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Abstract: This work compares  the effectiveness of eight evolutionary heuristic algorithms applied to the 
Quadrat ic  Assignment Problem (QAP), reputedly one of the most difficult combinatorial optimization 
problems. QAP is merely used as a carrier for the comparison: we do not a t tempt  to compare any 
heuristics with solving algorithms specific for it. Results are given, both with respect to the best result 
achieved by each algorithm in a limited time span and to its speed of convergence to that result. 
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1. Introduction 

The theory of NP-completeness  (Garey and Johnson, 1979) tells us that, unless P = NP, many 
problems cannot be solved optimally in a reasonable amount  of  time. However,  real-world problems have 
to be faced, hence there is a necessity to develop heuristic algorithms that yield a solution not too far 
from the optimal one, using limited computing time and storage space. 

It  is not surprising that, in parallel with the increasing awareness of the intractability of so many 
problems, a flourishing of different heuristics characterized the last decades. Some of them are very 
problem-specific, while others get easily stuck in local optima; we are interested in heuristic algorithms 
for combinatorial  optimization that  are both  robust (applicable to a wide variety of problems with 
minimal, if any, modification of their basic structure) and effective as global optimization tools. 

We concentrated on evolutionary heuristics, i.e. algorithms that start with an initial randomly chosen 
(population of) solution(s) and that update  it iteratively until a terminating condition is met. This class of 
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algorithms has experimentally proved effective with respect to both previously stated criteria. We were 
particularly interested in those algorithms that work with a population of solutions for two reasons. The 
first is their appealing possibility of utilizing multiple solutions for determining the future evolution (thus 
using more information than their single solution counterparts); the second reason is their greater ease 
of parallelization which promises a much more effective exploitation of the possibilities offered by 
parallel computers. 

We therefore studied several population-based evolutionary heuristics: genetic algorithms, evolution 
strategies, sampling and clustering, Boltzmann machines and immune networks. We compared their 
effectiveness both among themselves and with the two most robust and effective single-solution 
algorithms so far proposed: simulated annealing and tabu search. Moreover, as a further benchmark, we 
also s tudied  the performance of a straightforward multistart greedy algorithm (multigreedy). The 
performance of the multigreedy algorithm allows us to assess whether the parallel processing of 
information is computationally worthwhile. 

The comparison has  been carried out over a tough NP-hard problem that up to now has resisted all 
attempts to solve it optimally without an almost complete enumeration of solutions: the Quadratic 
Assignment Problem. This problem was chosen not only because of its difficulty, but also because (i) it is 
a generalization of many other combinatorial optimization problems (Finke and Medova Dempster, 
1989); (ii) it has a great number of real-world interpretations; (iii) most of the mentioned algorithms have 
been applied to it and the results have been reported in the literature, thus relieving us from the burden 
to run extensive field tests in order to assess the optimal parameter  settings for each of them. 

The paper  is organized as follows: in Section 2 we describe the Quadratic Assignment Problem; in 
Section 3 we present the algorithms: for each of them we propose a very brief introduction and the basic 
algorithm, referring the reader  to specific publications for a deeper  understanding. In Section 4 we 
describe the package which allowed tests and comparisons of the algorithms and the results of their 
application; in Section 5 we present conclusions and future work. 

2. The Quadratic Assignment Problem 

A Quadratic Assignment Problem (QAP) of order n is the formalization of the problem that arises 
when trying to assign n facilities to n locations, where both the terms facilities and locations are 
considered in the broadest  sense of their meaning. It was first formulated by Koopmans and Beckmann 
(1957) and since then it has been used as a suitable model for many different real-world problems: 
backboard wiring, campus planning, typewriter keyboard design, hospital layout, ranking of archeological 
data, ordering of interrelated data on a magnetic tape, minimizing average job completion in machine 
scheduling, and others (Burkard, 1984). 

Formally the problem can b e  defined by three n × n mactrices: 
D = { d q }  = The distance between location i and location j. 
F = { f h k }  = The flow (of information, products or some other quantity) between facilities h and k. 
C = {Cih} = The cost of assigning facility h to location i. 

Usually D and F are integer-valued symmetric matrices and the matrix C of the assignment costs is 
not considered. A permutation -rr can be interpreted as an assignment of facility h = ~-(i) to location i, 
for each i = 1 . . . . .  n .  The problem is then to identify a permutation ~- of both row and column indexes of 
the matrix F that minimizes the total cost [Edwards, 1980]: 

Min z =  ~ dijf~(i)rr(y) + ~ Ci~(i  ) .  (1) 
i , j=l i -1  

The problem can be also formulated in a way that makes the quadratic nature of the objective 
function more explicit. The permutat ion ~ can in fact be expressed by an n × n permutation matrix X ,  
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whose elements Xhi are 1 if facility h is to be assigned to location i, and 0 otherwise. The objective 
function becomes 

n n 

min z = E dihfjkXiyXhk q- E CijXi j  (2) 
i , j ,h ,k  = 1 i , j  = 1 

subject to the constraints 

~ Xij= l , j =  l , . . . , n  
i=1 

n 

Y'~xi:= l,  i = 1  . . . .  ,n  
j=l 

Xij ~ {0,1}, i, j = 1 , . . . ,  n. 

Since the multiplication FX of matrix F with a permutation matrix X results in a corresponding 
permutation of the row indexes of F and since the multiplication XTF of the transposed of the same 
permutation matrix X and F results in a corresponding permutation of the column indexes of F,  it can 
easily be verified that QAP can also be expressed in trace form as 

min z = t r (DXTFX + CX) (3) 

where the elements of the permutation matrix X are subject to the same constraints as those of formula 
(2). 

QAP is a generalization of several other problems (Finke and Medova Dempster,  1989), including the 
Travelling Salesman Problem, the Triangulation Problem and the Matching Problem. Since QAP is a 
generalization of TSP, it is an NP-hard problem. It has been shown (Sahni and Gonzales, 1976) that even 
finding an e-approximate solution for any problem instance is NP-hard (an e-approximation of the 
optimal value z*  computed for a solution x is a value z(x)  such that [ z* - z(x)  I / z*  < e). This 
restriction does not hold for the TSP, and in fact the QAP seems in general tougher than the TSP: 
limited enumeration approaches can yield the optimal solution for TSP instances of several thousands 
towns and for QAP instances of order 15-20 (that is, QAP can be solved optimally only through a more 
or less complete enumeration: given the current computer  technology 15-20 is in fact the limit that can 
be reached for a complete analysis of all possible permutations in a reasonable time). 

An interesting asymptotic property proved in Rhee (1988) is that the difference between the worst and 
the best solution of a QAP instance becomes smaller when the size of the problem becomes larger if dij 
and fhk are mutually independent  sequences of independent  uniformly distributed random variables; 
already for n > 50 the relative difference is very small. This shows that tests on randomly generated 
problems must be considered very carefully before being accepted as significant: if many local optima of 
similar quality exist, a local search will discover a relatively good solution with high probability. This 
effect has been in fact observed in our experiments, as it is pointed out in the conclusions of the paper. 

To get a feeling of the complexity of the problem, we plotted in Fig. 1 the values taken by the 
objective function of a Nugent problem instance of size 12 (Nugent, Vollmann and Rural, 1968): we 
plotted the values corresponding to the permutations having every possible combination of values in the 
first two positions. It is evident that the function is highly multimodal, suggesting a hard to solve 
problem. 

3. Aigodesk 

In order  to compare the relative effectiveness of the different heuristics, we implemented a unified 
software system called 'Algodesk', that will be more thoroughly presented in Section 4. Algodesk allows 
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Figure 1. Fitness landscape for the Nugent 12 problem 

to apply any of the algorithms it contains to any of the QAP problem instances available (Maniezzo, 
1991). Each algorithm that we tested codifies a different evolutionary heuristic. Most of the algorithms 
are in some way inspired by nature, and update populations of solutions. However, we also included 
some approaches which, although not inspired by nature, have proven very effective and robust. 

The list of the currently available algorithms includes: Boltzmann Machine (BM), Evolution Strategy 
(ES), Genetic Algorithm (GA), MultiGreedy (MG), Sampling and Clustering (SC), Simulated Annealing 
(SA), Tabu Search (TS), Immune Networks (IN). Each of these is detailed in the following subsections. 
They can be classified as nature-inspired or non-nature-inspired algorithms and - alternatively - as 
algorithms that consider a single solution at each cycle and algorithms that update a whole population of 
solutions at each cycle. The proposed classification is presented in Figure 2. 

MultiGreedy has been classified as both a single-solution and as a population-based algorithm 
because of the different interpretations than can be given to the way it works; multigreedy is discussed in 
Section 3.1. A different classification, more related to the metaphors which inspired the algorithms, 
divides them among thermodynamically motivated algorithms (SA, BM), evolutionarily motivated algo- 
rithms, with a biological acception of the term 'evolutionary' (GA, ES, IN), and algorithms without a 
natural interpretation (MG, TS, SC). 

non nature- 
inspired 

nature- 
inspired 

single population 
solution of solutions 

(MG), TS (MG), SC 

SA, BM GA, ES, IN 

Figure 2. Classification of Algodesk heuristics 
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The algorithms were compared with respect to the best solution found in a fixed amount of time, 
equal for all of them. We therefore included in each of them an exit test, called END_TEST, that 
compared the time elapsed since the start of the search with the user-specified maximum time allowed. 
This is the only termination criterion for some algorithms (GA, ES, TS, MG, SC, IN), while others (SA, 
BM) already have their own terminating condition. END_TEST has however been included in all the 
algorithms to allow comparison. 

All the algorithms that involve local search (MG, SA, TS, SC) use the same routine to explore the 
neighborhood of a current solution, utilizing the formulae reported in Burkard and Rendl (1984) and 
Taillard (1990) to efficiently compute the variation in the objective function due to a swap of the 
elements in positions r and s of the permutation ~ that leads to a new permutation ~r. 

3.1. MuhiGreedy 

The multigreedy algorithm (MG) was included as a testbed against which to compare the other 
algorithms. It implements a multistart greedy approach, in which several randomly chosen solutions are 
independently carried to their local optima by exploring at each step the complete neighborhood of the 
current solution and then moving according to the maximum gradient. We introduced a slight modifica- 
tion of this basic approach using a population of solutions, each of which is carried to the optimum. At 
each cycle a new random population is generated and all its elements are carried to their optima. This is 
the same as generating a large population from the beginning, carrying all its elements to their optima 
and then stopping, but the notion of population that we introduce by our iterative version is useful in the 
comparison, as it provides results about the performance of populations of totally non cooperative 
individuals. 

Experiments have also been performed with an algorithm that changed the current solution as soon as 
a better one was identified (without a complete exploration of the neighborhood), but this approach 
proved less effective. 

The multigreedy algorithm is the following. 

Multigreedy Algorithm 
repeat 

randomly generate M solutions (S(i), i = 1 . . . . .  M) 
for each solution S(i) compute the corresponding objective function z(S(i)) 
set BEST_SOLUTXON to solution S(i) such that z(S(i)) is minimal 
for i : = l t o  M d o  

lab: explore the whole neighborhood of solution S(i) and store the best neighbor S'(i) 
if z(S(i)) > z(S'(i)) 

then set S(i) := S'(i) 
goto lab 

else if z(S(i)) < Z(BEST SOLUTION) 

then set BESTSOLUTION := S(i) 
endfor 

until END_TEST 

{BEST_SOLUTXON is the best 
permutation identified so far} 

The only parameter of this algorithm is M, the number of solutions composing the population. 

3.2. Simulated Annealing 

Simulated annealing (SA) is an effective single-solution randomized heuristic, based on an algorithm 
originally presented in Metropolis et al. (1953) and proposed as a combinatorial optimization tool in 
Kirkpatrick, Gelatt and Vecchi (1983). Examples of its application to QAP are presented in Burkard and 
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Rendl  (1984) and in Connolly (1990). I t  updates  a single solution, accepting in probability also 
modifications that  involve a worsening of the objective function. 

The  algorithm that  we implemented is the following. 

Simulated Annealing Algorithm 
choose the initial solution S randomly 
s e t  T E M P E R A T U R E  : ~  I N I T _ T E M P  

set t := 0 
repeat  

set t : = t + l  
for i := 1 to N_ITERATIONS do 

generate  S '  randomly in the neighborhood of S 
set 6 := z ( S ' )  - z ( S )  
if (8 < 0) or (Random(0, 1) < e x p ( -  8/TZMPERATURE)) 

then set S := S '  
end for 
set TEMPERATURE : =  Anneal(TEMt'ERATURE, t) 

until TEMPERATURE < LOW or END_TZST or (no changes have been accepted for S) 

The  algorithm uses the function Anneal  that transforms the current  t empera ture  level into a lower 
one. Three  different annealing schedules have been implemented and the user is free to choose among 
them. T h e  alternative schedules are: 

T(t) r(o) 
T(t+l)=aT(t) ,  T(t  + 1) - 1+aT(t)' T(t  + 1) 1+at' 

where a (0 < a < 1) is a user-defined parameter ,  called Cooling rate. In our experiments we always used 
the first function. 

The function Random generates a uniformly distributed pseudorandom variable in the specified 
interval. 

The  parameters  of this algorithm are 
INIT_TEMP: The initial t empera ture  level. 
N_ITERATIONS: The  number  of iterations to be per formed between two t empe ra tu r e  changes. 

./, 
LOW: Since all the anneahng schedules tend asymptotically to 0, this paramete r  can be used to 

shorten the final stage of a run. 
a:  The cooling rate of the Anneal  function. 

3.3. Tabu Search 

Tabu Search (TS) is another  evolutionary heuristic that  updates  a single solution. I t  was originally 
proposed in Glover (1989, 1990); specific applications to QAP are presented in Skorin-Kapov (1990) and 
Taillard (1990). The  idea behind it is to start f rom a random solution and successively swap pairs of its 
elements. Each time a swap (a move)  has been  chosen, the reverse one is linked at the beginning of a 
fixed-length list of  inhibited moves, the tabu list. T h e  new candidate swap brings the solution to its best 
neighbor: if the swap is present  in the tabu list, it is accepted only if it decreases the objective function 
value below the minimal level so far achieved (aspiration level). 

The algorithm implemented  includes a variable-sized tabu list as proposed by Taillard: a minimal and 
a maximal length are specified and during the search the actual length is randomly changed. 
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The algorithm is the following. 

Tabu Search Algorithm 
choose the initial solution S randomly, set its tabu list T = O 
s e t  BEST_SOLUTION :=  S 

set i := 0 
repeat  

set i : = i +  1 
identify S',  the best neighbor of S 
set SWAP := Move(S, S') 
if swap ~ T 

then Update(swAp, T, LENGTH_TABU_LIST) 
set S := S'  
if z(S) < Z(BEST_SOLUaaON) then set BEST_SOLUTION := S 

else if Z(S') < Z(BEST_SOLUTION) 
then Update(swAP, T, LENGTHTABULIST) 

set BEST_SOLUTION := S t 

set S := S'  
if (i mod 2 * MAX_TABU_LIST) = 0 

then set LENGTH TABULIST := Random(MIN_TABtJ_LIST, MAXTABU_LIST) 
until ENDTEST 

{i is the iteration counter} 

{SWAP holds the move transforming S into S'} 

{use of aspiration level} 

The algorithm uses the following functions. 
Update: Inserts SWAP as the first element of T and removes the last element of T if the tabu list was 

full. 
Move: Returns the swap that transforms a solution into a second one. 

The parameters of the algorithm are 
MIN_TABU_LIST, MAX_TABU_LIST: They specify the minimal and maximal allowed length of the tabu list, 

respectively. 

3.4. Genetic Algorithm 

Genetic Algorithms (GA) are a computational device, originally proposed by Holland (1975), inspired 
by population genetics. Their  effectiveness as a combinatorial optimization tool has been recently 
advocated (Peterson, 1990); specific applications to QAP have been described in Miihlenbein (1989) and 
Brown, Huntley and Spillane (1989). 

Their  strength is essentially due to their updating a whole population of possible solutions: this allows 
an intrinsically parallel exploration of the search space (Holland, 1975); (Bertoni and Dorigo, 1993). 

In order to apply GA, which work best in unconstrained optimization, to QAP, we had to adapt the 
basic algorithm in order  to generate only feasible solutions. Moreover G A  are able to cope only with 
maximization problems, while QAP is a minimization problem: we had therefore to map the QAP 
objective function into a fitness function to be maximized. 

The algorithm that we implemented is the following. 

Genetic Algorithm 
initialize S .'= (S(i), i = 1 . . . . .  M) and compute their fitnesses {initialization of a population of solutions} 
set BEST_SOLUTION to the solution in S with the maximal fitness value 
repeat  

for i :=  1 to M do 
if(i) := Fitness(z(S(i))) {computation of the fitness} 
if z(S(i)) < Z(BEST_SOLUTION) then BEST_SOLUTION := S(i) 
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for i := 1 to M do p( i ) := f f ( i ) /E f f ( i )  
S' .'= Reproduction(S) 

1 
randomly generate sM pairs of solutions in S' 
S" := Crossover(S') 
S"  := Mutate(S") 
S := S"  

until ENDWEST 

{p(i) is the reproduction probability} 
{reproduction builds population S' from S} 

This algorithm utilizes the following functions. 
Fitness: Transforms the objective function, to be minimized, into a fitness function to be 

maximized, so that the GA can be applied; it implements a monotonically decreasing 
function, in our experiments a linear function (see Grefenstette and Baker, 1989). 

Reproduction: Selects one by one the members of the new population S' from those of S via a Monte 
Carlo procedure based on the reproduction probabilities previously computed. 

Crossover: Is an adaptation of the PMX crossover operator proposed in Goldberg and Lingle (1985). 
It is applied with probability Pc on each pair of solutions; it chooses two cutting points in 
the parents' strings, Pl and P2, and copies the middle segment of each parent in the 
corresponding position of the alternate offspring, respectively o 1 and 0 2. The first and 
third segment of each offspring are copied from the corresponding parent (Pl for o 1 and 
P2 for o2), except for the elements already present in the middle position. The empty 
positions are filled with the elements still not present, taken from the corresponding 
parent in the order in which they are present in it. 

Mutate: Randomly chooses two positions in the permutation and swaps their contents. 
The parameters of the algorithm are: 

M: Size of the population. 
Pro: Mutation probability. 
Pc: Crossover probability (utilized within the function Crossover). 

3.5. Evolution Strategies; discrete and continuous versions 

Evolution Strategies (ES) are a computational model developed independently but with a structure 
similar to genetic algorithms (Rechenberg, 1973; Schwefel, 1975). The general framework is identical for 
ES and GA: both rely on populations of individuals modified by operators of selection, mutation and 
recombination (called crossover in GA terms). Nevertheless the details of their realization differ 
significantly. 

ES were initially conceived for the optimization of real parameters. To apply them to combinatorial 
optimization problems, specifically to QAP, we had to modify their basic paradigm. This has been done 
in two ways: in the first (discrete space evolution strategies, ED) the elements of the population are 
permutations, and mutation and recombination operators have been largely borrowed from GA. In the 
second (continuous space evolution strategies, EC) the basic algorithm has not been modified, but the 
individuals of the population are interpreted as a permutation, utilizing their rank order as a permuta- 
tion index (Rudolph, 1990). 

Both the algorithms start with a population S~ of solutions and apply some operators on it, obtaining 
a population Sx. The discrete space algorithm proposed implements the so-called (/z, A) reproduction 
strategy, in which the individuals of S~ chosen at the end of the reproduction step are the best of Sa. An 
alternative policy, called the (/~ + A) strategy, consists in choosing the individuals of the next S~, among 
the best individuals of S~ U S~. For completeness of presentation (/~, A) selection will be shown in ED, 
and (/z + A) selection will be shown in EC, but both selection strategies are possible for both algorithms. 

The discrete space algorithm, ED with (/.e, A) selection, is the following. 
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Evolution Strategy Algorithm (discrete version) 
initialize S~ := (S(i), i = 1 , . . . , / z )  and compute their fitnesses {initialization of a 

population of solutions} 
set BESTSOLUTION to the solution in S~ with maximal fitness value 
repeat  

for i := 1 to A do {build a new population Sx out of S~, A > lz} 
Sa(i)  := Recombination (S~) 
S~(i) .'= Mutate (Sx(i)) 
if z (S~( i )  < z (BEST_SOLUTION) then BESTSOLUTION .'= Sa(i) 

endfor 
set S~ to the bes t /z  individuals of Sx {this is the (/z, A) strategy} 

until END_TEST 

The functions used in this algorithm are the following. 
Recombination: Can take two forms: discrete recombination and global discrete recombination. The 

first takes two parents and builds an offspring by randomly choosing its elements 
between the corresponding ones of the parents. The second chooses a random number 
of parents and then builds the offspring randomly choosing its elements among the 
corresponding ones of the parents. Details of their implementation can be found in 
B~ick, Hoffmeister and Schwefel (1991). The feasibility of the offspring is obtained by 
constraining the possible element choices to be compatible with the assignments already 
made in the previous part of the string. 

Mutate: Randomly chooses two positions in the permutation and swaps their contents. 
The continuous space version of Evolution Strategies is based on a mapping from real-coded 

individuals to permutations, thus allowing to utilize the original ES algorithm. This mapping is based on 
a ranking of the values of each element of the individual. For  example, suppose that an individual is 
codified by the real-valued string (0.123 1.324 3.427 -7 .298  2.375). The corresponding ranking of its 
elements consists of the integer string (2 3 5 1 4), which is actually a permutation that can be 
interpreted as a solution of a combinatorial optimization problem. 

The continuous space algorithm, EC with (/~ + A) selection, is the following. 

Evolution Strategy Algorithm (continuous version) 
initialize S~ := (S ( i ) ,  i = 1 . . . . .  /~) and compute their fitnesses {initialization of a 

population of solutions} 
s e t  BEST_SOLUTION to the solution in S~ with maximal fitness value 
repeat  

f o r i : = l t o  A d o  
SA(i) := Recombination (S~) 
Sx(i) := Mutate (Sx(i)) 
permutation(i)  := Map(S~(i)) {permutation(i) is the permutation corresponding to Sx(i)} 
if z(permutation(i))  < Z(BEST SOLUTION) then BESTSOLUTION := permutation(i)  

endfor  
set S~ to the bes t /z  individuals of S x u S~ {this is the (~ + A) strategy} 

until END_TEST 

The functions used in this algorithm are the following. 
Mutate: Modifies each gene of the individual. Each individual is codified by a vector S ( i ) =  

(X i : ,  S i )  , where x i = (x]  . . . . .  x.~) codifies a problem solution and s i = Oi I . . . . .  O'i n contains 
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control parameters.  The mutated solution is obtained modifying each gene according to 

X; = Xi -]- N ( O  , O'i t ) 

where N(O, ~ri') is a normally distributed random variable with expectation 0 and 
variance 

or/t = O" i * ear(  0, tl) . e N (  0, to) 

where t o = 1 / (2n )  and t I = 1/4v~n-. See Schwefel (1975) for more details. 
Recombination: Implements four kinds of recombinations: discrete and intermediate, each either 

between two parents or global; discrete recombination is the same as in ESc, intermedi- 
ate recombination averages the values of the corresponding elements of the parents. 

Map: Returns the permutation obtained substituting each gene's value with its corresponding 
rank order  (see the example above). 

The parameters are the same for both ESc and ESd and include 
/z: Size of the parent  population. 
A: Size of the enlarged population in the recombination step. 

3.6. Sampling and Clustering 

Sampling and Clustering (SC) is a heuristic which works on a variable-sized population of tentative 
solutions. It was originally proposed in Boender,  Rinnooy Kan, Timmer and Stougie (1982) and in 
Camerini, Colorni and Maffioli (1986). The idea behind it is to generate a population of uniformly 
distributed tentative solutions, to consider only the best of them and to cluster all the solutions around 
seed points that will be taken to their local optima. 

The algorithm is the following. 

Sampling & Clustering Algorithm 
set S := ~, Loc_opt := ~, Seeds := ~J 
repeat  

randomly generate M uniformly distributed solutions and add them to S 
eliminate from S a percentage 3' of the worst solutions 
if Loc_opt 4: ¢ then Cluster(S, Loc_opt) 
if Seeds :/: ~ then Cluster(S, Seeds) 
if S :~ ~ then 

choose the best solution S(i) in S and carry it to its local optimum S*(i) 
if S*(i) ~ Loc opt 

then add S(i) to Seeds 
else add S*(i) to Loc_opt 

until END_TEST or no new local optimum has been identified 

The function used in the algorithm is the following. 
Cluster(A, B): Clusters as many points of A as possible around those of B. It works considering one by 

one the points of B and clustering around them all the points of A that would probably 
lead to the same local optimum. When a point of A is clustered, it is removed from A. 
The routine first clusters around the current point of B all the points of A that are 
obtainable from it with a single swap, if there were any, then it clusters those obtainable 
with two swaps, then with three swaps and so on. As soon as a distance is found 
(measured in minimal number of swaps) at which no point of A lies from the seed, the 
clustering is terminated and a new point of B is considered. The routine returns A, 
containing all and only the points that could not be clustered. 
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The parameters of this algorithm are 
M: Number of new solutions generated at each cycle. 
3': Percentage of solutions discarded at each cycle. 

3. 7. Boltzmann Machine 

The Boltzmann Machine (BM) (Hinton and Seinowski, 1986) is a connectionist model closely related 
to SA that seems well suited for solving combinatorial optimization problems (Aarts and Korst, 1988). 
We tested the application to QAP of the basic BM algorithm that has been described in Chakrapani and 
Skorin-Kapov (1990). 

The algorithm implemented is the following. 

Boltzmann Machine Algorithm 
initialize the neurons activation matrix N 
initialize the weight matrix W 
s e t  TEMPERATURE :=  INIT_TEMP 

repeat 
f o r  i :=  1 t o  N_ITERATIONS d o  

randomly choose an element N(i, j) and change its state 
compute the variation of Consensus, ACij 
if (ACij < 0) or (Random(0, 1) < exp(-ACiJTEMPERATUI~E)) 

then accept the new state for N(i, j) 
endfor 
set TEMPERATURE := Anneal(TEMPERATURE) 

until TEMPERATURE < LOW o r  END_TEST 

{this is a permutation matrix} 

The functions used in this algorithm are the following. 
Anneal: Transforms the current temperature level into a lower one. The functions used to define the 

temperature annealing schedules are the same functions used for SA. 
Consensus: Computes the variation of consensus following the variation of the state of an element. The 

consensus of a configuration is computed as C = ~ijwijuibtj, where wii is the weight of the 
connection between node i, which is in the state ui, and node j, which is in the state uj. 

The parameters of this algorithm are the same of SA, namely: 
INIT_TEMP: The initial temperature level. 
N_ITF.RATIONS: The number of iterations to be performed in the inner cycle. 
Low: Since all the annealing schedules tend asymptotically to O, this parameter can be used to 

shorten the final stage of a run. 
a: The cooling rate. 

3.8. Immune Networks 

Immune Networks (IN) (Bersini and Varela, 1991) are a computational model inspired by the main 
functional principles of the immune system. They try to capture the essential traits of the dynamic 
process that allows the recruitment of new problem-specific lymphocite species from the huge pool 
produced by the bone-marrow. 

This approach has been proposed to solve both continuous and discrete optimization problems. 
The algorithm we implemented is the following. 
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I m m u n e  Network Algor i thm 
generate  randomly M initial solutions (S(i), i = 1 . . . .  , M )  
repeat  

Recruited := ¢ 
Candidates  := Gen_cand(S)  
while [Recruited [ < N_RECRUIT do 

randomly choose a solution C ~ Candidates  
set Candidates  := Candidates  - {C} 
choose N_AFFINITY solutions S(1) , . . . ,  S(N_AFFINITY) 

N _AFFINITY 

E z(S(j))  Affinity(S(j), C) 
j=l 

if N _AFFINITY 
E Af f i n i t y (S ( j ) ,  C)  

j= l  

then Recruited := Reeruited U {C} 
if Candidates = ¢ then Candidates  := Gen_cand(S)  

endwhile 
set Eliminate := the worst N_RECRUIT solutions in S 
S := ( S  - E l iminate )  tA Recruited 

until END_TEST 

>_ Threshold(S ,  N_THRESHOLD) 

The functions used in this algorithm are the following. 
Gen_cand:  Genera tes  a new set of candidates from S by applying crossover and mutat ion (as in genetic 

algorithms). 
Affinity: Measures  the similarity of two solutions; we used the following affinity function: 

Affinity(S(/), S(j))= 1 -x /n ,  where x is the number  of  different allocations proposed by 
the two permutat ions  S(i) and S(j). The solutions against which candidate C is compared 
are chosen among those of S that  have a distance from C less than AFFINIWY_RAD~US. 

Threshold: Is given by the following formula: 

N_THRESHOLD 

Threshold(S ,  N_THRESHOLD) = E z ( S ( i ) ) / / N -  THRESHOLD" 
i=1 

The parameters  of this algorithm are: 
N_RECRUIT: The number  of individuals to be recruited at each cycle. 
N_AFFINITV: The  number  of  individuals in S with which a new candidate solution is compared  to 

decide about its recruitment.  
AFFINIWY_RADIUS: Maximal distance f rom the candidate of the solutions against which the candidate is 

compared.  
N_WHRESHOLD: The number  of  individuals in S used to set the recruitment threshold. 

4. Exper imenta l  results  

Experiments  have been carried out over some well-known problem instances: the Nugent  problems 
(Nugent, Vollmann and Ruml, 1968), sizes 5 to 30, the Elshafei problem (Elshafei, 1977), size 19, and 
one Krarup problem of size 30 (Krarup and Pruzan, 1978). All the algorithms have been implemented in 
a unified environment on an IBM-PC. The resulting system, called Algodesk, allows the application of 
any heuristic to any QAP problem instance written in a compatible format.  I t  presents output data of the 
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Table 1 
Best  solution found in 1 hour  of  search 

Nugent  Nugen t  Nugen t  Nugent  Nugen t  Nugent  Elshafei Krarup 
5 7 12 15 20 30 19 30 

M G  50 148 578 1150 2570 6146 17 212 548 90 090 
SA 50 148 578 1150 2570 6128 17 937 024 89 800 
TS 50 148 578 1150 2570 6124 17 212 548 90 090 
G A  50 148 588 1160 2688 6784 17640584 108830 
ED 50 148 598 1168 2654 6308 19 600 212 97 880 
EC 50 148 596 1186 2692 6850 21342 612 98 860 
SC 50 148 590 1150 2638 6182 22 941664 92 900 
BM 50 150 n.a. n.a. n.a. n.a. n.a. n.a. 
IN 50 148 586 1158 2644 6468 18 316 048 95 960 
Best known 50 148 578 1150 2570 6124 17212548 88900 

resulting evolution both graphically and in a form that eases the analysis of maxima, averages, standard 
deviations, etc., both with respect to the number of cycles and to the time elapsed. 

The comparison has been made by letting every algorithm solve a problem on the same machine. In 
Table 1 we give the best results achieved over five 1-hour-long runs: l we set in fact the END_XEST of the 
algorithms (MG, TS, GA, ES, SC) to 1 hour and set the cooling rate of SA and BM so that their runs as 
well lasted approximately 1 hour. The n.a. - not available - symbol in Tables 1 and 2 indicates that the 
algorithm could not be applied to the corresponding problem instance on our machine. BM were in fact 
a priori unable to cope with higher-order problem instances on the machines used, due to memory 
constraints. 

G A and ES (both in the continuous and in the discrete space versions) were surprisingly ineffective. 
This is due to the limited time-span of the runs and to the limited computational power of the computers 
used, which cut their search when substantial progress was still possible. Moreover, the power of these 
algorithms is best exploited by parallel computers. 

In Figure 3 we present typical evolutions of each algorithm on the Nugent 15 problem (optimal value: 
1150). The x-axis represents the duration of the run in seconds, while the y-axis shows the best solution 
found. At the beginning of the search, when no solution has yet been suggested, an arbitrary high value is 
given. 

1 The  parameters  used were: MG: M = 30; SA: a = 0.99, INIT_TEMP problem dependent ,  LOW = 0 . 5 ,  N _ I T E R A T I O N S  = such to have 
1-hour-long runs; TS: M I N _ T A B U  LIST = 2 0 ,  M A X _ T A B U L I S T  = 4 0 ;  GA: M = 3 0 ,  P c  ~ 0 . 6 ,  P m  = 1 /p rob l em dimension; EC, ED: 

= 1 5 ,  )t = 1 0 0 ;  S C :  M = 3 0 ,  "y = 4 0 % ;  B M :  a s  SA; I N :  N _ R E C R U I T  = 5 ,  N _ A F F I N I T Y  = 2 ,  A F F I N I T Y _ R A D I U S  problem dependent ,  
N _ T H R E S H O L D  = 2 .  
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Figure 3.2. Simulated Anneal ing  
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Figure 3.8. Immune network 

Given these data, it is possible to compute an index Rt, which quantifies the performance of each 
heuristic in the solution of each problem. For instance, 

T 

Rt = E h ( t ) / (T  *BestKnown) (4) 
t = l  

(where h(t) is the result of the heuristics being considered at time t and time t is an integer valued 
variable taking values between 1 and T)  quantifies how much and for how long the heuristic under 
consideration has produced a result worse than the best known one, as expressed in BestKnown. 
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Table 2 
The R t index after 1 hour of search 

Nugent Nugent Nugent Nugent Nugent Nugent Elshafei Krarup 
5 7 12 15 20 30 19 30 

MG 1.000 1.000 1.000 1.000 1.002 1.008 1.001 1.040 
SA 1.000 1.000 1.000 1.006 1.013 1.031 1.042 1.035 
TS 1.000 1.000 1.000 1.000 1.002 1.013 1.007 1.030 
GA 1.000 1.000 1.026 1.025 1.063 1.134 1.057 1.266 
ED 1.000 1.001 1.047 1.029 1.049 1.105 1.146 1.478 
EC 1.000 1.005 1.123 1.042 1.094 1.156 1.148 1.472 
SC 1.000 1.000 1.001 1.002 1.004 1.005 1.003 1.040 
BM 1.000 1.093 n.a. n.a. n.a. n.a. n.a. n.a. 
IN 1.000 1.000 1.036 1.028 1.047 1.118 1.098 1.216 

Apply ing  formula  (4) to the problems p resen ted  in  Table  1, we ob ta in  the results p re sen ted  in Table  2, 
which are relative to 1-hour searches. 

Par t  of the data  con ta ined  in  Table  2 is also graphically p resen ted  in Figure  4, where  the different  
per formances  of the  tes ted algori thms appear  more  plainly (in F igure  4 we repor ted  results only on  some 
of  the test  p roblems in  order  to ob ta in  a more  easy-to-read graphic). 

S. Conclusions 

The  pape r  presents  a compar ison  of 8 evolut ionary heuris t ic  algori thms applied,  as a testbed,  to the 
Quadra t i c  Ass ignmen t  Problem.  For  each heuristic,  the specific a lgor i thm that  has b e e n  imp lemen ted  is 
given. 
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Figure 4. R t index after 1 hour of search 
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W e  d e v e l o p e d  a sof tware  s y s t e m , A l g o d e s k ,  which  allows to app ly  any of  the  heur is t ics  to any of  t he  
p r o b l e m  ins tances  and  to ana lyze  the  resu l t ing  o u t p u t  in a un i f i ed  context .  

T h e  c o m p a r i s o n  is no t  a i m e d  at  t he  d e t e r m i n a t i o n  of  the  bes t  resu l t  ach ievable  ( these  d a t a  have 
a l r e ady  b e e n  p r o v i d e d  in the  l i t e r a tu r e  for  mos t  of  t he  a lgor i thms) ,  bu t  a t  the  assessment  of  the i r  
eff ic iency in y ie ld ing  good  solut ions.  F o r  this  reason ,  the  raw da t a  consists  of  the  bes t  so lu t ion  p r o d u c e d  
by  each  a lgo r i t hm in 1-hour - long  runs  on  iden t ica l  I B M - P C  machines .  

A synopt ic  t ab l e  is p r e s e n t e d ,  showing the  resul t s  ach ieved  by each  a lgo r i thm on each  ins tance.  
M o r e o v e r ,  an  index  is p r o p o s e d  tha t  quant i f ies  the  ef fec t iveness  of  a search,  b o t h  wi th  r e spec t  to the  
resul t  ach ieved  and  to the  s p e e d  wi th  which  it has  b e e n  a t t a ined .  Pa r t i cu la r ly  in te res t ing  (and  somewha t  
surpr is ing)  is: 

(i) t he  ef fec t iveness  of  t he  m u l t i g r e e d y  app roach ,  thus  of  the  local  search  ope ra to r ;  
(ii) in genera l ,  t he  super io r i ty  of  s ingle-so lu t ion  a p p r o a c h e s  to p o p u l a t i o n - b a s e d  ones  when  these  last  

a re  run  on  a s ing le -p rocessor  h a r d w a r e  and  a re  no t  coup led  wi th  local  search  ope ra to r s ;  
(iii) the  ineff ic iency o f  B o l t z m a n n  mach ines  on  sea rches  o f  l imi ted  dura t ion .  
Po in t  (i) re f lec ts  a Q A P  p r o p e r t y  which  was not  ye t  pu t  in to  ev idence  in t he  l i t e ra tu re :  any a p p r o a c h  

b a s e d  on  local  sea rch  is b o u n d  to be  very  effect ive as an  heur i s t ic  for  Q A P .  
Po in t  (ii) tes t i f ies  t he  n e e d  to pu r sue  s tudies  on p o p u l a t i o n - b a s e d  heuris t ics .  W h i l e  it is  in fact  

in tui t ive  tha t  an  exchange  o f  i n fo rma t ion  b e t w e e n  d i f fe ren t  so lu t ion  could  ease  t he  search  process ,  it  
a p p e a r s  tha t  cu r r en t  c o m m u n i c a t i o n  o p e r a t o r s  a re  no t  wor th  the i r  c o m p u t a t i o n a l  cost. 

F u t u r e  work  inc ludes  t he  ex tens ion  of  the  set  of  a lgor i thms  t e s t ed  ( including,  for  example ,  the  
An t - sys t em,  Colorni ,  D o r i g o  and  Man iezzo ,  1991, 1992), o f  p r o b l e m  ins tances  used,  and  of  t e rmina t i ng  
cond i t ions  (a c o m p a r i s o n  on  an  equa l  n u m b e r  of  func t ion  eva lua t ions  cou ld  be  in teres t ing) .  Even tua l ly  
we  wan t  to  achieve  the  def in i t ion  of  a new heuris t ic ,  e nc ompa ss ing  the  s t rong po in t s  of  the  b e t t e r  
p e r f o r m i n g  a lgor i thms.  
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