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Abstract. Prey retrieval, also known as foraging, is a widely used test
application in collective robotics. The task consists in searching for ob-
jects spread in the environment and in bringing them to a specific place
called nest. Scientific issues usually concern efficient exploration, map-
ping, communication among agents, task coordination and allocation,
and conflict resolution. In particular, interferences among robots reduce
the efficiency of the group in performing the task. Several works in the
literature investigate how the control system of each robot or some form
of middle/long range communication can reduce the interferences. In
this work, we show that a simple adaptation mechanism, inspired by
ants’ behaviour and based only on information locally available to each
robot, is effective in increasing the group efficiency. The same adapta-
tion mechanism is also responsible for self-organised task allocation in
the group.

1 Introduction

Scientific interest in collective robotic systems, in which several independent
robots work together to achieve a given goal, can have both an engineering and
a biological origin. From an engineering perspective, systems made of several
agents are appealing because they represent a way of improving efficiency in
the solution of tasks that are intrinsically parallel, such as the delivery of items
in a factory or the exploration of unknown environments. From a biological
perspective, many robots working together (or in competition) are interesting
because they are a good test-bed for theories about self-organisation [8].

Recently, researchers interested in the design of the control programs for
groups of robots have taken inspiration from biological systems, where swarms
of animals are able to solve apparently complex problems. Some of the solutions
that animals adopt rely on the exploitation of the dynamics brought forth by the
interactions among agents and between agents and the environment.1 A control
program that emulates these solutions exploits some features of the environment

1 A well known example is that of ants that lay and follow pheromone trails while
foraging. The interplay between the pheromone laid by each ant and its evaporation
makes the shortest path to the food source become the preferred one [6, p. 26–31].
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and does not rely on direct means of communication. The robotic field that
studies this approach is referred to as swarm robotics.

We present here a preliminary study of a system that uses swarm-robotic
techniques. We consider a retrieval task for a group of robots. Taking inspiration
from prey retrieval in ants, we analyse the effects that a simple form of adaptation
has on the behaviour of the group. After having introduced the concept of group
efficiency in retrieval, we show that adaptation is a valid means to improve the
efficiency and that a self-organised task-allocation phenomenon takes place.

This work was carried out within the framework of the SWARM-BOTS
project, a Future and Emerging Technologies project founded by the CEC, whose
aim is to design new artifacts able to self-assemble and that co-operate using
swarm-intelligent algorithms.

This section continues describing the field of swarm robotics and the
SWARM-BOTS project. Section 2 describes the problem of prey retrieval in
robots and ants. Section 3 defines the concept of efficiency of retrieval and ex-
plains our approach to its improvement. Section 4 describes the hardware and
the software used to run the experiments. Section 5 reports and discusses the
results we obtained. Section 6 describes related work. Finally, Section 7 draws
some conclusions and lists possible future directions of research.

1.1 Swarm Robotics

Some collective behaviours observed in Nature, such as in ant colonies or other
animal societies, can be explained without the assumption of direct communi-
cation among individuals, but only by exploitation of the environment. This is
a form of indirect communication called stigmergy [12,14]. “In situations where
many individuals contribute to a collective effort, such as a colony of termites
building a nest, stimuli provided by the emerging structure itself can be a rich
source of information for the individual” [8, p. 23]. “In stigmergic labor, it is
the product of work previously accomplished, rather than direct communication
among nest-mates, that induces the insects to perform additional labor” [24,
p. 229].

Controllers that use stigmergic communication are usually simple. They are
often made of reactive behaviours which exploit the dynamics and the complexity
of the environment itself. The same controller can be used on a huge amount of
robots of the same kind, that is, in a swarm. The design of such controllers is
the object of study in the field of swarm robotics, which is part of the field of
swarm intelligence [6].

An important issue in swarm robotics regards the understanding of the rela-
tionship between local and global behaviours in the swarm. The dynamics and
the factors that play an important role in the group are not easy to identify, to
model and to control. In this context, a good analysis and understanding of the
dynamics of the system plays a crucial role.
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Fig. 1. Picture of the prototype of an s-bot.

1.2 The SWARM-BOTS Project

The aim of the SWARM-BOTS project2 is to develop a new robotic system,
a swarm-bot, composed of several independent and small modules, called s-bots
(Fig. 1). Each module is self contained, capable of independent movement and of
connecting with other modules to form a swarm-bot. This process is intended to
be self-organised in order to adapt to dynamic environments or difficult tasks.
Examples of difficult tasks are the pulling of heavy objects or exploration on
rough terrain. Collaboration is achieved by means of stigmergic communication.
The control program of each s-bot uses techniques derived from swarm intelli-
gence and inspired from similar phenomena observed in biology [3,8].

The project lies between the fields of collective robotics, where robots are au-
tonomous but do not connect to each other, and of metamorphic robotics, where
robots need to be always connected and therefore are not fully autonomous. Some
works in collective robotics are described in Sec. 6. Examples of metamorphic
robots are described in [17,19,20].

2 Problem Description

The typical environment used in the literature for prey retrieval experiments is
given by (Fig. 2):

– a group of robots, which we also call colony or swarm;
– objects spread in the environment (they may have different size and shape,

they may be fixed or move, they may appear or disappear with some prob-
ability distribution, etc.), which are called prey ;

– a special area called home, nest, or target.
2 For more information on the project see www.swarm-bots.org

www.swarm-bots.org
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Fig. 2. Schema of a prey retrieval task. A group of robots has to collect objects in the
environment (the prey) and to bring them to an area called nest.

The task the robots have to solve is to find the prey and bring them to the
nest. To distinguish the robots that actually carry the prey from the others, the
former are called foragers.

Prey retrieval, also known as foraging, is among the different tasks that Cao
et al. [9] consider the canonical domains for collective robotics. It is often used
as a model for other real-world applications, such as toxic-waste cleanup, search
and rescue, demining or exploration and collection of terrain samples in unknown
environments. The main scientific interest concerns the question whether there
is an actual performance gain in using more than one robot, since the task can
be accomplished by a single one [9]. Other works in literature [4,13] identify
in the interferences among robots the factor that makes the performance grow
sub-linearly with the number of robots.

There are many similarities with foraging in ants. In particular, ants’ foraging
is a collective behaviour exactly as in robotics, therefore it comes natural to look
into it for some inspiration. Many aspects are still under study, but the main
features of ants’ foraging can be summarised as follows (Fig. 3) [11,16]:

1. ants explore randomly the environment till one finds a prey;
2. if the prey is not too heavy, an ant tries to pull it to the nest; otherwise, it

tries to cut it or to use short or long range recruitment;
3. the prey is pulled straight to the nest (pushing is never observed), both in

case of individual or collective retrieval;
4. after the retrieval, the ant returns directly where it found the prey.

The foraging behaviour of a single ant may be influenced by several factors,
like age, genetic differences or learning. The role of the latter was studied by
Deneubourg et al. [10] from a theoretical and numerical point of view. We explain
more in details their model in the next section.
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1 cut it?
recruit near nestmates?
go back and recruit
nestmates?

pull it alone?
2

3

Fig. 3. Prey retrieval in ants. 1) A forager randomly explore the environment. When it
found a prey it selects which action to take. 2) Both if the prey is retrieved alone and
collectively, ants pull (never push) it straight to the nest. 3) After the prey is retrieved,
the ant that found the prey returns straight on the place where it was discovered.

3 Efficiency in Prey Retrieval

In order to continue the presentation of our work, we need to give a precise
definition of the term “efficiency” and to explain its role in the collective task of
prey retrieval. The definition we give comes from the observations of ants.

Prey retrieval in ants has two components that must be taken into account.
On the one hand, ants need prey to obtain energy to survive. This is the income
of the colony. On the other hand, searching also has drawbacks, that can come
from dangers in the environment, from the interferences among nest-mates (such
as blocking the way to other ants, or collisions that slow down their speed), or
from the fact that ants spend energy to move. All these are the costs of the
colony.

Income and costs depend on the number of foragers X. They both increase
with X, but not in the same way. The income saturates when X is too big (ants
can not retrieve more prey than their actual number in the environment, even
if the number of forager X is doubled), but costs potentially increase without
limit. There is a point in which costs are higher than the income. If we define
efficiency of the group as

η =
income

costs
, (1)

there is a value X̂ than maximises it. That is, if X̂ foragers are used, the cost of
retrieval per prey is minimal.

We indicate as “performance of the colony” the number of retrieved prey,
that is, the income. Note that the words “performance” and “efficiency” have
been used with different meanings in the robotics literature. For instance, “per-
formance” refers to the time it takes to retrieve all the prey in the environment
in some works, or the number of retrieved prey in others. We claim that these
definitions depend on the particular application the researchers have in mind for
their group of robots. For instance, time is an important factor in case of search
and rescue applications, but the number of collected items is more interesting
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in the case of spatial exploration. We are more interested in the latter appli-
cation, that is, something that resemble more ants’ foraging. Since ants never
stop looking for food, a concept of performance based on time is useless in our
context.

Ants suggest some ways to improve the efficiency of a swarm of robots in
a prey retrieval task, but most of them are hard to implement. For instance,
they use recruitment and stigmergic communication, which unfortunately rely
on chemical substances whose effect can not be easily emulated with robots.
Evolution surely played an important role in tuning the behaviours of ants for
optimal foraging in particular environments, but a solution based on evolutionary
robotics [18] requires too much time on real robots and, when it is used on-line,
is too slow in case of sudden changes in the environment.

Deneubourg et al. [10] suggest that ants use life-time adaptation. The authors
model each ant with an agent that has a probability to leave the nest Pl, which is
modulated according to previous successes or failures. If an ant retrieves a prey,
its Pl increases. If it spends too much time without success, its Pl decreases.
They show that this hypothesis can explain some of the patterns in ants’ foraging
behaviour.

We expect, if we use a similar algorithm for our swarm of robots, to observe
the following effects:

Efficiency increase : if there were many more robots than prey, many robots
would not be successful in retrieval. They would decrease their Pl and spend
more time in the nest, leaving more room for the others to work. If there were
far fewer robots than prey, some robots would eventually exit the nest and
be successful in retrieval, increase their Pl and spend more time in foraging.
The efficiency of the group would improve in both cases without external
intervention: that is, the improvement is self-organised.

Task allocation : some robots would retrieve by chance more prey than the
others, and therefore their Pl would increase; therefore, they would spend
more time in foraging. But, the more the time spent, the more prey they
would retrieve and the higher their Pl would become. This is an amplification
phenomenon typical of many biological systems [8]. The opposite would hold
true for those robots that were less successful. After a while, two classes of
robots would appear in the environment, allocated to two tasks: foragers,
with high Pl and that retrieve prey to the nest, and loafers, with low Pl and
that prefer to stay in the nest. The allocation is, again, self-organised.

The robots described in the next section and the experiments of Sec. 5 are
meant to test these two hypotheses. Our robots do not use direct communication
and interactions among them are only indirect. For instance, a successful robot
decreases the density of prey and therefore the behaviour of its nest-mates.

4 Hardware and Software

We used real robots instead of simulation. The latter offers many advantages,
such as speed and reliability, but it is based on a model of the environment in
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(a) Front view. (b) Side view.

Fig. 4. Picture of a MindS-bot.

which important aspects might be missing or badly approximated. The work
described in this paper has also the aim of identifying the physical features
of the environment that must be modelled in a simulator. The results of our
experiments will be used to tune a simulator in future work.

No s-bot was available at the time of the experiments yet. Therefore, in our
experiments we used Lego MindstormsTM to build the robots, which we call
MindS-bots (Fig. 4). MindS-bots are based on a Hitachi H8300-HMS 1 MHz
microprocessor with 32Kb RAM. They have one light sensor and one bumper
on both the front and the back side, for a total of four sensors. The traction
system, based on two tracks controlled by two motors, resembles the one of the
s-bot. Two arms on the front side form the gripper that is used to grasp prey
and that is controlled by another motor.

BrickOS,3 a POSIX-like operating system, runs on the MindS-bots. The con-
trol program is written in C and then downloaded on the robots. The finite state
machine in Fig. 5 represents the control program of the MindS-bots. Different
states are the different phases of prey retrieval, that is, the sub-tasks in which
the overall prey retrieval task is decomposed. These sub-tasks are as follows:

Search : the MindS-bot looks for a prey randomly exploring the environment
(as ants do) and changing direction when a bumper is pressed. If a prey is
found, the MindS-bot grasps it. If a timeout occurs without having grasped
a prey, the MindS-bot gives up foraging.

Retrieve : the MindS-bot looks for the nest and pulls the prey toward it. Since
the gripper is on the front, the MindS-bot uses the sensors on its back for
this purpose.

Deposit : the MindS-bot leaves the prey in the nest and turns toward the point
from which it came (to mimic ants’ behaviour).

Give Up : the MindS-bot looks for the nest and returns to it.
Rest : the MindS-bot rests in the nest.

3 http://brickos.sourceforge.net/

http://brickos.sourceforge.net/
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Fig. 5. Sketch of the control system of a MindS-bot. The states represent different
phases of retrieval (see text). The labels on each edge represent the conditions under
which the MindS-bot changes state. The transition from Rest to Search is based on the
probability Pl. The transition from Deposit to Rest represents a successful retrieval
(Pl is increased), the one from Search to Give Up is a failure (Pl is decreased).

Algorithm 1 Adaptation mechanism: Variable Delta Rule

initialisation : successes ← 0; failures ← 0; Pl ← Pinit

if prey retrieved then
successes ← successes + 1; failures ← 0
Pl ← Pl + successes * ∆
if Pl > Pmax then

Pl ← Pmax

end if
else

if timeout then
successes ← 0; failures ← failures + 1
Pl ← Pl - failures * ∆
if Pl < Pmin then

Pl ← Pmin

end if
end if

end if

Transitions between states occur when the labels on the edges in Fig. 5
are true, except the one from Rest to Search which is controlled by Pl. The
transition from Search to Give Up represents a failure in retrieval, whilst the
transition from Deposit to Rest is a success.

4.1 Adaptation Mechanism

MindS-bots adapt their Pl according to the algorithm depicted in Alg. 1, called
Variable Delta Rule (VDR). Its parameters are: ∆ (the base increment), Pmin,
Pmax (the minimum and maximum value that Pl can reach) and Pinit (the initial
value of Pl). Two counters store the number of successes and failures in a row
of the MindS-bot and multiply ∆ before being added or subtracted to Pl. The
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Fig. 6. Snapshot of an experiment. Four MindS-bots are looking for three prey. The
nest is indicated by a light in the centre. One MindS-bot is resting in the nest and
is therefore inactive. Two others are exploring the environment. One found a prey. It
grasped it and is searching for the nest to retrieve it.

effect is that the reward is much bigger for those MindS-bots that can repeatedly
retrieve more prey than for the others.

5 Experiments and Results

For the experiments, we used a circular arena (Fig. 6) with a diameter of 2.40 m.
A light bulb is used to signal the position of the nest in the centre of the arena.
Walls and floors are white, prey are black. The search timeout is fixed to 228 s.4

∆ is set to 0.005, Pmin to 0.0015, Pmax to 0.05, Pinit to 0.033. Prey appear
randomly in the environment. The probability that a prey appears each second
is 0.006. A new prey is placed randomly in the arena so that its distance from
the nest is in [0.5 m, 1.1 m]. Values were chosen on the base of a trial-and-error
methodology.

5.1 Efficiency of the System

The first of our hypotheses is that the use of adaptation of Pl increases the
efficiency of the foraging task with respect to a group that does not use it and
whose available robots are all foragers. In order to test this hypothesis, it is not
possible to look at the value of (1) in the colony because the costs cannot be
quantified. In fact, they comprise too many factors, some of which are unknown.

4 This value is the estimate of the median time needed by a single MindS-bot to find
one prey when it is alone in the arena.
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Thus, as efficiency index we used

ν =
performance

colony duty time
, (2)

where colony duty time is the sum of the time each MindS-bot of the colony spent
in searching or retrieving and performance is the number of retrieved prey. The
colony duty time is directly related to the costs: the higher it is, the higher is
the probability that some robot gets lost or brakes down, the higher the energy
consumption, and so forth. Therefore, if ν increases, η increases too.

The quantitative improvement of the efficiency was measured in a series of
ten experiments lasting 2400 s each. Four MindS-bots out of a pool of six were
used in each experiment, and changed among experiments. For each experiment,
we conducted a control, with the same robots, in which Pl was not adapted and
set to 1. Moreover, the prey in the control experiments did not appear randomly,
but at the same time and place as in the original experiments. Figure 7 plots
the mean value of ν in time for both experiments. The difference is statistically
significant after 1400 s.5

The colony that uses adaptation is more efficient because it has less colony
duty time. The ratio between the final ν in the two colonies is 1.41, but the ratio
of their performances (Table 1) is only 1.04. Moreover, there is no statistical
difference in the performances between the two colonies.6 Therefore, we deduce
that the improvement is due to the colony duty time. This means that, in the
colony that uses adaptation, foragers can do their job easily and in less time
because of less interferences.

When the Variable Delta Rule was used, there were 2.57 foragers and 2.44
prey on average in the arena in the period between 1000 s and 2400 s (Fig. 8(a)).
In the control experiments, there were 3.63 foragers and 3.49 prey (Fig. 8(b)). In
both cases the ratio is nearly one robot per prey but there are less robots out of
the nest when adaptation is used. We were surprised to see that fewer foragers
did not correspond to a worse performance. The explanation could be in the
fact that in our setup 3.49 MindS-bots represent an overcrowded environment
in which there are many interferences and in which the robots can not perform
well their job.

5.2 Task Allocation

The second hypothesis regards task allocation. We expect that the adaptation
mechanism leads to the creation of two classes of MindS-bots in the colony:
foragers and loafers. The task of the first group is to search and retrieve prey
5 Sign test for paired data [23, p. 80–87]. Null hypothesis: ν is the same in the two

colonies. The p-value is 0.01074 from 1400 s to 1500 s and 0.00098 from 1500 s on.
6 Permutation test on the data of Table 1. This kind of non-parametric test is among

the most powerful because it uses all the information available in a data set [23,
p. 95]. Null hypothesis: the performances are the same. Alternative hypothesis: the
colony with adaptation performs better. The p-value is 0.2637.
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Fig. 7. Value of ν (2) when Pl is adapted (continuous line) and when it is not (dashed
line). The average over 10 experiments is plotted. Vertical lines represent the standard
deviation. The two curves are statistically different after 1400 s (see footnote 5).

Table 1. Performances of colonies with and without adaptation of Pl. The first column
contains the experiment number and the second the total amount of prey that appeared
during the experiment. The third column is the number of prey retrieved when the
VDR is used, the fourth refers to the the control experiments. The last row sums the
results. Bold numbers are used to indicate which setup retrieved more prey. There is
no statistical difference in the performance of the two colonies.

Exp. Tot. prey prey retrieved
with adaptation without adaptation

1 15 14 13
2 17 14 14
3 12 8 7
4 18 12 11
5 16 11 12
6 21 18 15
7 14 10 12
8 16 12 15
9 16 16 14
10 24 19 15

Total: 169 134 128
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(a) Mean number of MindS-bots and
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system is at regime, there are on av-
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(b) Mean number of MindS-bots and
prey in control experiments with
Pl = 1. Between 1000 s and 2400 s,
when the system is at regime, there
are on average 3.63 foragers and 3.49
prey.

Fig. 8. Mean number of foragers and prey observed during the first 2400 seconds in
experiments with adaptation and in control experiments. The continuous line represents
MindS-bots, whilst the dotted one represents prey. Vertical lines show the standard
deviation. Data is collected over 10 experiments.

while the second group stays in the nest and avoids to interfere with the activity
of the others.

The only means by which the VDR can allocate tasks is the modification of
Pl. We consider an instant t when the colony reached its regime. The value of Pl
of each MindS-bot at time t is a random variable that assumes different values
for different experiments according to an unknown distribution. The estimate of
this distribution can give us enough information to test our hypothesis: if it is a
single-peak distribution, then there is no separation in classes; if there are two
peaks, then task allocation occurs.

We collected the value of Pl of each MindS-bot in the ten experiments of
Sec. 5.1 after 2400 s (four robots times ten experiments) and we obtained the
histogram in Fig. 9. We deduce from its U-shape that the MindS-bots have higher
probability to have Pl next to one of the two peaks of the distribution. 60% of
the MindS-bot in the population have Pl ≤ 0.02 and represent the loafers. The
remaining 40% have Pl ≥ 0.025 and are the foragers. Few MindS-bots have Pl
around 0.02 and 0.025, suggesting that the VDR prevents the maintenance of a
high fraction of unspecialised robots pushing them toward one of the two peaks.

Since we ran few experiments, it could be that the right peak of the distri-
bution is due to a few lucky experiments. Table 2 shows on the contrary that
foragers were present in nearly all the experiments.7

7 No foragers were present in experiment 3, that is also the one in which less prey
appeared, as shown in Table 1.
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Fig. 9. Histogram of the observed Pl in the MindS-bots at 2400 s. The distribution
has two peaks, showing that some of the MindS-bots are allocated to the foraging
task (those with high probability) and the others are loafers (low probability). 60% of
the observations are below 0.025. Data refers to ten experiments, four MindS-bots per
experiment.

Table 2. Number of MindS-bots that are foragers and loafers per experiment. The
presence of forager is nearly systematic. Bold numbers refer to the only experiment
without foragers. Data refers to ten experiment, four MindS-bots per experiment.

Exp. # loafers # foragers Exp. # loafers # foragers
1 3 1 6 2 2
2 3 1 7 3 1
3 4 0 8 2 2
4 1 3 9 1 3
5 3 1 10 2 2

6 Related Work

Interferences among robots, mostly due to physical collisions, are known to be a
problem in collective robotic tasks [4,13]. We briefly discuss here other techniques
that have been developed to reduce them.

A group of solutions to the interference problem works at the level of the
control program. For instance, Schneider-Fontán and Matarić [22] introduced a
priori territoriality in their programs, so that each robot is assigned to a region of
the environment and can not trespass its borders. Each robot brings the objects
in its area to the border nearest to the nest, where another robot takes care
of them. Balch [4] reimplemented, for a retrieval task with more prey types,
this approach and two others (homogeneous controls and robot specialisation
by item type). He noticed that robots with homogeneous controllers gave the
best performance. The two works reach contradictory conclusions, but in [4] the
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author suggests two possible reasons: bad reimplementation of the algorithms or
different set of test conditions.

Another group of solutions relies on inter-robot communications. Balch and
Arkin [5] tested the effects of increasing communication complexity, starting
from no communication, on the performance of a group of robots. They tested
the group with different tasks, including foraging. Their conclusion is that com-
munication appears unnecessary when implicit communication already exists,
but it significantly improves the performance in the other cases. The difference
between simple and complex forms of communication is negligible. Rybsky et
al. [21] tested the influence of signalling on foraging with respect to a system
without communication, but no statistical difference was found.

Hayes [15] follows an analytical approach. He provides an equation to suggest
the optimal number of robots to use in an environment with given conditions.
His approach requires however some knowledge of the environment, which is not
always available.

Agassounon et al. [1,2] follow a swarm-intelligent approach. They use a
threshold-based model developed in biology [7] to allocate tasks among the
robots in a clustering experiment. Each robot switches to the execution of a
task only if the level of an external stimulus is higher than a threshold. In their
case, the stimulus is given by the time spent to search for an object. If it is higher
than the threshold, the robot goes back to the nest, reducing the total number
of foragers. Once a robot stops to explore the environment, it can not switch
back to the search behaviour. Their approach works well for a clustering task,
but it could have some problems in prey retrieval where the density of prey can
change abruptly.

7 Conclusions

We showed that a group of robots can self-organise in order to work more ef-
ficiently using only a form of adaptation, inspired by ants’ behaviour, that is
based on information locally available to each robot. Only communication that
uses the environment itself as a media is used. Interferences, which are consid-
ered as a negative factor in robotic retrieval, are exploited as a source of in-
formation: robots perceive their effects, e.g. a failure, and adjust the behaviour
consequently. The amplification mechanism of the adaptation, combined with
random fluctuations is also responsible for the task allocation.

Future research will follow different paths. First of all, we will analyse the
effects of changing the initial density of robots. Then we will also study the self-
regulatory mechanism of this adaptation by changing the distribution of prey
during the experiments. The aim is to relax some of the constraints that define
the experimental environment that we used. Furthermore, we will study the
robustness of the adaptation to the perturbation of its parameters. For instance,
if ∆ decreases, we expect the dynamics to be slower and, if ∆ increases, we expect
the system to show an oscillatory behaviour in which, for example, MindS-bots
frequently switch back and forth from low to high Pl values.
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