
188 European Journal of Operational Research 81 (1995) 188-204
North-Holland

Theory and Methodology

Algodesk: An experimental comparison
of eight evolutionary heuristics apphed
to the Quadratic Assignment Problem

Vittorio Maniezzo, Marco Dorigo
Politecnico di Milano Artificial Intelligence and Robotics Project, Dipartimento di Elettronica
e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Alberto Colorni
Centro di Teoria dei Sistemi del CNR, Dipartirnento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 220133 Milan, Italy

Received July 1992; revised September 1992

Abstract: This work compares the effectiveness of eight evolutionary heuristic algorithms applied to the
Quadrat ic Assignment Problem (QAP), reputedly one of the most difficult combinatorial optimization
problems. QAP is merely used as a carrier for the comparison: we do not a t tempt to compare any
heuristics with solving algorithms specific for it. Results are given, both with respect to the best result
achieved by each algorithm in a limited time span and to its speed of convergence to that result.

Keywords: Optimization; Heuristics; QAP

1. Introduction

The theory of NP-completeness (Garey and Johnson, 1979) tells us that, unless P = NP, many
problems cannot be solved optimally in a reasonable amount of time. However, real-world problems have
to be faced, hence there is a necessity to develop heuristic algorithms that yield a solution not too far
from the optimal one, using limited computing time and storage space.

It is not surprising that, in parallel with the increasing awareness of the intractability of so many
problems, a flourishing of different heuristics characterized the last decades. Some of them are very
problem-specific, while others get easily stuck in local optima; we are interested in heuristic algorithms
for combinatorial optimization that are both robust (applicable to a wide variety of problems with
minimal, if any, modification of their basic structure) and effective as global optimization tools.

We concentrated on evolutionary heuristics, i.e. algorithms that start with an initial randomly chosen
(population of) solution(s) and that update it iteratively until a terminating condition is met. This class of

Correspondence to: Dr. A. Colorni, Centro di Teoria dei Sistemi del CNR, Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Piazza Leonardo da Vinci 32, 220133 Milan, Italy.

0377-2217/95/$09.50 © 1995 - Elsevier Science B.V. All rights reserved
SSDI 0377-2217(93)E0128-K

V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics 189

algorithms has experimentally proved effective with respect to both previously stated criteria. We were
particularly interested in those algorithms that work with a population of solutions for two reasons. The
first is their appealing possibility of utilizing multiple solutions for determining the future evolution (thus
using more information than their single solution counterparts); the second reason is their greater ease
of parallelization which promises a much more effective exploitation of the possibilities offered by
parallel computers.

We therefore studied several population-based evolutionary heuristics: genetic algorithms, evolution
strategies, sampling and clustering, Boltzmann machines and immune networks. We compared their
effectiveness both among themselves and with the two most robust and effective single-solution
algorithms so far proposed: simulated annealing and tabu search. Moreover, as a further benchmark, we
also s tudied the performance of a straightforward multistart greedy algorithm (multigreedy). The
performance of the multigreedy algorithm allows us to assess whether the parallel processing of
information is computationally worthwhile.

The comparison has been carried out over a tough NP-hard problem that up to now has resisted all
attempts to solve it optimally without an almost complete enumeration of solutions: the Quadratic
Assignment Problem. This problem was chosen not only because of its difficulty, but also because (i) it is
a generalization of many other combinatorial optimization problems (Finke and Medova Dempster,
1989); (ii) it has a great number of real-world interpretations; (iii) most of the mentioned algorithms have
been applied to it and the results have been reported in the literature, thus relieving us from the burden
to run extensive field tests in order to assess the optimal parameter settings for each of them.

The paper is organized as follows: in Section 2 we describe the Quadratic Assignment Problem; in
Section 3 we present the algorithms: for each of them we propose a very brief introduction and the basic
algorithm, referring the reader to specific publications for a deeper understanding. In Section 4 we
describe the package which allowed tests and comparisons of the algorithms and the results of their
application; in Section 5 we present conclusions and future work.

2. The Quadratic Assignment Problem

A Quadratic Assignment Problem (QAP) of order n is the formalization of the problem that arises
when trying to assign n facilities to n locations, where both the terms facilities and locations are
considered in the broadest sense of their meaning. It was first formulated by Koopmans and Beckmann
(1957) and since then it has been used as a suitable model for many different real-world problems:
backboard wiring, campus planning, typewriter keyboard design, hospital layout, ranking of archeological
data, ordering of interrelated data on a magnetic tape, minimizing average job completion in machine
scheduling, and others (Burkard, 1984).

Formally the problem can b e defined by three n × n mactrices:
D = { d q } = The distance between location i and location j.
F = { f h k } = The flow (of information, products or some other quantity) between facilities h and k.
C = {Cih} = The cost of assigning facility h to location i.

Usually D and F are integer-valued symmetric matrices and the matrix C of the assignment costs is
not considered. A permutation -rr can be interpreted as an assignment of facility h = ~-(i) to location i,
for each i = 1 n . The problem is then to identify a permutation ~- of both row and column indexes of
the matrix F that minimizes the total cost [Edwards, 1980]:

Min z = ~ dijf~(i)rr(y) + ~ Ci~(i) . (1)
i , j=l i -1

The problem can be also formulated in a way that makes the quadratic nature of the objective
function more explicit. The permutat ion ~ can in fact be expressed by an n × n permutation matrix X ,

1 9 0 V. Maniezzo et al. / Algodesk: A n experimental comparison o f evolutionary heuristics

whose elements Xhi are 1 if facility h is to be assigned to location i, and 0 otherwise. The objective
function becomes

n n

min z = E dihfjkXiyXhk q- E CijXi j (2)
i , j ,h ,k = 1 i , j = 1

subject to the constraints

~ Xij= l , j = l , . . . , n
i=1

n

Y'~xi:= l, i = 1 ,n
j=l

Xij ~ {0,1}, i, j = 1 , . . . , n.

Since the multiplication FX of matrix F with a permutation matrix X results in a corresponding
permutation of the row indexes of F and since the multiplication XTF of the transposed of the same
permutation matrix X and F results in a corresponding permutation of the column indexes of F, it can
easily be verified that QAP can also be expressed in trace form as

min z = t r (DXTFX + CX) (3)

where the elements of the permutation matrix X are subject to the same constraints as those of formula
(2).

QAP is a generalization of several other problems (Finke and Medova Dempster, 1989), including the
Travelling Salesman Problem, the Triangulation Problem and the Matching Problem. Since QAP is a
generalization of TSP, it is an NP-hard problem. It has been shown (Sahni and Gonzales, 1976) that even
finding an e-approximate solution for any problem instance is NP-hard (an e-approximation of the
optimal value z* computed for a solution x is a value z(x) such that [z* - z(x) I / z* < e). This
restriction does not hold for the TSP, and in fact the QAP seems in general tougher than the TSP:
limited enumeration approaches can yield the optimal solution for TSP instances of several thousands
towns and for QAP instances of order 15-20 (that is, QAP can be solved optimally only through a more
or less complete enumeration: given the current computer technology 15-20 is in fact the limit that can
be reached for a complete analysis of all possible permutations in a reasonable time).

An interesting asymptotic property proved in Rhee (1988) is that the difference between the worst and
the best solution of a QAP instance becomes smaller when the size of the problem becomes larger if dij
and fhk are mutually independent sequences of independent uniformly distributed random variables;
already for n > 50 the relative difference is very small. This shows that tests on randomly generated
problems must be considered very carefully before being accepted as significant: if many local optima of
similar quality exist, a local search will discover a relatively good solution with high probability. This
effect has been in fact observed in our experiments, as it is pointed out in the conclusions of the paper.

To get a feeling of the complexity of the problem, we plotted in Fig. 1 the values taken by the
objective function of a Nugent problem instance of size 12 (Nugent, Vollmann and Rural, 1968): we
plotted the values corresponding to the permutations having every possible combination of values in the
first two positions. It is evident that the function is highly multimodal, suggesting a hard to solve
problem.

3. Aigodesk

In order to compare the relative effectiveness of the different heuristics, we implemented a unified
software system called 'Algodesk', that will be more thoroughly presented in Section 4. Algodesk allows

V. Maniezzo et aL/ Algodesk: An experimental comparison of evolutionary heuristics 191

850

8OO
Q

> 75(
t -
O

e -
~ 70

.~_

~ 6 . ~

0

.Vll
12

Figure 1. Fitness landscape for the Nugent 12 problem

to apply any of the algorithms it contains to any of the QAP problem instances available (Maniezzo,
1991). Each algorithm that we tested codifies a different evolutionary heuristic. Most of the algorithms
are in some way inspired by nature, and update populations of solutions. However, we also included
some approaches which, although not inspired by nature, have proven very effective and robust.

The list of the currently available algorithms includes: Boltzmann Machine (BM), Evolution Strategy
(ES), Genetic Algorithm (GA), MultiGreedy (MG), Sampling and Clustering (SC), Simulated Annealing
(SA), Tabu Search (TS), Immune Networks (IN). Each of these is detailed in the following subsections.
They can be classified as nature-inspired or non-nature-inspired algorithms and - alternatively - as
algorithms that consider a single solution at each cycle and algorithms that update a whole population of
solutions at each cycle. The proposed classification is presented in Figure 2.

MultiGreedy has been classified as both a single-solution and as a population-based algorithm
because of the different interpretations than can be given to the way it works; multigreedy is discussed in
Section 3.1. A different classification, more related to the metaphors which inspired the algorithms,
divides them among thermodynamically motivated algorithms (SA, BM), evolutionarily motivated algo-
rithms, with a biological acception of the term 'evolutionary' (GA, ES, IN), and algorithms without a
natural interpretation (MG, TS, SC).

non nature-
inspired

nature-
inspired

single population
solution of solutions

(MG), TS (MG), SC

SA, BM GA, ES, IN

Figure 2. Classification of Algodesk heuristics

192 V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics

The algorithms were compared with respect to the best solution found in a fixed amount of time,
equal for all of them. We therefore included in each of them an exit test, called END_TEST, that
compared the time elapsed since the start of the search with the user-specified maximum time allowed.
This is the only termination criterion for some algorithms (GA, ES, TS, MG, SC, IN), while others (SA,
BM) already have their own terminating condition. END_TEST has however been included in all the
algorithms to allow comparison.

All the algorithms that involve local search (MG, SA, TS, SC) use the same routine to explore the
neighborhood of a current solution, utilizing the formulae reported in Burkard and Rendl (1984) and
Taillard (1990) to efficiently compute the variation in the objective function due to a swap of the
elements in positions r and s of the permutation ~ that leads to a new permutation ~r.

3.1. MuhiGreedy

The multigreedy algorithm (MG) was included as a testbed against which to compare the other
algorithms. It implements a multistart greedy approach, in which several randomly chosen solutions are
independently carried to their local optima by exploring at each step the complete neighborhood of the
current solution and then moving according to the maximum gradient. We introduced a slight modifica-
tion of this basic approach using a population of solutions, each of which is carried to the optimum. At
each cycle a new random population is generated and all its elements are carried to their optima. This is
the same as generating a large population from the beginning, carrying all its elements to their optima
and then stopping, but the notion of population that we introduce by our iterative version is useful in the
comparison, as it provides results about the performance of populations of totally non cooperative
individuals.

Experiments have also been performed with an algorithm that changed the current solution as soon as
a better one was identified (without a complete exploration of the neighborhood), but this approach
proved less effective.

The multigreedy algorithm is the following.

Multigreedy Algorithm
repeat

randomly generate M solutions (S(i), i = 1 M)
for each solution S(i) compute the corresponding objective function z(S(i))
set BEST_SOLUTXON to solution S(i) such that z(S(i)) is minimal
for i : = l t o M d o

lab: explore the whole neighborhood of solution S(i) and store the best neighbor S'(i)
if z(S(i)) > z(S'(i))

then set S(i) := S'(i)
goto lab

else if z(S(i)) < Z(BEST SOLUTION)

then set BESTSOLUTION := S(i)
endfor

until END_TEST

{BEST_SOLUTXON is the best
permutation identified so far}

The only parameter of this algorithm is M, the number of solutions composing the population.

3.2. Simulated Annealing

Simulated annealing (SA) is an effective single-solution randomized heuristic, based on an algorithm
originally presented in Metropolis et al. (1953) and proposed as a combinatorial optimization tool in
Kirkpatrick, Gelatt and Vecchi (1983). Examples of its application to QAP are presented in Burkard and

v. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics 193

Rendl (1984) and in Connolly (1990). I t updates a single solution, accepting in probability also
modifications that involve a worsening of the objective function.

The algorithm that we implemented is the following.

Simulated Annealing Algorithm
choose the initial solution S randomly
s e t T E M P E R A T U R E : ~ I N I T _ T E M P

set t := 0
repeat

set t : = t + l
for i := 1 to N_ITERATIONS do

generate S ' randomly in the neighborhood of S
set 6 := z (S ') - z (S)
if (8 < 0) or (Random(0, 1) < e x p (- 8/TZMPERATURE))

then set S := S '
end for
set TEMPERATURE : = Anneal(TEMt'ERATURE, t)

until TEMPERATURE < LOW or END_TZST or (no changes have been accepted for S)

The algorithm uses the function Anneal that transforms the current t empera ture level into a lower
one. Three different annealing schedules have been implemented and the user is free to choose among
them. T h e alternative schedules are:

T(t) r(o)
T(t+l)=aT(t) , T(t + 1) - 1+aT(t)' T(t + 1) 1+at'

where a (0 < a < 1) is a user-defined parameter , called Cooling rate. In our experiments we always used
the first function.

The function Random generates a uniformly distributed pseudorandom variable in the specified
interval.

The parameters of this algorithm are
INIT_TEMP: The initial t empera ture level.
N_ITERATIONS: The number of iterations to be per formed between two t empe ra tu r e changes.

./,
LOW: Since all the anneahng schedules tend asymptotically to 0, this paramete r can be used to

shorten the final stage of a run.
a: The cooling rate of the Anneal function.

3.3. Tabu Search

Tabu Search (TS) is another evolutionary heuristic that updates a single solution. I t was originally
proposed in Glover (1989, 1990); specific applications to QAP are presented in Skorin-Kapov (1990) and
Taillard (1990). The idea behind it is to start f rom a random solution and successively swap pairs of its
elements. Each time a swap (a move) has been chosen, the reverse one is linked at the beginning of a
fixed-length list of inhibited moves, the tabu list. T h e new candidate swap brings the solution to its best
neighbor: if the swap is present in the tabu list, it is accepted only if it decreases the objective function
value below the minimal level so far achieved (aspiration level).

The algorithm implemented includes a variable-sized tabu list as proposed by Taillard: a minimal and
a maximal length are specified and during the search the actual length is randomly changed.

194 V. Maniezzo et al. / Algodesk: An experimental comparison o f evolutionary heuristics

The algorithm is the following.

Tabu Search Algorithm
choose the initial solution S randomly, set its tabu list T = O
s e t BEST_SOLUTION := S

set i := 0
repeat

set i : = i + 1
identify S', the best neighbor of S
set SWAP := Move(S, S')
if swap ~ T

then Update(swAp, T, LENGTH_TABU_LIST)
set S := S'
if z(S) < Z(BEST_SOLUaaON) then set BEST_SOLUTION := S

else if Z(S') < Z(BEST_SOLUTION)
then Update(swAP, T, LENGTHTABULIST)

set BEST_SOLUTION := S t

set S := S'
if (i mod 2 * MAX_TABU_LIST) = 0

then set LENGTH TABULIST := Random(MIN_TABtJ_LIST, MAXTABU_LIST)
until ENDTEST

{i is the iteration counter}

{SWAP holds the move transforming S into S'}

{use of aspiration level}

The algorithm uses the following functions.
Update: Inserts SWAP as the first element of T and removes the last element of T if the tabu list was

full.
Move: Returns the swap that transforms a solution into a second one.

The parameters of the algorithm are
MIN_TABU_LIST, MAX_TABU_LIST: They specify the minimal and maximal allowed length of the tabu list,

respectively.

3.4. Genetic Algorithm

Genetic Algorithms (GA) are a computational device, originally proposed by Holland (1975), inspired
by population genetics. Their effectiveness as a combinatorial optimization tool has been recently
advocated (Peterson, 1990); specific applications to QAP have been described in Miihlenbein (1989) and
Brown, Huntley and Spillane (1989).

Their strength is essentially due to their updating a whole population of possible solutions: this allows
an intrinsically parallel exploration of the search space (Holland, 1975); (Bertoni and Dorigo, 1993).

In order to apply GA, which work best in unconstrained optimization, to QAP, we had to adapt the
basic algorithm in order to generate only feasible solutions. Moreover G A are able to cope only with
maximization problems, while QAP is a minimization problem: we had therefore to map the QAP
objective function into a fitness function to be maximized.

The algorithm that we implemented is the following.

Genetic Algorithm
initialize S .'= (S(i), i = 1 M) and compute their fitnesses {initialization of a population of solutions}
set BEST_SOLUTION to the solution in S with the maximal fitness value
repeat

for i := 1 to M do
if(i) := Fitness(z(S(i))) {computation of the fitness}
if z(S(i)) < Z(BEST_SOLUTION) then BEST_SOLUTION := S(i)

V. Maniezzo et aL / Algodesk: An experimental comparison of evolutionary heuristics 195

for i := 1 to M do p(i) := f f (i) /E f f (i)
S' .'= Reproduction(S)

1
randomly generate sM pairs of solutions in S'
S" := Crossover(S')
S" := Mutate(S")
S := S"

until ENDWEST

{p(i) is the reproduction probability}
{reproduction builds population S' from S}

This algorithm utilizes the following functions.
Fitness: Transforms the objective function, to be minimized, into a fitness function to be

maximized, so that the GA can be applied; it implements a monotonically decreasing
function, in our experiments a linear function (see Grefenstette and Baker, 1989).

Reproduction: Selects one by one the members of the new population S' from those of S via a Monte
Carlo procedure based on the reproduction probabilities previously computed.

Crossover: Is an adaptation of the PMX crossover operator proposed in Goldberg and Lingle (1985).
It is applied with probability Pc on each pair of solutions; it chooses two cutting points in
the parents' strings, Pl and P2, and copies the middle segment of each parent in the
corresponding position of the alternate offspring, respectively o 1 and 0 2. The first and
third segment of each offspring are copied from the corresponding parent (Pl for o 1 and
P2 for o2), except for the elements already present in the middle position. The empty
positions are filled with the elements still not present, taken from the corresponding
parent in the order in which they are present in it.

Mutate: Randomly chooses two positions in the permutation and swaps their contents.
The parameters of the algorithm are:

M: Size of the population.
Pro: Mutation probability.
Pc: Crossover probability (utilized within the function Crossover).

3.5. Evolution Strategies; discrete and continuous versions

Evolution Strategies (ES) are a computational model developed independently but with a structure
similar to genetic algorithms (Rechenberg, 1973; Schwefel, 1975). The general framework is identical for
ES and GA: both rely on populations of individuals modified by operators of selection, mutation and
recombination (called crossover in GA terms). Nevertheless the details of their realization differ
significantly.

ES were initially conceived for the optimization of real parameters. To apply them to combinatorial
optimization problems, specifically to QAP, we had to modify their basic paradigm. This has been done
in two ways: in the first (discrete space evolution strategies, ED) the elements of the population are
permutations, and mutation and recombination operators have been largely borrowed from GA. In the
second (continuous space evolution strategies, EC) the basic algorithm has not been modified, but the
individuals of the population are interpreted as a permutation, utilizing their rank order as a permuta-
tion index (Rudolph, 1990).

Both the algorithms start with a population S~ of solutions and apply some operators on it, obtaining
a population Sx. The discrete space algorithm proposed implements the so-called (/z, A) reproduction
strategy, in which the individuals of S~ chosen at the end of the reproduction step are the best of Sa. An
alternative policy, called the (/~ + A) strategy, consists in choosing the individuals of the next S~, among
the best individuals of S~ U S~. For completeness of presentation (/~, A) selection will be shown in ED,
and (/z + A) selection will be shown in EC, but both selection strategies are possible for both algorithms.

The discrete space algorithm, ED with (/.e, A) selection, is the following.

196 V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics

Evolution Strategy Algorithm (discrete version)
initialize S~ := (S(i), i = 1 , . . . , / z) and compute their fitnesses {initialization of a

population of solutions}
set BESTSOLUTION to the solution in S~ with maximal fitness value
repeat

for i := 1 to A do {build a new population Sx out of S~, A > lz}
Sa(i) := Recombination (S~)
S~(i) .'= Mutate (Sx(i))
if z (S~(i) < z (BEST_SOLUTION) then BESTSOLUTION .'= Sa(i)

endfor
set S~ to the bes t /z individuals of Sx {this is the (/z, A) strategy}

until END_TEST

The functions used in this algorithm are the following.
Recombination: Can take two forms: discrete recombination and global discrete recombination. The

first takes two parents and builds an offspring by randomly choosing its elements
between the corresponding ones of the parents. The second chooses a random number
of parents and then builds the offspring randomly choosing its elements among the
corresponding ones of the parents. Details of their implementation can be found in
B~ick, Hoffmeister and Schwefel (1991). The feasibility of the offspring is obtained by
constraining the possible element choices to be compatible with the assignments already
made in the previous part of the string.

Mutate: Randomly chooses two positions in the permutation and swaps their contents.
The continuous space version of Evolution Strategies is based on a mapping from real-coded

individuals to permutations, thus allowing to utilize the original ES algorithm. This mapping is based on
a ranking of the values of each element of the individual. For example, suppose that an individual is
codified by the real-valued string (0.123 1.324 3.427 -7 .298 2.375). The corresponding ranking of its
elements consists of the integer string (2 3 5 1 4), which is actually a permutation that can be
interpreted as a solution of a combinatorial optimization problem.

The continuous space algorithm, EC with (/~ + A) selection, is the following.

Evolution Strategy Algorithm (continuous version)
initialize S~ := (S (i) , i = 1 /~) and compute their fitnesses {initialization of a

population of solutions}
s e t BEST_SOLUTION to the solution in S~ with maximal fitness value
repeat

f o r i : = l t o A d o
SA(i) := Recombination (S~)
Sx(i) := Mutate (Sx(i))
permutation(i) := Map(S~(i)) {permutation(i) is the permutation corresponding to Sx(i)}
if z(permutation(i)) < Z(BEST SOLUTION) then BESTSOLUTION := permutation(i)

endfor
set S~ to the bes t /z individuals of S x u S~ {this is the (~ + A) strategy}

until END_TEST

The functions used in this algorithm are the following.
Mutate: Modifies each gene of the individual. Each individual is codified by a vector S (i) =

(X i : , S i) , where x i = (x] x.~) codifies a problem solution and s i = Oi I O'i n contains

V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics 197

control parameters. The mutated solution is obtained modifying each gene according to

X; = Xi -]- N (O , O'i t)

where N(O, ~ri') is a normally distributed random variable with expectation 0 and
variance

or/t = O" i * ear(0, tl) . e N (0, to)

where t o = 1 / (2n) and t I = 1/4v~n-. See Schwefel (1975) for more details.
Recombination: Implements four kinds of recombinations: discrete and intermediate, each either

between two parents or global; discrete recombination is the same as in ESc, intermedi-
ate recombination averages the values of the corresponding elements of the parents.

Map: Returns the permutation obtained substituting each gene's value with its corresponding
rank order (see the example above).

The parameters are the same for both ESc and ESd and include
/z: Size of the parent population.
A: Size of the enlarged population in the recombination step.

3.6. Sampling and Clustering

Sampling and Clustering (SC) is a heuristic which works on a variable-sized population of tentative
solutions. It was originally proposed in Boender, Rinnooy Kan, Timmer and Stougie (1982) and in
Camerini, Colorni and Maffioli (1986). The idea behind it is to generate a population of uniformly
distributed tentative solutions, to consider only the best of them and to cluster all the solutions around
seed points that will be taken to their local optima.

The algorithm is the following.

Sampling & Clustering Algorithm
set S := ~, Loc_opt := ~, Seeds := ~J
repeat

randomly generate M uniformly distributed solutions and add them to S
eliminate from S a percentage 3' of the worst solutions
if Loc_opt 4: ¢ then Cluster(S, Loc_opt)
if Seeds :/: ~ then Cluster(S, Seeds)
if S :~ ~ then

choose the best solution S(i) in S and carry it to its local optimum S*(i)
if S*(i) ~ Loc opt

then add S(i) to Seeds
else add S*(i) to Loc_opt

until END_TEST or no new local optimum has been identified

The function used in the algorithm is the following.
Cluster(A, B): Clusters as many points of A as possible around those of B. It works considering one by

one the points of B and clustering around them all the points of A that would probably
lead to the same local optimum. When a point of A is clustered, it is removed from A.
The routine first clusters around the current point of B all the points of A that are
obtainable from it with a single swap, if there were any, then it clusters those obtainable
with two swaps, then with three swaps and so on. As soon as a distance is found
(measured in minimal number of swaps) at which no point of A lies from the seed, the
clustering is terminated and a new point of B is considered. The routine returns A,
containing all and only the points that could not be clustered.

198 V. Maniezzo et al. /Algodesk: An experimental comparison of evolutionary heuristics

The parameters of this algorithm are
M: Number of new solutions generated at each cycle.
3': Percentage of solutions discarded at each cycle.

3. 7. Boltzmann Machine

The Boltzmann Machine (BM) (Hinton and Seinowski, 1986) is a connectionist model closely related
to SA that seems well suited for solving combinatorial optimization problems (Aarts and Korst, 1988).
We tested the application to QAP of the basic BM algorithm that has been described in Chakrapani and
Skorin-Kapov (1990).

The algorithm implemented is the following.

Boltzmann Machine Algorithm
initialize the neurons activation matrix N
initialize the weight matrix W
s e t TEMPERATURE := INIT_TEMP

repeat
f o r i := 1 t o N_ITERATIONS d o

randomly choose an element N(i, j) and change its state
compute the variation of Consensus, ACij
if (ACij < 0) or (Random(0, 1) < exp(-ACiJTEMPERATUI~E))

then accept the new state for N(i, j)
endfor
set TEMPERATURE := Anneal(TEMPERATURE)

until TEMPERATURE < LOW o r END_TEST

{this is a permutation matrix}

The functions used in this algorithm are the following.
Anneal: Transforms the current temperature level into a lower one. The functions used to define the

temperature annealing schedules are the same functions used for SA.
Consensus: Computes the variation of consensus following the variation of the state of an element. The

consensus of a configuration is computed as C = ~ijwijuibtj, where wii is the weight of the
connection between node i, which is in the state ui, and node j, which is in the state uj.

The parameters of this algorithm are the same of SA, namely:
INIT_TEMP: The initial temperature level.
N_ITF.RATIONS: The number of iterations to be performed in the inner cycle.
Low: Since all the annealing schedules tend asymptotically to O, this parameter can be used to

shorten the final stage of a run.
a: The cooling rate.

3.8. Immune Networks

Immune Networks (IN) (Bersini and Varela, 1991) are a computational model inspired by the main
functional principles of the immune system. They try to capture the essential traits of the dynamic
process that allows the recruitment of new problem-specific lymphocite species from the huge pool
produced by the bone-marrow.

This approach has been proposed to solve both continuous and discrete optimization problems.
The algorithm we implemented is the following.

V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics 199

I m m u n e Network Algor i thm
generate randomly M initial solutions (S(i), i = 1 , M)
repeat

Recruited := ¢
Candidates := Gen_cand(S)
while [Recruited [< N_RECRUIT do

randomly choose a solution C ~ Candidates
set Candidates := Candidates - {C}
choose N_AFFINITY solutions S(1) , . . . , S(N_AFFINITY)

N _AFFINITY

E z(S(j)) Affinity(S(j), C)
j=l

if N _AFFINITY
E Af f i n i t y (S (j) , C)

j= l

then Recruited := Reeruited U {C}
if Candidates = ¢ then Candidates := Gen_cand(S)

endwhile
set Eliminate := the worst N_RECRUIT solutions in S
S := (S - E l iminate) tA Recruited

until END_TEST

>_ Threshold(S , N_THRESHOLD)

The functions used in this algorithm are the following.
Gen_cand: Genera tes a new set of candidates from S by applying crossover and mutat ion (as in genetic

algorithms).
Affinity: Measures the similarity of two solutions; we used the following affinity function:

Affinity(S(/), S(j))= 1 -x /n , where x is the number of different allocations proposed by
the two permutat ions S(i) and S(j). The solutions against which candidate C is compared
are chosen among those of S that have a distance from C less than AFFINIWY_RAD~US.

Threshold: Is given by the following formula:

N_THRESHOLD

Threshold(S , N_THRESHOLD) = E z (S (i)) / / N - THRESHOLD"
i=1

The parameters of this algorithm are:
N_RECRUIT: The number of individuals to be recruited at each cycle.
N_AFFINITV: The number of individuals in S with which a new candidate solution is compared to

decide about its recruitment.
AFFINIWY_RADIUS: Maximal distance f rom the candidate of the solutions against which the candidate is

compared.
N_WHRESHOLD: The number of individuals in S used to set the recruitment threshold.

4. Exper imenta l results

Experiments have been carried out over some well-known problem instances: the Nugent problems
(Nugent, Vollmann and Ruml, 1968), sizes 5 to 30, the Elshafei problem (Elshafei, 1977), size 19, and
one Krarup problem of size 30 (Krarup and Pruzan, 1978). All the algorithms have been implemented in
a unified environment on an IBM-PC. The resulting system, called Algodesk, allows the application of
any heuristic to any QAP problem instance written in a compatible format. I t presents output data of the

200 V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics

Table 1
Best solution found in 1 hour of search

Nugent Nugen t Nugen t Nugent Nugen t Nugent Elshafei Krarup
5 7 12 15 20 30 19 30

M G 50 148 578 1150 2570 6146 17 212 548 90 090
SA 50 148 578 1150 2570 6128 17 937 024 89 800
TS 50 148 578 1150 2570 6124 17 212 548 90 090
G A 50 148 588 1160 2688 6784 17640584 108830
ED 50 148 598 1168 2654 6308 19 600 212 97 880
EC 50 148 596 1186 2692 6850 21342 612 98 860
SC 50 148 590 1150 2638 6182 22 941664 92 900
BM 50 150 n.a. n.a. n.a. n.a. n.a. n.a.
IN 50 148 586 1158 2644 6468 18 316 048 95 960
Best known 50 148 578 1150 2570 6124 17212548 88900

resulting evolution both graphically and in a form that eases the analysis of maxima, averages, standard
deviations, etc., both with respect to the number of cycles and to the time elapsed.

The comparison has been made by letting every algorithm solve a problem on the same machine. In
Table 1 we give the best results achieved over five 1-hour-long runs: l we set in fact the END_XEST of the
algorithms (MG, TS, GA, ES, SC) to 1 hour and set the cooling rate of SA and BM so that their runs as
well lasted approximately 1 hour. The n.a. - not available - symbol in Tables 1 and 2 indicates that the
algorithm could not be applied to the corresponding problem instance on our machine. BM were in fact
a priori unable to cope with higher-order problem instances on the machines used, due to memory
constraints.

G A and ES (both in the continuous and in the discrete space versions) were surprisingly ineffective.
This is due to the limited time-span of the runs and to the limited computational power of the computers
used, which cut their search when substantial progress was still possible. Moreover, the power of these
algorithms is best exploited by parallel computers.

In Figure 3 we present typical evolutions of each algorithm on the Nugent 15 problem (optimal value:
1150). The x-axis represents the duration of the run in seconds, while the y-axis shows the best solution
found. At the beginning of the search, when no solution has yet been suggested, an arbitrary high value is
given.

1 The parameters used were: MG: M = 30; SA: a = 0.99, INIT_TEMP problem dependent , LOW = 0 . 5 , N _ I T E R A T I O N S = such to have
1-hour-long runs; TS: M I N _ T A B U LIST = 2 0 , M A X _ T A B U L I S T = 4 0 ; GA: M = 3 0 , P c ~ 0 . 6 , P m = 1 /p rob l em dimension; EC, ED:

= 1 5 ,)t = 1 0 0 ; S C : M = 3 0 , "y = 4 0 % ; B M : a s SA; I N : N _ R E C R U I T = 5 , N _ A F F I N I T Y = 2 , A F F I N I T Y _ R A D I U S problem dependent ,
N _ T H R E S H O L D = 2 .

1500-

1450-

1400-

1350-

1300-

1250-

1200'
1150 i

500 10'00 15'00 7-0'00 7-5'00 30'00 35'00
SeC

Figure 3.1. Multigreedy

1500.

1450

1400.

1350.

1300.

1250.

1200.
1150

500 1000 1500 2000 2500 3000 3500
sec

Figure 3.2. Simulated Anneal ing

V. Maniezzo et at / Algodesk: An experimental comparison of euolutionary heuristics 201

1500

1450

1400.

1350

1300,

1250

1200,

1150
.6o IO'OO 1~'oo 2obo 25'0o 3o'oo 3.'oo

$~

Figure 3.3. Tabu Search

1500

1450

1400

1350

1300,

1250

1200

1150
I

5oo lobe 1.oo' 2ob0 z~oo' 3o~o 3~bo
sec

Figure 3.4. Genetic Algorithm

1500!
145o'
1400

1350

1300

1250

1200
1150

l

560 lObO 15bo 2obo 25bo 3o~o 35bo
5ec

Figure 3.5. Discrete space evol. strategy

1500

1450

1400

1350

1300

1250

1200

115(
560 lObO 15b0 20bo zsbo 30bo 35b0

s e e

Figure 3.6. Continuous space evol. strategy

1500.

1450

1400

1350

1300

1250

1200
1150

560 I0'00 15'00 20'00 25'00 30'o0 35'o0
SeC

Figure 3.7. Sampling and clustering

L~QD

145 D,

L'tQ D'

106D.

L3QD.

12G D

J.2QD
1150 L,

l I l I I I I
5DO 1DO0 15D0 ZOQD 7-EQD 300D 3(;00

SOC

Figure 3.8. Immune network

Given these data, it is possible to compute an index Rt, which quantifies the performance of each
heuristic in the solution of each problem. For instance,

T

Rt = E h (t) / (T *BestKnown) (4)
t = l

(where h(t) is the result of the heuristics being considered at time t and time t is an integer valued
variable taking values between 1 and T) quantifies how much and for how long the heuristic under
consideration has produced a result worse than the best known one, as expressed in BestKnown.

202 V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics

Table 2
The R t index after 1 hour of search

Nugent Nugent Nugent Nugent Nugent Nugent Elshafei Krarup
5 7 12 15 20 30 19 30

MG 1.000 1.000 1.000 1.000 1.002 1.008 1.001 1.040
SA 1.000 1.000 1.000 1.006 1.013 1.031 1.042 1.035
TS 1.000 1.000 1.000 1.000 1.002 1.013 1.007 1.030
GA 1.000 1.000 1.026 1.025 1.063 1.134 1.057 1.266
ED 1.000 1.001 1.047 1.029 1.049 1.105 1.146 1.478
EC 1.000 1.005 1.123 1.042 1.094 1.156 1.148 1.472
SC 1.000 1.000 1.001 1.002 1.004 1.005 1.003 1.040
BM 1.000 1.093 n.a. n.a. n.a. n.a. n.a. n.a.
IN 1.000 1.000 1.036 1.028 1.047 1.118 1.098 1.216

Apply ing formula (4) to the problems p resen ted in Table 1, we ob ta in the results p re sen ted in Table 2,
which are relative to 1-hour searches.

Par t of the data con ta ined in Table 2 is also graphically p resen ted in Figure 4, where the different
per formances of the tes ted algori thms appear more plainly (in F igure 4 we repor ted results only on some
of the test p roblems in order to ob ta in a more easy-to-read graphic).

S. Conclusions

The pape r presents a compar ison of 8 evolut ionary heuris t ic algori thms applied, as a testbed, to the
Quadra t i c Ass ignmen t Problem. For each heuristic, the specific a lgor i thm that has b e e n imp lemen ted is
given.

1 . 6 "

15

1 .4-

1.3

1.2

11

1

J

J

J

J

J

BM

'arup 30
afei 19
t30
5

1"9

Figure 4. R t index after 1 hour of search

V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics 203

W e d e v e l o p e d a sof tware s y s t e m , A l g o d e s k , which allows to app ly any of the heur is t ics to any of t he
p r o b l e m ins tances and to ana lyze the resu l t ing o u t p u t in a un i f i ed context .

T h e c o m p a r i s o n is no t a i m e d at t he d e t e r m i n a t i o n of the bes t resu l t ach ievable (these d a t a have
a l r e ady b e e n p r o v i d e d in the l i t e r a tu r e for mos t of t he a lgor i thms) , bu t a t the assessment of the i r
eff ic iency in y ie ld ing good solut ions. F o r this reason , the raw da t a consists of the bes t so lu t ion p r o d u c e d
by each a lgo r i t hm in 1-hour - long runs on iden t ica l I B M - P C machines .

A synopt ic t ab l e is p r e s e n t e d , showing the resul t s ach ieved by each a lgo r i thm on each ins tance.
M o r e o v e r , an index is p r o p o s e d tha t quant i f ies the ef fec t iveness of a search, b o t h wi th r e spec t to the
resul t ach ieved and to the s p e e d wi th which it has b e e n a t t a ined . Pa r t i cu la r ly in te res t ing (and somewha t
surpr is ing) is:

(i) t he ef fec t iveness of t he m u l t i g r e e d y app roach , thus of the local search ope ra to r ;
(ii) in genera l , t he super io r i ty of s ingle-so lu t ion a p p r o a c h e s to p o p u l a t i o n - b a s e d ones when these last

a re run on a s ing le -p rocessor h a r d w a r e and a re no t coup led wi th local search ope ra to r s ;
(iii) the ineff ic iency o f B o l t z m a n n mach ines on sea rches o f l imi ted dura t ion .
Po in t (i) re f lec ts a Q A P p r o p e r t y which was not ye t pu t in to ev idence in t he l i t e ra tu re : any a p p r o a c h

b a s e d on local sea rch is b o u n d to be very effect ive as an heur i s t ic for Q A P .
Po in t (ii) tes t i f ies t he n e e d to pu r sue s tudies on p o p u l a t i o n - b a s e d heuris t ics . W h i l e it is in fact

in tui t ive tha t an exchange o f i n fo rma t ion b e t w e e n d i f fe ren t so lu t ion could ease t he search process , it
a p p e a r s tha t cu r r en t c o m m u n i c a t i o n o p e r a t o r s a re no t wor th the i r c o m p u t a t i o n a l cost.

F u t u r e work inc ludes t he ex tens ion of the set of a lgor i thms t e s t ed (including, for example , the
An t - sys t em, Colorni , D o r i g o and Man iezzo , 1991, 1992), o f p r o b l e m ins tances used, and of t e rmina t i ng
cond i t ions (a c o m p a r i s o n on an equa l n u m b e r of func t ion eva lua t ions cou ld be in teres t ing) . Even tua l ly
we wan t to achieve the def in i t ion of a new heuris t ic , e nc ompa ss ing the s t rong po in t s of the b e t t e r
p e r f o r m i n g a lgor i thms.

References

Aarts, E.H.L., and Korst, J.H.M. (1988), Simulated Annealing and Boltzmann Machines, Wiley, New York.
B~ick, T., Hoffmeister, F., and Schwefel, H.P. (1991), "A survey of evolution strategies", in: Proc. of the Fourth Int. Conf. on Genetic

Algorithms, Morgan Kanfrrlann, Los Altos, CA.
Bersini, H., and Varela, F.J. (1991), "The immune recruitment mechanism: A selective evolutionary strategy", in: Proc. of the

Fourth Int. Conf. on Genetic Algorithms, Morgan Kanfmann, Los Altos, CA.
Bertoni, A., and Dorigo, M. (1993) "Implicit parallelism in genetic algorithms", Artificial Intelligence 61/2, 307-314.
Boender, C.G.E., Rinnooy Kan, A.H.G., Timmer, G.T. and Stougie, L. (1982), "A stochastic method for global optimization",

Mathematical Programming 22.
Brown, D.E., Huntley, C.L., and Spillane, A.R. (1989), "A parallel genetic heuristic for the Quadratic Assignment Problem", in:

Proc. of the Third Int. Conf. on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA.
Burkard, R.E. (1984), "Quadratic Assignment Problems", European Journal of Operational Research 15.
Burkard, R.E., and Rendl, F. (1984), "A thermodynamically motivated simulation procedure for combinatorial optimization

problems", European Journal of Operational Research 17.
Camerini, P.M., Colorni, A., and Maffioli, F. (1986), "Some experience in applying a stochastic method to location problems",

Mathematical Programming Study 26.
Carraresi, P., and Malucelli, F. (1988), "Quadratic Assignment Problems: A review", Ricerca Operativa 47.
Chakrapani, J., and Skorin-Kapov, J. (1990), "Connectionist approaches to the Quadratic Assignment Problem", Report HAR-90-08,

W.A. Harriman School for Management and Policy, SUNY at Stony Brook.
Colorni, A., Dorigo, M., and Maniezzo, V. (1991), "Distributed optimization by ant colonies", in: Proc. of the First European

Conference on Artificial Life, Paris, MIT Press, Cambridge, CA.
Colorni, A., Dorigo, M., and Maniezzo, V. (1992), "An investigation of some properties of an ant algorithm", in: R. Miinner and B.

Manderick (eds.), Parallel Problem Solving from Nature - 2, North-Holland, Amsterdam.
Connolly, D.T. (1990), "An improved annealing scheme for the QAP", European Journal of Operational Research 46.
Edwards, C.S. (1977), "The derivation of a greedy approximator for the Koopmans-Beekmann Quadratic Assignment Problem",

Mathematical Programming Study 13.
Elshafei, A.E. (1977), "Hospital layout as a Quadratic Assignment Problem", OR Quarterly 28.
Finke, G., Burkard, R.E., and Rendl, F. (1987), "Quadratic Assignment Problems", Annals of Discrete Mathematics 31.

204 V. Maniezzo et al. / Algodesk: An experimental comparison of evolutionary heuristics

Finke, G., Burkard, R.E., and Rendl, F. (1987), "Quadratic Assignment Problems", Annals of Discrete Mathematics 31.
Finke, G., and Medova Dempster, E. (1989), "Combinatorial optimization problems in trace forms", Ricerca Operativa 52.
Garey, M.R., and Johnson, D.S. (1979), Computers and Intractability: A Guide to the Theory o f NP-completeness, Freeman, San

Francisco, CA.
Glover, F. (1989), "Tabu Search - Part I", ORSA Journal on Computing 1.
Glover, F. (1990), "Tabu Search - Part II", ORSA Journal on Computing 2.
Goldberg, D., and Lingle, J.R. (1985), "Alleles, loci and the Traveling Salesman Problem", in: Proc. o f an Int. Conf. on Genetic

Algorithms and their Applications, Pittsburgh, Lawrence Erlbaum, London.
Grefenstette, J.J., and Baker, J.E. (1989), "How genetic algorithms work: A critical look at implicit parallelism", in: Schaffer (ed.),

Proc. of the Third Int. Conf. on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA.
Hinton, G.E., and Sejnowski, T.J. (1986), "Learning and relearning in Boltzmann machines", in: D.E. Rumelhart and J.L.

McLelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition MIT Press, Cambridge, MA.
Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, MI.
Kirkpatrick, S., Gelatt, C.D., and Vecchi~ M.P. (1983), "Optimization by Simulated Annealing", Science 220.
Koopmans, T.C., and Beckmann, M.J. (1957), "Assignment problems and the location of economic activities", Econometrica 25.
Krarup, J., and Pruzan, P.M. (1978), "Computer-aided layout design", Mathematical Programming Study 9.
Maniezzo, V. (1991), "The rudes and the shrewds", Technical Report 91-042, Dipartimento di Elettronica, Politecnico di Milano,

Milan, Italy.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953), "Equation of state calculations by fast computing

machines", Journal of Chemical Physics 21.
Miihlenbein, H. (1989), "Parallel genetic algorithms, population genetics and combinatorial optimization", in: Schaffer (ed.), Proc.

of the Third Int. Conf. on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA.
Nugent, C.E., Vollmann, T.E., and Rural, J. (1968), "An experimental comparison of techniques for the assignment of facilities of

locations", Operations Research 16.
Peterson, C. (1990), "Parallel distributed approaches to combinatorial optimization: Benchmark studies on Travelling Salesman

Problem", Neura ! Computation 2.
Rechenberg, I. (1973), Evolutionsstrategie, Fromman-Holzbog.
Rhee, W.T. (1988), "A note on asymptotic properties of the Quadratic Assignment Problem", Operations Research Letters 7.
Rudolph, G. (1990), "Optimization of combinatorial problems by means of parallel evolutionary algorithms", ESPRIT PCA

Meeting, Ispra.
Sahni, S., and Gonzalez, T. (1976), "P-complete approximation problems", Journal of the ACM, 23.
Schwefel, H.-P. (1975), "Evolutionsstrategie und numerische Optimierung", Ph.D. Thesis, Technische Universit~it Berlin. Also

available as Numerical Optimization of Computer Models, Wiley, New York, 1981.
Skorin-Kapov, J. (1990), "Tabu Search applied to the Quadratic Assignment Problem", ORSA Journal on Computing 2.
Taillard, E. (1990), "Robust Taboo Search for the Quadratic Assignment Problem", Report ORPW 90/10, DMA, Swiss Federal

Institute of Technology of Lausanne.

