference
In estimation of spatial data, there are three points from which 
uncertainty and error can originate, following [35]:

1. � features of the stochastic field (), i.e., the distribution 
and variability of the spatial data,

2. � the spatial sampling method ( ), and
3. � the statistical inference method (ψ).

The main task is to minimize biases that originate in the sam-
pling method   and inference ψ. Note that biased   can also 
be compensated for during ψ.

Collective perception with mobile robots
In principle, collective perception approaches should use par-
allel sample collection with multiple robots to overcome the 
bias that would be present in a single robot perceiving by itself.

In collective perception, robots do not have any prior knowl-
edge of the stochastic field. A sampling method   that intro-
duces the least possible uncertainty would have a sampling ratio 
of 1 with perfectly evenly distributed sampling sites (see [35]). 
Therefore, parallel sampling in collective perception can min-
imize bias by increasing the total number of samples that are 
available to one robot, as well as increasing the spatial disper-
sion and potentially the density uniformity of the sampling sites 
(see Fig. 1).

However, because samples are taken by mobile robots that 
sweep an area over time, not all aspects of   can be directly 
defined. For instance, simple random sampling cannot be pro-
grammed directly, but instead must be targeted indirectly by 
designing, e.g., a random walk and sampling time protocol. 
Furthermore, if the stochastic field  is time-varying, spatio-
temporal correlations and variability aspects that are not repre-
sentative of  could be introduced during sampling due to the 
robot’s sweeping motion. Also, in collective perception, robots 
need to incorporate samples collected by their peers in parallel. 
In most approaches, robots sample the decisions of their peers, 
in addition to sampling the stochastic field directly, and fuse 
decisions during the inference process ψ.

Therefore, in collective perception with mobile robots, there 
are five points at which uncertainty and error can originate

1.–3. ,  , ψ (following [35]),
4. � the spatial decision sampling method (), and
5. � the spatiotemporal sweeping method ().

Fig. 1. When prior knowledge about a stochastic field is not known, higher sampling 
ratios and more evenly distributed samples can reduce the potential for bias to be 
introduced during the sampling method  .
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In collective perception, a random walk is typically used to 
sweep the environment because robots are assumed to have no 
or very little prior knowledge of the layout of the environment 
or the stochastic field . Random walks can be tuned or mod-
ulated to improve the sampling distribution (see Fig. 1), but 
some interference from obstacles, environment layout, or other 
robots is unavoidable. An optimal random walk sweep  would 
reliably result in a uniform random distribution of sampling 
sites in   and —i.e.,   and  would be simple random sam-
pling. However, simple random sampling often leads to large 
gaps and therefore bias [35], so even if an optimal random walk 
free of interference were practical, substantial uncertainty could 
still originate during   and . Consider that although biased 
,  , and  can be compensated for during inference ψ, it is 
difficult or impossible to do so without prior knowledge of the 
stochastic field  [35]. Therefore, we conclude that it might be 
intractable to substantially improve the performance of fully 
decentralized approaches to collective perception beyond the 
current state of the art (e.g., [7,8]).

In this paper, we assert that by reducing or eliminating key 
sources of uncertainty that are usually present in collective 
perception, a well-designed self-organizing hierarchy approach 
could provide much more accurate estimates without sacrific-
ing scalability and fault tolerance, as compared to fully decen-
tralized approaches. We tested this assertion empirically.

Problem statement
We have developed a self-organizing hierarchy approach to 
collective perception based on the MNS concept and tested it 
against fully decentralized collective perception in simulated 

experiments. In the self-organizing hierarchy approach (Hier), 
a robot fulfilling the temporary role of a “brain” forms one col-
lective opinion on behalf of the group, using collective sensor 
information merged hierarchically by all robots. In the fully 
decentralized approaches, each robot takes part (either explicitly 
or implicitly) in a collective decision-making process to form its 
own opinion and reach decentralized consensus with its peers.

We tested the Hier approach against the following three fully 
decentralized approaches, as benchmarks for comparison.

•  �Voter decision model (Vote): Each robot selects new 
opinions randomly from among the current opinions of 
itself and its neighbors (based on [8]).

• � Mean decision model (Mean): Each robot averages the 
opinions of itself and its neighbors (based on [8]).

•  �Stigmergy (Stig): Robots do not communicate explicitly 
but leave cues for each other to observe in the environ-
ment (based on [36]).

In all approaches, simulated ground robots use short-range 
onboard sensing to detect some objects that are distributed 
randomly in an arena of unknown size. Their collective goal is 
to form an accurate opinion on the density of objects in the 
whole arena.

In this paper, robots collect samples by detecting individual 
objects and then infer either the mean or distribution of the 
density of objects in the arena using odometry and knowledge 
of their own sensor ranges.

Absolute object density λ = b/a is defined as the number of 
objects b per unit area a. The true density λ in the environment 

A B

Fig. 2.  In the Hier approach, a dynamic ad hoc hierarchical network self-organizes using local communication and relative positioning. (A) Roles of robots in the collective 
perception task according to their hierarchy level. The 8 robots in level 2 (orange) collect samples of the stochastic field , the MNS-brain robot in level 0 (blue) performs 
inference, and any robots between them (green) transfer data. (B) Reactive boustrophedic motions to sweep the environment. The MNS-brain robot in level 0 (blue) is 
responsible for determining the reactions and sending motion instructions downstream, the robots in level 2 (orange) are responsible for obstacle avoidance, and any robots 
between them (green) monitor their children’s positions and calculate their motion instructions.
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is denoted by λtrue. Robots are not given any information about 
the size and shape of the objects or arena. Robots only know 
the dimensions of their own fields of view and must use this 
knowledge to infer the number of objects per unit area.

Experimental design
To study the baseline performance of the tested methods, we 
constructed stochastic fields  with relatively low spatial vari-
ability by distributing the features (objects to be detected) uni-
formly randomly in a regular polygonal area. Inference ψ is still 
not negligible, even in the case of optimal sampling, because the 
robots cannot detect the target value (i.e., density) directly and 
must instead infer it from representative information (i.e., short-
range Boolean detection of objects).

We tested the approaches under several time-invariant and 
time-varying . Each approach was assessed in terms of per-
ceptual accuracy (i.e., error in the collective opinion with respect 
to the true value), consistency of the accuracy, and reaction time. 
The scalability and fault tolerance of each approach was also 
assessed in time-invariant  in terms of the change in accuracy 
under robot failures and group size variations.

Methods for collective perception
The robots run two parallel processes.

• � Process A: Robot r individually counts detected objects 
and infers the density in its own field of view.

• � Process B: Robots influence the collective opinion of the 
group via either the inputs or outputs of Process A, and 
robot r forms its opinion on the absolute object density 
(λ) in the arena.

Robots use only local or indirect communication to influ-
ence the collective opinion of the group, so the motion routines 
and communication rules of each approach are presented in 
the descriptions of Process B.

Process A is the same in each approach (Hier, Vote, Mean, 
and Stig), except for the tuning parameters. Process B is dif-
ferent in each approach.

Process A: Robots make individual interpretations
In all approaches, robot r counts sensed objects and infers the 
density in its (direct or indirect) field of view, outputting the 
value ϵr. The sensing and inference output ϵr, which is equal to 
0 in the first time step, is defined as the average number of 
objects per unit area in the robot’s field of view in a given time 
window, calculated as follows for time t:

where σt is the cumulative number of objects seen from the first 
time step to the current time t by robot r, kt is the time window 
at time t, kmax

t  is the maximum time window, and the remaining 
terms are tuning parameters: v is the view area of robot r, s is 
the average speed of robot r, and P is a parameter related to the 
motion routines of the different approaches. For details on the 
tuning parameters, see the “Simulation setup” section.

The time window kt keeps track of the elapsed time since 
the robot started the mission, up to the maximum time window 
kmax
t , i.e.,

At each time step, a new value σt is saved to a circular buffer 
σ of length kmax

t  in the memory of robot r. In other words, after 
σ reaches kmax

t  elements (i.e., when t ≥ kmax
t ), then at every 

subsequent update of σt (at position i = kmax
t ), each element at 

i: i ∈
{
1, … , kmax

t − 1
}
 is replaced by the element at i + 1. The 

buffer σ is defined as

where bt is the number of objects detected (directly or indirectly) 
at the current time step t by robot r. Note that, to calculate σt, 
only σt and the most recent bt−1 values are required; it is not 
necessary to maintain a memory of all previous bt values.

In summary, at each time step t, Process A: inputs bt, the 
number of objects the robot detects, and outputs ϵr, the inferred 
density in the robot’s field of view during the time window.

Process B: Robots influence the collective opinion
In all approaches, all robots influence the collective opinion 
through either the inputs or outputs of Process A. Also, each 
robot r uses the outputs of Process A to form its opinion �appr  
of the apparent absolute density in the arena.

In the two decision model approaches (Vote and Mean), 
robots modulate the input bt individually and process the output 
ϵr collectively. In the other two approaches (Stig and Hier), 
robots do the opposite—they modulate the input bt collectively 
and process the output ϵr individually. Thus, in all four approaches, 
the opinion �appr  is influenced by a collective process.

Decision model approaches (Vote and Mean): Process B
We tested two fully decentralized approaches that use a collec-
tive decision-making process to reach consensus about the 
apparent density in the arena. Both approaches use a basic sto-
chastic motion routine and explicit communication among 
neighbors. The robots coordinate their opinions using either a 
voter or mean decision model.

Stochastic motion routine
The Vote and Mean approaches use a stochastic motion 

routine based on Random Billiards [37,38]. Each robot 
moves forward at a constant velocity unless it detects the 
boundary line of the arena. A robot can detect a line’s angle 
relative to its own heading by driving over the line and, likewise, 
can detect the “inside” or “outside” of the arena by driving par-
tially over the respective area. When a robot detects an arena 
boundary line, it turns away from the line to face a random 
direction towards the “inside” of the arena. For a boundary line 
with detected angle θ1 and the “inside” of the arena towards 
the direction �1 +

�

2
, the robot turns to face a random direc-

tion with uniform distribution U(θ1, θ1 + π). A robot pauses 
its Random Billiards motion and performs obstacle avoid-
ance when it meets an object or another robot. Robots use 
line-of-sight sensing and communication to detect (and dis-
tinguish between) objects and robots that are within a short-
range radius ρ1 and within ± �

3
 of the heading angle θh. When 

a robot sees an object or robot, it turns away from it until it is 

(1)�r =

�t − �t−kt

v ⋅ s ⋅ kmax
t

⋅ P,

(2)kt =

{

t, if t<k
max
t

k
max
t

, otherwise

⋅

(3)�=

(

�t−kt
, �t−kt+1

, … , �t

)

, �t =

t
∑

i=1

bi,
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no longer visible within �1 +
�

3
. If an object was detected, then 

the input of Process A is updated as bt ← bt + 1.
Voter decision model (Vote)
In this approach, robots share their individual inference 

outputs ϵr (i.e., outputs of Process A) using explicit communi-
cation. Each robot then uses a voter model process to form its 
opinion �appr  of absolute object density. Note that we use average 
opinion (i.e., taking the mean) instead of the majority opinion 
approach used in [8] (i.e., taking the mode), because we con-
sider a continuous decision rather than a discrete decision task, 
and the sample size the robots use at each time step is very 
small. It would often not be possible for a robot to find a unique 
mode among its available samples, so the performance of the 
majority model would be poor.

For explicit communication, each robot rn maintains and 
shares a matrix ϵϵ as follows:

where rj is the robot ID, �rj is the most up-to-date ϵr value known 
for robot rj by robot rn, and �rj is the time stamp of the known 
�rj

. At each time step, robot rn updates its own �rn  and trn  accord-
ing to Eq. 1 and then sends its matrix ϵϵ to its current neighbors. 
If a robot receives a matrix that contains a higher trj  than its 
current entry for that robot, it updates its row for rj accordingly. 
Also, if t − trj < kmax

t  for any trj
 entry, the robot removes the 

corresponding row. In this way, the ϵϵ of robot rn always contains 
the most up-to-date ϵr values for its peers that rn has seen within 
the time window kt.

At each time step, robot r decides �appr  by randomly selecting 
one �rj entry from its matrix. In other words,

such that opinion λapp of absolute density is the result of a voter 
decision model.

Mean decision model (Mean)
In this approach, robots also share their individual inference 

outputs ϵr using matrices ϵϵ, as defined in Eq. 4.
At each time step, robot r decides �appr  by averaging the �rj   entries in its matrix. In other words,

such that opinion λapp of absolute density is the result of a mean 
decision model.

Stigmergy approach (Stig): Process B
In this approach, robots influence the collective opinion via the 
inputs of Process A—the number of objects detected (bt)—not 
the outputs of Process A.

This approach uses stigmergic (indirect) communication 
through artificial pheromones—i.e., cues left in the environment 

that are observable by the robots within a certain range. (In 
real robots, a stigmergic approach could be implemented using 
communication-enabled smart blocks, such as those in [39].) 
Robots use the pheromones deposited in the environment to 
reach a consensus about the apparent density in the arena.

When a robot detects an object within short-range radius 
ρ1, it counts the object and deposits pheromone at the object 
location. Robots can detect and differentiate pheromone sources 
within long-range radius ρ2, which allows them to count objects 
already found by their peers in a much larger vicinity than that 
in which they can detect objects directly. Each robot counts 
sensed pheromone sources the same as sensed objects bt (see 
Eq. 3 of Process A). Robots also understand that pheromones 
are cues that the immediate area has already been explored 
by another robot, and therefore, they turn away to search for 
new unexplored areas.

Each robot can sense a pheromone in any direction and 
can sense the relative direction and distance of its source. 
When a robot senses a pheromone source within long-range 
radius ρ2 − δ2 and in a direction close to that of its heading, 
it turns away from the source to a random direction according 
to Algorithm 1.

The angle θx is selected randomly once every 200 time steps 
according to the following uniform distributions:

If a robot is simultaneously within range of multiple pher-
omone sources, it logs them in a list with an arbitrary order 
and reacts to the first pheromone source in its list for that time 
step. After a robot reacts to a given pheromone source, it con-
tinues moving forward until it encounters a different phero-
mone, an object, or a boundary line.

Recall that robots have already influenced the collective 
opinion via the inputs of Process A. Therefore, at each time 
step, robot r simply takes its own inference output ϵr as its 
opinion �appr  of absolute density. In other words,

Hierarchical approach (Hier): Process B
In this approach, robots influence the collective opinion via the 
inputs (not the outputs) of Process A, and only the robot occupying 
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the dynamic leadership position, i.e., the MNS-brain robot r, per-
forms Process A.

The Hier approach is based on the existing MNS concept, 
which is a general framework for constructing and reconstruct-
ing self-organizing hierarchy [4]. Under the MNS framework, 
robots can self-organize a dynamic ad hoc control network in 
which robots temporarily and interchangeably occupy certain 
positions in a leadership hierarchy, including an MNS-brain 
position (i.e., highest hierarchy position) [5,37,40,41]. In an 
MNS control network, each robot communicates only with its 
direct neighbors to prevent the type of bottleneck that would 
occur at the communication hub in a fully centralized system. 
According to task specifications and system constraints, sensor 
information can be merged as it is passed upstream, control 
information can be unmerged as it is passed downstream, and 
the balance of individual versus collective behaviors can be 
actively managed. This flexibility can be used to reduce or elim-
inate the potential for bottlenecks throughout the hierarchical 
network (see Fig. 2).

In this study, we used the MNS implementation of [5], in 
which camera-equipped unmanned aerial vehicles (UAVs) are 
responsible for sensing the relative positions and orientations 
of the ground robots for the purpose of keeping the robot for-
mation together during sweeping. (Note that UAVs in the Hier 
approach in this study cannot sense objects directly so do not 
increase the total sensing range available in the approach. If we 
were using ground robots that were capable of sensing each 
other’s relative positions and orientations, the UAVs could be 
removed, and this removal would not have an impact on the 
collective perception results.) We used the sweeping technique 
of [40] and applied it to the task of collective perception.

In the motion routine of Process B of the Hier approach, 
robots self-organize into a roughly linear formation to sweep 
the environment (for details, see [40]). In the Hier approach, 
the MNS-brain robot r detects arena boundary lines and reacts 
to them using a deterministic process. The dimensions of the 
MNS’s collective ground robot sensor range, calculated by the 
MNS based on the number of ground robots in the formation, 
are used as parameters in the deterministic process. The MNS 
reactively sweeps the unknown environment using standard 
back-and-forth boustrophedic motions [42]. The reactive bou-
strophedic motions are based on the MNS’s knowledge of its 
own dimensions such that the collective sensor ranges of the 
ground robots can cover the environment as completely as 
possible.

As it sweeps the arena, the MNS-brain robot sends control 
information downstream to maintain the formation (for full 
details, see [43]). Each robot in the MNS receives motion instruc-
tions from its parent that include the targeted relative linear 
velocity v and angular velocity ω as well as the current orientation 
quaternion qt, following [43]. To send motion instructions, each 
parent in the MNS senses its child’s displacement dt and relative 
orientation qt, determines the new targeted values based on the 
most recent motion instructions it received from its own parent, 
and calculates motion instructions for its child as follows [40]:

where k1 and k2 are speed constants and function f(x) converts 
a quaternion to an Euler angle. In the Hier approach, when a 
ground robot detects an object within short-range radius �1 

and within ± �

3 of the heading angle θh, it temporarily ignores 
the motion instructions received from its parent to circumvent 
the object (in a predefined arc trajectory relative to its cur-
rent position) until the object is no longer within �h ±

�

3
. 

Complementarily, if the parent of a ground robot detects that 
its child is behind another ground robot within �1 + �1, then 
the parent will temporarily ask the child to stop moving until 
the two ground robots are no longer within �1 + �1 of each 
other. The child will accept the request as long as it detects an 
object within short-range radius �1.

In the Hier approach, ground robots essentially act as tem-
porary remote sensors of the MNS-brain robot r. Each child 
robot sends its sensor readings upstream to the MNS-brain 
robot r via its parent, which calculates one inference output ϵr 
for the whole MNS. Note that, to reduce the per-step simulation 
time needed by CPU and GPU solvers, some of the upstream 
and downstream data transfers within the MNS are simulated 
as a single-step rather than multi-step process. In this study, 
the approaches are assessed according to the simulation steps, 
not the per-step time. This implementation strategy negligibly 
impacts the number of simulation steps needed to collect and 
pass information (adds a maximum of 1 step), so it does not 
undermine the analysis of the reported results. 

At each time step, the MNS-brain robot r takes its own infer-
ence output ϵr as its opinion �appr  of absolute density, i.e.,

Simulation setup
The experiments were conducted in the ARGoS simulator [44], 
with robot models implemented using an existing plugin [45,46]. 
The experiments were conducted with the kinematics of small 
differential-drive ground robots based on the extended e-puck 
robot [47–49] and, for the Hier approach, of quad-camera UAVs 
based on the S-drone quadrotor [50]. For more implementation 
details of all four approaches and the experimental setup in 
ARGoS, please see the open-source code repository (https://
github.com/BlueDiamond07/Collective_perception).

In all approaches and all setups, only ground robots have 
the capability to directly sense objects. In all setups except scal-
ability, each approach has 8 ground robots. All robots in all 
approaches have the same average linear velocity (7.5 cm/s). 
The experiments begin when the robots start to sweep the arena 
and end after 50,000 time steps (2,000 s).

Tuning parameters
Regarding the parameters in Eq. 1, in the Mean and Vote 
approaches, the view area v of robot r is based on the sensor 
range of onboard object sensing, and in the Stig approach, v 
is based on the sensor range of the onboard pheromone sens-
ing. In the Hier approach, v is based on the maximum bounds 
of the combined sensor ranges of all ground robots. Note that 
in all approaches, all ground robots have the same sensor range 
for detecting objects (short-range radius ρ1). The time window 
used in the experiments is kmax

t
=1,000 time steps. In other 

words, in all approaches, a robot’s memory of a sensing input 
lasts for 1,000 time steps (40 s). Parameter P was tuned sepa-
rately for each approach during a manual testing phase to 
reduce observable bias in the output of Eq. 1 in each approach. 
To prevent a reliance on prior knowledge, the tuning phase was 
not adjusted to specific density conditions. Tuning P is intended 
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to compensate for the stochasticity of the motion routines in 
the decentralized approaches, relative to the deterministic 
sweep of the MNS approach. In the Hier approach, the motion 
trajectory of the MNS-brain robot is deterministic, so P = 1. 
For each fully decentralized approach, we tuned P through a 
trial-and-error testing phase to obtain the highest observable 
performance from Eq. 1 for each approach. After the empirical 
tuning phase, we set P as follows: voter model P = 0.48, mean 
model P = 0.55, and stigmergy P = 1. Note that P could, in 
principle, be optimized in all approaches (see Discussion).

Variations
The experimental variations are as follows. In the basic exper-
iments, we varied the stochastic fields  by distributing 50, 100, 
200, or 300 small objects (5 x 5 x 5 cm3 cubes) uniformly ran-
domly in a square 6 x 6 m2 arena, but with a minimum distance 
of 20 cm between object center points such that the robots can 
always pass between them. (In all variations, the objects are 
rotated in 2D around their center points according to angles 
defined uniformly randomly.) The true densities for these fields 
are �true = 1.38, 2. 7, 5. 5, and 8. 3 objects/m2, respectively. For 
accuracy under time-invariant , we tested three variations 
with different true densities. 

Basic uniform environments can provide a performance 
benchmark, but it is also important to test stochastic fields  
in which the data have significantly nonuniform spatiotemporal 
features, such as spatial heterogeneity (high variance between 
a few subregions). We therefore ran two types of variations of 
the basic experiments: temporal and spatial.

For temporal variation, we tested accuracy under time-
varying , with both minor and major density changes that occur 
both frequently and infrequently. Specifically, we tested fields that 
fluctuate between �true = 1.38 and either 2. 7 or 8. 3 objects/m2 
over two different rates of change (either 40 s or 400 s), for a total 
of four possible variations.

For spatial variation, we tested accuracy under spatially non-
uniform  with high variance between subregions. Specifically, 
we tested fields in which 100 objects are distributed according 
to different bivariate unimodal and bimodal skew-normal prob-
ability distributions. The distributions were generated by defin-
ing the standard skew-normal shape parameter α uniformly 
randomly for x and y (separately) in the unimodal and bimodal 
distributions, in addition to, for the bimodal distributions, 
defining the location parameter ξ across the arena dimensions 
uniformly randomly for x and y (separately). For the bimodal 
distributions, α and ξ were defined separately for each peak, 
and each ξ was constrained to half of the arena. Note that the 
minimum distance between objects was maintained in these 
setups. In the environments generated from these distributions, 
the mean density of the whole arena is �true = 2. 7 objects/m2, 
but the distribution of λtrue is of course nonuniform, and 
large portions of the arenas do not contain any objects (see 
Fig. 3).

When testing scalability and fault tolerance, all fields are 
uniform and time-invariant with �true = 2. 7 (i.e., 100 objects 
in a 6 x 6 m2 arena). In the experiments testing scalability, we 
varied the number of ground robots (4, 8, 12, 16, 20, or 24 
ground robots). In the experiments testing fault tolerance, we 
varied the percentage of ground robots that arbitrarily fail (0%, 
25%, 50%, or 75%). Failed ground robots continue their motion 

routines, communication, and calculations as normal but expe-
rience sensor failure such that they cannot directly count 
objects—i.e., in Eq. 3, they always add n = 0 to bt = bt + n as 
the number of objects detected. Note that, in the Stig approach, 
this implies that a failed robot never deposits an artificial pher-
omone but can still detect pheromones left by other robots.

We conducted 10 runs per variation, except for the spa-
tially nonuniform  experiments with bimodal skew-normal 
distributions, for which we conducted 20 runs because of the 
increased complexity in the environment.

Analysis
Recall that λtrue is the true density of the environment and that 
robots produce the values ϵr (i.e., individual inferences that 
robot r makes about the density in its own field of view) and 
�
app
r  (i.e., the opinion of robot r on the apparent density in the 

whole arena based on the collective influence of all robots). 
We report the experimental data in Tables S1 to S5 in the 
Supplementary Materials, and in an open-access data repos-
itory (https://doi.org/10.5281/zenodo.7244384). We report all 
data, but given that the time window for sampling inference 
in the experiments is kmax

t
= 1,000, we only considered time 

steps 1,000 (40 s) and later when making assessments about 
performance.

We assessed the perception accuracy of the approaches 
according to the error of the robot opinions on apparent density 
λapp with respect to true density λtrue. The overall error (i.e., 
incorporating both bias and variance) is measured by the mean 
squared error (MSE) of the opinion λapp of robots r over time:

The instantaneous error is measured by MSE
(
�
app
rt

)
, calcu-

lated as in Eq. 11, but without the terms related to t.

Spatially nonuniform environments
For the spatially nonuniform environments, error is measured 
by the root MSE (RMSE) of the opinion RMSE

(

�
app

rt

)

=
√

MSE
(

�
app

rt

)

 instead of by MSE, because RMSE is better for 
assessing performance when the errors are large. The measured 
error in these experiments is high because the true density �true 
varies substantially across the arena, but the error was measured 
according to the mean of �true, not the distribution of �true. We 
used the mean of �true for the error calculation because the fully 
decentralized approaches lack any localization or relative posi-
tioning capabilities and therefore cannot spatially coordinate 
their samples among multiple robots in a way that would enable 
direct comparison with the �true distribution.

We make the assumption that, in spatially nonuniform envi-
ronments, the goal of collective perception will be either (a) to 
estimate the density distribution λtrue in a given instance of an 
environment or (b) to estimate the overall probability distri-
bution of λtrue in a class of environments. To fulfill this goal in 
practice, additional methods would need to be implemented 
to aggregate the robots’ samples and, e.g., perform probability 
distribution fitting. These additional layers are beyond the scope 
of this study, but we assessed the similarity of the opinion dis-
tribution of each approach to the actual density distribution in 
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the environment as an indication of how feasible various dis-
tribution estimation methods might be.

We estimated the λtrue distribution in the environment by 
taking a set of 50,000 density measurements λREF of the refer-
ence samples (i.e., objects) using rectilinear windows R of 

variable area, where the xy positions of the vertices of R are 
defined uniformly randomly, but with R having minimum 
length and width of 1.5 m. To make a more direct comparison 
between the density distributions of the reference samples λREF 
and the distributions of opinions �appr  of the four approaches, 

Fig. 3. Example spatial distributions of objects in the arena (in meters) for different experimental variations. The basic time-invariant and time-varying 

experiments, as well as the scalability and fault-tolerance experiments, used uniformly random distributions. The spatially nonuniform experiments used 

bivariate skew-normal distributions (both unimodal and bimodal).
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we calculated RMSE(λREF) according to the mean density �true. 
All estimates were then sorted according to RMSE, and we cal-
culated the mutual information (MI) between the RMSE

(
�
app
r

)
 

of the four approaches and the reference RMSE(λREF). (Specifically, 
we calculated MI between continuous datasets based on entropy 
estimation from k-nearest neighbor distances [51,52], using k = 3 
or 500 neighbors.)

Results

The results show that, under both time-invariant and time-
varying stochastic fields , the Hier approach has higher accu-
racy, more consistent accuracy, and faster reaction times than 
the fully decentralized benchmark approaches.

Under all the tested time-invariant fields  (see Fig. 4), the 
Hier approach shows minimal error with only minor spikes, 
and stable estimates are reached in less than 50 s. The Mean 
and Vote approaches are somewhat less accurate but converge 

very quickly and rather stably—when error does spike, the 
spikes are moderately high and last for less than 200 s. The Vote 
approach is less accurate than the Mean approach and also less 
consistent (i.e., shows more variance in error across trials). The 
Stig approach is approximately as accurate and consistent as 
the Vote approach, but it converges much more slowly and at 
higher MSE λr

app). Overall, it shows more variance in the error 
over time. Across all approaches, time-invariant fields with 
higher true densities λtrue seem to be more challenging than 
those with lower λtrue. This is reasonable because the objects 
being detected while perceiving density also create physical 
obstructions that the robots must avoid or circumnavigate, 
which implies more interference and therefore more uncer-
tainty originating during the sweeping method . In the Hier 
approach, however, the difference in accuracy between lower 
and higher λtrue is extremely small.

Under time-varying fields , the Hier approach is the only 
approach that consistently reaches very low error after all tem-
poral shifts. Under slow fluctuations (see Fig. 5B and D), each 

Fig. 4. Error under time-invariant fields . (A to D) Lines show mean and shaded areas show minimum and maximum of MSE(�app
r

) of all runs for three variations of true density 
λtrue (objects/m2): low density �true = 2. 7, medium density �true = 5. 5, and high density �true = 8. 3.
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approach is able to return to its lowest respective error after a 
shift to a lower density λtrue. In these periods of lowest respec-
tive error, the Hier, Mean, and Stig approaches reach a similar 
minimal error, while the Vote approach converges on a slightly 
higher error. However, after a shift to a higher density λtrue, in 
all approaches the reaction is slower and error is higher (com-
pared to a shift to lower λtrue).

Under time-varying fields, when the fully decentralized 
approaches are able to converge, all three show noticeably 
more error than the Hier approach. The Hier approach also 
reacts much more quickly than the other approaches under all 
variations of time-varying stochastic fields. The Mean and 
Vote approaches converge relatively quickly, but the Stig 
approach converges relatively slowly, and under major fluctu-
ations. It cannot converge within 400 s (see Fig. 5D). Under fast 
fluctuations, these patterns are exacerbated (see Fig. 5A and C). 
The Mean and Vote approaches have barely enough time to 

converge under fast, minor fluctuations and cannot converge at 
all under fast, major fluctuations. The Stig approach never has 
sufficient time to come close to convergence after a shift to 
higher λtrue. When the fully decentralized approaches do con-
verge under fast fluctuations, their accuracy is the same as that 
under slow fluctuations.

Overall, the Hier approach shows the lowest error (see Tables 
S1 to S5 for details). Under time-invariant fields (see Fig. 4), 
mean error in the Hier approach is very minor, almost negli-
gible. MSE(�appr ) does spike occasionally in some runs but gen-
erally recovers within 20 to 40 s. The spikes in error in the Hier 
approach are much less frequent than in the other approaches, 
and the largest spikes are comparatively minor. Under time-
varying fields (see Fig. 5), error in the Hier approach is also 
overwhelmingly much lower than in the other approaches, 
under all rates and magnitudes of field fluctuations. Note that, 
under time-varying fields with major fluctuations, immediately 

Fig. 5. Error under time-varying fields . (A to D) Mean MSE(�app
r

) of all runs for four temporal variations of fluctuating true density λtrue.
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after some of the shifts in the stochastic field, error in the Hier 
approach spikes more aggressively than in some of the other 
approaches. However, the Hier approach recovers very quickly 
after these spikes and, in most cases, returns quickly to a lower 
error than that shown by the other approaches. Overall, we can 
conclude that the Hier approach has higher and more consist-
ent accuracy and reacts accurately and more quickly than the 
three benchmark approaches.

Spatially nonuniform environments
The results show that, under the spatially nonuniform fields , 
the distributions of opinions produced by all four approaches 
have some basic similarity to the true density distributions in 
terms of shape (see Fig. 6).

For both unimodal and bimodal environments, the mean 
RMSE(�appr ) of the Vote and Mean approaches shows extremely 
similar distribution shapes, with the Vote approach having 
higher error overall. In other words, the Vote approach’s distri-
bution curve is effectively a displaced (higher-error) duplication 
of the Mean approach’s distribution curve. For both environment 
types, the Stig approach’s distribution curve is much flatter than 
those of the Vote and Mean approaches, but otherwise, it is fairly 
similar to the distribution curve of the Mean approach, in terms 
of both shape features and overall error. For both environment 
types, the Hier approach’s distribution curve is much steeper 
than those of the three decentralized approaches, and in the uni-
modal environments, it is also quite different from the other three 
in terms of shape features.

In comparison to the reference samples, all four approaches 
have much higher overall error but show a fair amount of similarity 
in their distribution curves. For both unimodal and bimodal 
environments, the three decentralized approaches have approx-
imately the same similarity between their mean RMSE(�appr ) 
distributions and the mean RMSE(λREF) distribution. All three 
have (a) a sharp increase at the lowest end that the reference dis-
tribution does not have at all, (b) a sharp increase at the highest 
end that is much more gradual in the reference distribution, 

and (c) a gradual increase in the middle that is flatter than the 
increase of the reference distribution. Also, in all three approaches, 
the distance between the lowest and highest values of each respec-
tive distribution is noticeably smaller than that of the reference 
distribution. Of the three, the Stig approach’s distribution is the 
least similar to the reference distribution in terms of rate of increase 
and overall shape. In comparison to the three decentralized 
approaches, the Hier approach’s distribution in both environment 
types is more similar to the reference distribution in terms of the 
difference between the lowest and highest values. The Hier 
approach’s distribution also seems to potentially be more similar 
in terms of overall shape, but this is difficult to assess from the 
information available, so we consider this finding to be inconclu-
sive overall.

The estimated MI between the mean RMSE(�appr ) distribution 
and the mean RMSE(λREF) distribution is also very similar for all 
approaches (see Table S5). Overall, the Hier approach is slightly 
worse in terms of MI than the other three, while the Stig approach 
is slightly better. The Stig approach therefore has the highest 
dependency (based on MI) but the least curve similarity.

Overall, the accuracy differences between the opinion dis-
tribution curves of the four approaches are inconclusive, but 
all four approaches display some dependency and approximate 
curve similarity with the reference distribution.

Scalability
In the scalability setup, in the tested group sizes, none of the 
approaches show a decrease in accuracy as the group size 
increases (see Fig. 7), implying that the threshold at which 
inter-robot interference could negatively affect accuracy has not 
been reached. (Note that this also implies that none of the 
approaches, including the Hier approach, display a bottleneck 
at these sizes. For more discussion of bottlenecks in the MNS 
approach, see [43].) Rather, we see moderate decreases in 
performance in some approaches as the group size decreases. 
The accuracy difference between group sizes in the Mean 
approach is the most noticeable but is still relatively minor; 

Fig. 6. Error under spatially nonuniform fields  compared to the reference samples. (A and B) Mean RMSE(�app
r

) of the four approaches (left-hand y axis) compared to the 
mean RMSE(λREF) from the reference samples (right-hand y axis) of all runs for different fields with spatially nonuniform true density λtrue. All RMSE values were calculated 

according to the mean density �true = 2. 7 (for the details of the analysis approach, see the “Spatially nonuniform environments” section). Estimates are sorted on the x axis 
according to RMSE. To make visual comparison easier, RMSE(λREF) has been realigned on the y axis in relation to RMSE(�app

r
); see right- and left-hand y-axis labels. For the 

estimated MI, see Table S5.
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however, its accuracy is also much less consistent in the smaller 
group sizes, displaying larger and more frequent spikes. The 
accuracy difference between group sizes in the Hier and Stig 
approaches is extremely minor, and the Vote approach shows 
no difference between group sizes. Overall, all four approaches 
show good scalability of accuracy, which stays the same or 
improves as the group size increases. The Vote approach also 
shows relatively good resiliency to smaller group sizes. However, 
it is important to note that although the accuracy of the Vote 
approach does not worsen with smaller groups, it shows more 
error in all group sizes than the Hier or Stig approaches in their 
worst group size.

Overall, the Hier approach shows less error than all other 
approaches for all tested group sizes and shows extremely minor 
(almost no) error in the largest group size of 24 ground robots.

Fault tolerance
In the fault tolerance setup, all four approaches show a notice-
able decrease in accuracy as a greater percentage of robots fail 
(see Fig. 8). This is expected because the fault tolerance setup 

is quite challenging—failed robots continue to move and com-
municate but always record that they have directly detected 
zero objects, thereby introducing extra bias during sampling 
method .

Some of the fault tolerance variants can be considered to 
have matching respective scalability variants—e.g., the fault 
tolerance condition of 50% failure leaves the swarm with 4 fail-
ing and 4 correctly working ground robots, which is a match 
to the scalability condition of 4 ground robots. When compar-
ing accuracy under 50% failure to the matching scalability 
variant, the Hier and Mean approaches show only slightly 
more error, while the Vote approach shows a more noticeable 
increase in error. In contrast, the Stig approach shows no 
noticeable difference. All four approaches show a similarly sub-
stantial increase in error from 50% to 75% failure. Under 75% 
failure (the highest failure rate), the Hier approach shows 
noticeably less error than the Mean and Vote approaches. 
Under 75% failure, the Hier approach shows slightly less error 
than the Stig approach, but with less consistency (noticeably 
higher spikes).

Fig. 7. Error when testing scalability. (A to D) Mean MSE(�app
r

) of all runs for six variations of group size: 4, 8, 12, 16, 20, or 24.
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Overall, the Stig approach shows the least increase in error 
from no failure to 75% failure, with the other approaches show-
ing similar amounts of increase. However, the Hier approach 
has a lower mean error than the Stig approach under no, 25%, 
and 50% failure and a comparable (but still slightly lower) mean 
error under 75% failure. The Mean and Vote approaches show 
more error than the other two approaches under all failure 
rates. Therefore, the Hier approach shows the least overall error 
in the fault tolerance setups.

Overall, all four approaches are approximately comparable 
in terms of fault tolerance of accuracy, with the Hier approach 
having the least overall error and Stig approach showing the 
most consistency in its tolerance.

Summary
The experimental results can be summarized as follows: (a) the 
Hier approach shows higher and more consistent accuracy and 
reacts accurately more quickly than the other three approaches; (b) 

the Vote approach shows the least change in accuracy under 
changes in group size, but the Hier approach shows the highest 
overall accuracy under all group sizes; and (c) the Stig approach 
shows the least change in accuracy under changes in failure rates, 
but the Hier approach shows the highest overall accuracy under 
all failure rates.

Discussion

Based on the assertions made in this paper, under conditions 
without robot failures, the Hier approach should be able to 
conduct collective perception with very low uncertainty. In the 
Hier approach, uncertainty originating during the sweeping 
method  is expected to be greatly reduced because  is a deter-
ministic method. Likewise, the uncertainty that can originate 
at the sampling method   is expected to be greatly reduced 
because the deterministic  is also able to provide a nearly opti-
mal sampling distribution (i.e., very evenly distributed sampling 

Fig. 8. Error when testing fault tolerance. (A to D) Lines show mean and shaded areas show minimum and maximum of MSE(�app
r

) of all runs for four variations of arbitrary 
failures: 0% (0 of 8), 25% (2 of 8), 50% (4 of 8), and 75% (6 of 8) ground robots failing.
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sites and a sampling ratio approaching 1; see Fig. 1). (See [40] for 
demonstration of uniform and complete spatial coverage using 
the MNS.) Also, because the MNS network is a connected graph 
and all sensor information is fused at one node in that graph, 
no uncertainty should originate during decision sampling , 
and uncertainty that can originate during inference ψ, beyond 
the uncertainty that is inherent without prior knowledge of the 
stochastic field , is expected to be minimal.

When the results of the four approaches can be directly 
compared with the overall true density λtrue, the empirical 
results align well with these expectations (e.g., see the low error 
in Fig. 4A). In terms of accuracy, the Hier approach indeed 
outperforms the others under time-varying and time-invariant 
stochastic fields. These results therefore support the assertion 
that self-organizing hierarchy can improve perceptual accu-
racy by integrating aspects of centralized control that reduce 
uncertainty.

Under the spatially nonuniform environments, where the 
results are compared to a reference set of density measure-
ments, the opinion distributions of all four approaches display 
similarity to the reference distribution, with the performance 
differences between the four approaches being inconclusive. 
Overall, the empirical results indicate that distribution estima-
tion (either of the density distribution λtrue in a given instance 
of an environment or of the overall probability distribution of 
λtrue in a class of environments) would in principle be feasible 
in any of the four approaches, and further study would be 
required to assess the performance differences between them. 
However, in practice, fully decentralized approaches to distri-
bution estimation (e.g., probability distribution fitting) would 
give each robot access either to only a subset of the total samples 
or to an asynchronously updated opinion on the overall distri-
bution, introducing an extra source of uncertainty. By contrast, 
the information that would be available for distribution esti-
mation in the Hier approach would be the same as that shown 
in Fig. 6, without additional sources of uncertainty.

Also based on the assertions of this paper, in setups testing 
scalability and fault tolerance, the Hier approach should be able 
to conduct collective perception without any meaningful increase 
in error, as compared to the fully decentralized approaches. 
Indeed, in all scalability and fault tolerance setups, the error in 
the Hier approach does not increase beyond a level comparable 
to that of any of the other approaches, and in most of these var-
iants, the error of the Hier approach is lower than that of all 
other approaches. Therefore, the empirical results again align 
with expectations: the scalability and fault tolerance of the 
Hier approach can be considered commensurate with those of 
the other approaches. The results therefore support the assertion 
that self-organizing hierarchy, despite introducing some aspects 
of centralized control, can maintain the beneficial aspects of 
decentralized control.

Poor performance of Vote approach
Although the voter decision model has been shown to be 

relatively accurate with discrete best-of-n decision-making (e.g., 
choosing one of a few color options), this is because it works 
well at accurately converging on the most common opinion in 
a group. When dealing with high-variance samples of a contin-
uous stochastic field, it has no mechanism to compensate for 
bias in the sampling or reduce the variance—it essentially shuf-
fles several highly biased opinions among group members, so 
the distributions of opinions before and after the voter decision 
model process are statistically indistinguishable. This notion is 

confirmed empirically by the similarity between MSE(ϵrt) and 
MSE(�apprt ), i.e., the collective error in robot opinions before and 
after the voter decision model process (see Tables S1 to S5).

The Vote approach results therefore represent roughly what 
a single robot would perceive on its own, which explains the 
poor accuracy.

Tuning parameters
Parameter tuning is a difficult process, whether using sim-

ulated or real testing. Here, P was tuned during an initial man-
ual testing phase. Results should be interpreted with the 
understanding that parameter P could in principle be opti-
mized further in every approach but that this optimization 
could improve only the mean bias of the opinions, not the var-
iance (refer to Eq. 1). It should also be acknowledged that opti-
mization of P would require prior knowledge of the stochastic 
field . For example, if P was optimized to a very high-density 
field , the performance under low density would presumably 
suffer, and vice versa.

Future work
Future work on collective perception should study the robust-
ness of sampling methods under other types of challenging 
conditions, such as environments where it is difficult for robots 
to have good coverage over a spatial area due to large obstacles 
or boundary irregularity.

More advanced inference methods could be investigated, 
such as weighting samples by inclusion probability. However, 
most of these inference methods require some prior knowledge 
of the stochastic field [35], which might make them unsuitable 
for deployment-ready self-organized robot systems. General 
optimized performance could also be investigated, including 
for situations in which it is not possible to have prior knowledge 
of the stochastic field. Optimization without such prior knowl-
edge would likely need to be based on online adaptation to or 
learning of the spatial information being sampled, which could 
in principle be done in any of the approaches, but would cer-
tainly be easier to design in the Hier approach than in the fully 
decentralized approaches.

It would also be useful to study other types of failures, such 
as motion control errors (e.g., robots get stuck in corners), 
odometry errors (e.g., robots believe they have traveled far less 
distance than they actually have), other sensor errors (e.g., 
robots believe they are always detecting an object), and full 
robot shutdown, as well as the timing of such failures and other 
factors that could exacerbate their impact.

Improvements to the Hier approach
Although it might be simple to design and implement system-

wide adaptivity in the Hier approach using the MNS, we have 
not added such behaviors in this study because it is much more 
difficult to implement such adaptivity in the fully decentralized 
approaches. For as fair a comparison as possible, we limited the 
capabilities of the Hier approach to be similar to those of the 
fully decentralized approaches. For instance, the fault tolerance 
results of the Hier approach reflect the lack of adaptability cur-
rently implemented—e.g., the MNS-brain robot believes its 
indirect field of view to be that of eight fully functioning robots, 
although it only has two fully functioning robots remaining. Minor 
additions to the approach could be made to allow parents to 
detect malfunctioning sensor readings from children and sub-
stantially improve fault tolerance. This would be more straight-
forward to implement and design in the Hier approach than in 
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the fully decentralized approaches because of the aspects of cen-
tralization that are integrated into self-organization when using 
the MNS framework. More broadly, advanced behaviors are 
much simpler to implement using the self-organizing hierarchy 
capabilities of the MNS than when using strictly decentralized 
approaches, so the addition of even more advanced abilities, such 
as self-awareness, can be considered. The self-reconfiguration 
capabilities of the MNS [5] would also make it relatively straight-
forward to implement additional behaviors that help keep the 
robot formation together when sweeping challenging environ-
ments, such as changing formation or temporarily splitting into 
multiple smaller formations that sweep independently until they 
have the opportunity to re-merge.

Conclusion
We have identified the sources of uncertainty that are present in 
the collective perception problem, especially when perceiving 
an absolute condition without prior knowledge, and detailed why 
this uncertainty is reduced by using self-organizing hierarchy. 
We have supported this assertion empirically by showing that a 
proof-of-concept self-organizing hierarchy approach (based on 
the MNS framework) is generally more accurate, more consist-
ent, and faster than fully decentralized benchmark approaches. 
We have also shown that the self-organizing hierarchy approach 
to collective perception, besides producing more accurate esti-
mates of spatial data, does not suffer substantial scalability or 
fault tolerance disadvantages compared to fully decentralized 
benchmark approaches. We have also tested spatially nonuni-
form environments with high heterogeneity and shown that the 
self-organizing hierarchy approach is comparable to the other 
approaches in terms of accuracy compared to reference samples. 
Therefore, the comparative ease of designing system-wide behav-
iors under self-organizing hierarchy can be taken advantage of, 
without a reduction in the performance benefits that are often 
associated with swarm robotics approaches.
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