
Swarm Intell (2013) 7:201–228
DOI 10.1007/s11721-013-0079-6

On the use of Bio-PEPA for modelling and analysing
collective behaviours in swarm robotics

Mieke Massink · Manuele Brambilla · Diego Latella ·
Marco Dorigo · Mauro Birattari

Received: 31 October 2012 / Accepted: 1 March 2013 / Published online: 11 April 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we analyse a swarm robotics system using Bio-PEPA. Bio-PEPA is
a process algebra language originally developed to analyse biochemical systems. A swarm
robotics system can be analysed at two levels: the macroscopic level, to study the collective
behaviour of the system, and the microscopic level, to study the robot-to-robot and robot-to-
environment interactions. In general, multiple models are necessary to analyse a system at
different levels. However, developing multiple models increases the effort needed to analyse
a system and raises issues about the consistency of the results. Bio-PEPA, instead, allows the
researcher to perform stochastic simulation, fluid flow (ODE) analysis and statistical model
checking using a single description, reducing the effort necessary to perform the analysis
and ensuring consistency between the results. Bio-PEPA is well suited for swarm robotics
systems: by using Bio-PEPA it is possible to model distributed systems and their space-
time characteristics in a natural way. We validate our approach by modelling a collective
decision-making behaviour.

Keywords Swarm robotics · Modelling · Bio-PEPA · Fluid flow analysis · Statistical
model checking

M. Massink (�) · D. Latella
Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’ (ISTI), CNR, Pisa, Italy
e-mail: massink@isti.cnr.it

D. Latella
e-mail: latella@isti.cnr.it

M. Brambilla · M. Dorigo · M. Birattari
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

M. Brambilla
e-mail: mbrambil@ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

M. Birattari
e-mail: mbiro@ulb.ac.be

mailto:massink@isti.cnr.it
mailto:latella@isti.cnr.it
mailto:mbrambil@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:mbiro@ulb.ac.be

202 Swarm Intell (2013) 7:201–228

1 Introduction

The analysis of large and complex swarm robotics systems (Sahin 2005; Brambilla et al.
2013) directly with robots is costly and time consuming. For this reason, one of the most
common ways to analyse a swarm robotics system is through physics-based simulations.
Using physics-based simulations, it is possible to realise a very detailed representation of
the system to analyse. However, such a detailed representation could encumber the analysis
process. In fact, through simulation it is difficult to abstract from the details of a system in
order to identify its key components and parameters. Moreover, physics-based simulations
are not well suited for the formal verification of properties.

To overcome these limitations, other approaches are usually employed (Brambilla et al.
2013). Fluid flow analysis (Lerman et al. 2005), based on macroscopic models and ordinary
differential equations (ODEs) is commonly used for describing the collective behaviour of
a system. Stochastic simulations (Dixon et al. 2011), based on microscopic models, focus
instead on the behaviour of individual robots. Finally, model checking (Konur et al. 2012),
based on Markov chains and mathematical logic, can be used to verify formal properties of
a swarm robotics system.

These approaches allow a developer to obtain different “views” of the system behaviour.
However, for each of these views, a different model is necessary: macroscopic models, mi-
croscopic models and Markov chains are just three examples of possible models. Producing
such models greatly increases the effort necessary for the analysis process. Moreover, when
dealing with different models, the issue of mutual consistency must be addressed.

In this paper, we present a novel approach to model swarm robotics systems based on
Bio-PEPA (Ciocchetta and Hillston 2009), which allows one to obtain different consistent
views of a system from the same formal specification.

Bio-PEPA is a process algebra language originally developed for modelling biochemical
systems. Bio-PEPA has been adopted to analyse a number of biological systems (Ciocchetta
and Hillston 2012) and disease spread (Benkirane et al. 2012), but it has also been used
to analyse emergency egress (Massink et al. 2012c) and crowd dynamics (Massink et al.
2011b) which are systems characterised by a high number of individuals and lack of a cen-
tralised controller, aspects common also to swarm robotics systems. Bio-PEPA is well suited
to analyse and develop swarm robotics systems; with Bio-PEPA it is possible to develop a
specification at the microscopic level while providing also primitives for spatial description
(e.g. locations) and for composition of individual robot behaviour specifications (e.g. co-
operation operator). Moreover, Bio-PEPA allows one to easily define species, which can
be used to characterise groups of robots with specific attributes and actions; for instance,
species can be used to differentiate between groups of robots performing different tasks at
the same location.

Other techniques developed for biochemical systems have been used in a number of pa-
pers (Napp et al. 2011; Mather and Hsieh 2012; Evans et al. 2010) to model swarm robotics
systems due to the similarities between these two kinds of system. Examples of such sim-
ilarities are: a large number of equal entities, lack of centralised control, group formations,
different behaviours for different entities. Differently from other biochemical modelling ap-
proaches, Bio-PEPA allows one to perform different kinds of analysis using a single de-
scription of a system. As said, this aspect is also crucial for swarm robotics, where different
analyses usually require different descriptions of the same system.

In this paper, we use Bio-PEPA to develop a formal specification and to analyse a col-
lective decision-making behaviour which has been extensively studied in several papers
(Montes de Oca et al. 2011; Scheidler 2011; Valentini et al. 2013). The case study con-
sists of a swarm of robots that have to collectively identify the shortest path between two

Swarm Intell (2013) 7:201–228 203

possible choices. We validate our results against those presented in Montes de Oca et al.
(2011).

This paper builds on the preliminary results of Massink et al. (2012b). Compared to
our previous work, in this paper we present in more detail Bio-PEPA and its application to
the analysis of swarm robotics systems. To further validate our approach, we extended the
analysis of the case study, producing numerous new results. In particular, we extended the
statistical model checking analysis (Sect. 5.2) and the fluid flow analysis (Sect. 5.3).

The outline of the paper is as follows. In Sect. 2, we present related work. In Sect. 3,
we give a brief presentation of Bio-PEPA. In Sect. 4, we present the case study and its Bio-
PEPA specification. In Sect. 5, we present and validate our results. Some conclusions are
drawn in Sect. 6.

2 Related work

Swarm robotics systems can be observed at two different levels: the microscopic level and
the macroscopic level. At the microscopic level we observe the individual robots and their
interactions. At the macroscopic level we observe the swarm as a whole, that is, what results
from the interactions of the individual robots. This duality is reflected also in how swarm
robotics systems are modelled: models of swarm robotics systems can be developed both us-
ing a microscopic approach and a macroscopic approach. These different approaches result
in different ways to analyse a swarm robotics system.

In this section, we present work on microscopic modelling, macroscopic modelling and
model checking.

Microscopic modelling Microscopic models allow a researcher to study a swarm robotics
system observing in detail the robot-to-robot and robot-to-environment interactions. Such
interactions are the fundamental components of any swarm robotics system. The macro-
scopic behaviour of a swarm is in fact the result of these interactions.

Microscopic models give us a very detailed view of a system. However, this high level of
detail is also the cause of the main limit of microscopic models: limited scalability. In order
to describe the behaviour of a swarm it is necessary to replicate the description of the single
individual for the number of individuals in the swarm. This results in models with a large
number of components, which are computationally heavy to treat. Microscopic models are
usually analysed via stochastic simulation (Brambilla et al. 2013; Lerman et al. 2005).

Macroscopic modelling Macroscopic models, instead, consider the time evolution of the
swarm as a whole, ignoring the details of the individual robots composing it. Using macro-
scopic models it is possible, for example, to observe how the swarm evolves and reaches a
common decision, but not the details of the contribution of each robot to such a decision.

The most common way to create a macroscopic model for a swarm robotics systems is by
specifying a number of ordinary differential equations (ODEs) which model the distribution
over time of the components of the system. ODEs are often called rate equations in swarm
robotics. The analysis performed with ODEs is sometimes called fluid flow analysis, as the
changes in the distribution of the robots can be modelled as changes in the distribution of
liquids flowing from one location to another (Zarzhitsky et al. 2005).

This high level view allows one to analyse swarm robotics systems composed of thou-
sands of robots in a computationally feasible way, making macroscopic models the most
common modelling approach in swarm robotics (Brambilla et al. 2013). The price to pay for

204 Swarm Intell (2013) 7:201–228

this scalability is that it becomes difficult to analyse in detail the interactions of the robots. In
general, macroscopic models focus on the average behaviour of the system, abstracting from
local stochastic fluctuations. A review of macroscopic modelling in swarm robotics can be
found in Lerman et al. (2005). A comparison between the microscopic and the macroscopic
models of a swarm robotics system is presented in Martinoli et al. (2004).

Model checking Another way for specifying and analysing properties of interest of a
swarm robotics system is through mathematical logic and model checking—see, for ex-
ample, Baier et al. (1999). This approach has been applied with success to several different
fields (Burch et al. 1990; Havelund et al. 2001) but it has not been explored extensively in
swarm robotics. Some examples of model checking in swarm robotics can be found in the
works by Konur et al. (2012) and Brambilla et al. (2012).

Model checking allows the user to automatically verify whether a given property is sat-
isfied by a given model. The model, which is usually expressed through a Markov chain,
can be either microscopic or macroscopic. The property is expressed using a mathematical
logic.

Discussion In general, to perform different analyses of the same system, such as stochas-
tic simulation, fluid flow (ODE) approximation and model checking, different models are
necessary. Microscopic models are best suited for stochastic simulations; ODE macroscopic
models are best suited for fluid flow approximation; Markov chain models may be used for
stochastic model checking. The proliferation of different formalisms necessary to perform
different analyses increases the effort necessary to study a system and may create problems
of consistency between different models and related analysis results.

A way to overcome this problem is to use a high level meta-modelling language. In this
paper, we use Bio-PEPA. Bio-PEPA allows us to perform different kinds of system analysis
starting from a single specification.

3 Bio-PEPA

Bio-PEPA is a language that was originally developed by Ciocchetta and Hillston (2009)
for the stochastic modelling and analysis of biochemical systems. Bio-PEPA is based on the
Performance Evaluation Process Algebra (PEPA) (Hillston 1996).

For the purposes of the present paper, process algebras are formal specification languages
for modelling concurrent/distributed systems behaviour (Bergstra et al. 2001). They are
characterised by a formal definition of their syntax, which defines precisely the format of
the terms of their language, that is, the specifications, and a formal definition of their oper-
ational semantics, which assign meaning to such specifications, associating them to mathe-
matical objects. Furthermore, process algebras are equipped with mathematical theories for
reasoning about system behaviour, as, for example, behaviour equivalences, which precisely
characterise when two or more different specifications actually specify “the same” (strictly
speaking, we should say “equivalent”) behaviour.1 The availability of support theories based

1Often, such equivalences are congruences, which is a crucial feature for compositional modelling. Intu-
itively, one would like to build specifications of large systems in a modular way, by composing specifications
of sub-systems in order to get those of larger systems. If the specification of one such sub-system, say S1,
is proved to be congruent to another specification, say S2, then we are allowed to replace S1 with S2 in any
specification S which has S1 as sub-component, with the guarantee that the overall behaviour of S will not
be affected. Note that this is not guaranteed if one uses equivalences which are not congruences.

Swarm Intell (2013) 7:201–228 205

upon solid mathematical foundations, together with analysis techniques based on such the-
ories and often supported by efficient software tools, makes process algebras particularly
useful for the specification and analysis of behavioural aspects of concurrent/distributed
systems.

Stochastic variants of process algebras, of which Bio-PEPA is an instance, have shown to
be particularly suitable to model also performance aspects of systems (see, e.g. Hermanns
et al. 2002; Aldini et al. 2010). Process algebras thus provide a formal and unambiguous
framework for modelling and reasoning about system behaviour in a compositional way.

In Bio-PEPA, processes represent groups of similar entities. The interactions between
groups of entities affect their population sizes. In the context of swarm robotics we will use
this abstraction of “processes as groups of entities” to model groups of robots performing
different behaviours. We will use the concept of interaction to model, for example, the move-
ment of robots between different locations and for the formation of teams. The idea is that
movement of robots between locations can be modelled as a simultaneous decrease of the
size of a population situated in the location that is left and increase of the size of a population
in the location of arrival. Regarding team formation, another feature, specific of Bio-PEPA,
is particularly useful: the possibility to express the multiplicity of entities involved in single
interactions, known as “stoichiometry” in the context of biochemistry. With this feature one
can specify, for example, that three single robots can form a single team that subsequently
is treated as a single entity in a new kind of “species”.

Interactions have durations which are modelled as continuous random variables with
negative exponential distributions. The use of negative exponential distributions is justi-
fied by the fact that Bio-PEPA semantics is based on Continuous Time Markov Chains
(CTMCs) and fluid flow approximations thereof, characterised by systems of ordinary dif-
ferential equations (ODEs). CTMCs are among the most successful frameworks in the field
of quantitative system modelling and analysis, such as, for example, performance or de-
pendability analysis. They are based on exponential distributions, which have useful and
interesting mathematical properties. In practice, restriction to exponential distributions does
not represent a real limitation since it has been shown that any random distribution can be
approximated by suitable combinations of negative exponential ones, of course at the cost of
larger models, which can be ameliorated by suitable exploitation of process algebra equiv-
alences (Tschaikowski and Tribastone 2012). Finally, fluid limits and semantics are the key
for actual scalability. Roughly speaking, for a CTMC modelling the behaviour of a popula-
tion of agents, one can “scale it up” by means of making the population size increase. Under
certain (scaling) conditions, the (limit) behaviour for an infinite population can be obtained
via the solution of a suitable set of ODEs. Furthermore, good approximations of such “fluid”
limit can be obtained for large, but finite, population sizes. In the case of Bio-PEPA, such
a set of ODEs can be automatically generated for any Bio-PEPA system specification and
constitutes what is usually called the ODE or “fluid flow” semantics of the language.

A further feature of Bio-PEPA is that the rates at which interactions occur can be defined
as general functions of the population sizes of the groups involved in the interaction. This
provides great flexibility in the definition of such rates.2

2This flexibility comes at a cost. Not all analysis methods, such as Gillespie’s stochastic simulation algo-
rithms, can yet deal with the full generality of rate functions or with interactions that depend on more than
two species as input to the interaction. Similar caution is needed with the interpretation of numerical solutions
of the sets of ordinary differential equations derived from a Bio-PEPA specification. We will address these
issues in more detail in the analysis of the robot swarm decision-making strategy in Sect. 5.

206 Swarm Intell (2013) 7:201–228

We now briefly recall the aspects of the Bio-PEPA language that are directly relevant for
the swarm robotics study that will be presented in the next section. The interested reader can
find further details of Bio-PEPA in Ciocchetta and Hillston (2009).

Bio-PEPA specifications consist of two main kinds of component. The first kind is called
the “species” component. Each species defines the behaviour of all the individuals belong-
ing to it. Species components are composed together in order to build a model using the
parallel composition operator with synchronisation on shared actions. The name “species”
derives from the biochemical origins of Bio-PEPA; in the context of swarm robotics, the
name “population” is usually preferred; in the following, we will consider “species” and
“population” as synonyms.

The second kind of component is called model component. Model components define
how species components are composed together in order to build a model using the parallel
composition operator with synchronisation on shared actions.

The syntax of Bio-PEPA components is thus defined as follows, where S stands for a
species component and P for a model component:

S ::= (α, κ) op S | S + S | C with op= ↓ | ↑ | ⊕ | � | � and P ::= P ��
L

P | S(x)

The prefix combinator “op” in the prefix term (α, κ) op S represents the impact that ac-
tion α has on species S. Specifically, ↓ indicates that the number of entities of species S

decreases when α occurs, and ↑ indicates that this number increases. The amount of the
change is defined by the (stoichiometry) coefficient κ . This coefficient captures the multi-
ples of an entity involved in an interaction. The default value of κ is 1, in which case we
might simply write α instead of (α, κ). Action durations are assumed to be random variables
with negative exponential distributions, characterised by their rates. The rate of action α is
defined by a so called functional rate or kinetic rate. Action rates are defined in the context
section of a Bio-PEPA specification.

The symbol ⊕ denotes an activator, � an inhibitor and � a generic modifier, all of which
play a role in an action without being produced or consumed and have a defined meaning in
the biochemical context. We will not use these operators in the present paper. The operator
“+” expresses the choice between possible actions, and the constant C is defined by the

equation C
def= S. The process P ��

L
Q denotes cooperation between components P and

Q, the set L determines those actions on which the components P and Q are forced to
synchronise. The shorthand P ��∗ Q denotes cooperation on all actions that P and Q have
in common. In S(x), the parameter x ∈ R represents the initial amount of the species.

As a simple example, consider two groups of robots, R and B , identified by their respec-
tive colour, red and blue. Assume that we want to model the formation of a group T of teams
each composed of two red robots and a blue one. Assume furthermore that the rate at which
team formation occurs is regulated by a rate function that is proportional to the population
size of red and blue robots. In Bio-PEPA this behaviour can be modelled as follows. The
effect of the formation of a team, represented by action mk_team, on the three “species” can
be defined as:

R
def= (mk_team,2)↓R B

def= (mk_team,1)↓B T
def= (mk_team,1)↑T

The system can then be described by the following model component:
(
R(r0) ��

{mk_team} B(b0)
) ��

{mk_team} T (0)

where r0 and b0 denote the initial population sizes of the groups of red and blue robots,
respectively, and 0 denotes that initially T is empty. What remains to define is the rate at

Swarm Intell (2013) 7:201–228 207

which the teams are formed, that is, the rate of action mk_team. This rate could be defined
as the rate function: fmk_team = r × R × B .

So, operationally, what happens is that every time a mk_team action occurs, the three
species that share this action are synchronised and two red robots and one blue are taken
away from the species R and B , respectively, while at the same time one new team is gener-
ated and added to the species T increasing its population size by 1. How often the mk_team
action occurs is given by its rate function, which in turn depends on the actual population
sizes of the species R and B and a constant rate parameter r . Note also that, whenever one
of these population sizes becomes zero, the rate function goes to zero too and the interaction
can no longer take place.

In Bio-PEPA specifications, one can also use locations, which are meant to be a symbolic
representation of physical space. Locations are specified by extending prefix terms with the
notation @location. So, for instance, in order to specify that an action, say α, has an effect
on population S that is located in location l, and in particular involves κ individuals of S,
we write (α, κ) op S@l. Additionally, locations are used in model components in order to
specify the initial size of the various populations in each location. Of course, each location
used in a Bio-PEPA specification must be declared; thus, a Bio-PEPA system specification
with locations consists of a set of species components, a model component, and a context
containing definitions of locations, functional/kinetic rates, parameters, and so on.

Bio-PEPA is given a formal operational semantics based on Continuous Time Markov
Chains (CTMCs) and on Ordinary Differential Equations (ODE) (Ciocchetta and Hillston
2008, 2009).

Bio-PEPA is supported by a suite of software tools which automatically process Bio-
PEPA models and generate internal representations suitable for different types of analysis
as described in detail in Ciocchetta and Hillston (2009) and Ciocchetta et al. (2009). These
tools include mappings from Bio-PEPA to differential equations (ODE) supporting a fluid
flow approximation (Hillston 2005), stochastic simulation models (Gillespie 1977), CTMCs
with levels (Ciocchetta and Hillston 2008) and PRISM models (Kwiatkowska et al. 2011)
amenable to statistical model checking. Consistency of the analyses is supported by a rich
theory including process algebra, and the relationships between CTMCs and ODE.

4 Collective decision-making: a Bio-PEPA specification

To demonstrate the characteristics of Bio-PEPA, in this section we analyse a collective robot
swarm decision-making system presented originally by Montes de Oca et al. (2011).3 The
goal of the swarm of robots is to perform foraging: the robots carry objects from a start area
to a goal area. Unlike many foraging scenarios (Brambilla et al. 2013), the objects to be
carried are too heavy for a single robot, thus cooperation is necessary: the robots form teams
of three to be able to carry an object.

The start and the goal areas are connected by two paths: a short path and a long path.
This scenario is thus very similar to the ants double bridge experiment (Goss et al. 1989).
Similar to what ants do in the double bridge experiments, the robots have to collectively
identify and choose the shortest path. Differently from what ants do, the robots do not use
pheromones but a voting process based on the majority rule.

Each robot has a preferred path. When a group is formed in the start area (Fig. 1(a)),
a vote takes place and the group chooses the path that is preferred by the majority of the

3Since an implementation of this system using real robots is not available, the physics-based simulation will
be considered our ground truth, that is, not another analysis phase, but the subject of our analysis effort.

208 Swarm Intell (2013) 7:201–228

Fig. 1 The foraging scenario analysed in this paper. The robots start in the start area. Groups are formed
and the path is chosen using the majority rule. In this figure two examples of the voting process are shown:
(a) a group is formed; (b) the group has chosen the short path; (c) while the first group is active, another
group is formed; (d) the second group has chosen the long path, at the same time the first group is coming
back; (e) the first group is back in the start area and is disbanded

robots composing it (Fig. 1(b)). The chosen path also becomes the new preferred path for all
the robots composing the group (Fig. 1(e)). For example, if two robots prefer the short path
and one robot prefers the long path, the short path is chosen for the next run and the robot
that preferred the long path changes its preference to the short path. Note that the voting
process takes place only in the start area and no other event can change the preference of the
robots. This means that robots come back to the start area following the same path taken for
the outgoing trip. Figure 1 shows a schema of the scenario.

Since the robots taking the short path spend less time out of the start area than the robots
taking the long path, their participation in the vote is, on average, more frequent. This results
in the formation of more groups preferring the short path. If, initially, half of the robots have
a preference for the short path and half for the long path, over time, all robots will converge
on preferring the short path. More details are given in the work by Montes de Oca et al.
(2011) and in Sect. 4.1.

We chose this collective decision-making behaviour as a case-study for Bio-PEPA since
it displays several interesting characteristics common to many swarm robotics systems:

– Simplicity: the collective behaviour is simple enough that it is possible to analyse it with-
out being hampered by the implementation details.

– Direct cooperation: the robots must form groups of three to carry the objects.
– Indirect cooperation: the vote process creates an opinion dynamics that lets the robots

collectively choose the shortest path.
– Space and time aspects: space and time play an important role and must be carefully

modelled. In particular, the voting process is spatially located in the start area and only
the robot in the start area at a given moment can take part in it. Additionally, the time

Swarm Intell (2013) 7:201–228 209

Fig. 2 Locations and transitions
of robots in the Bio-PEPA
specification

necessary for the robots to carry an object, which depends on the length of the chosen
path, affects the opinion dynamics.

This system has been analysed in several other works: Montes de Oca et al. (2011) pre-
sented a simple fluid flow analysis and a Monte Carlo simulation, Scheidler (2011) presented
a more complex fluid flow analysis, Valentini et al. (2013) presented an analysis based on
absorbing Markov chains. In these works, each analysis was based on a different model. In
our paper, we use a single Bio-PEPA description to perform three different kinds of analysis.

4.1 The Bio-PEPA specification

In the remaining part of this section we present the Bio-PEPA specification of the system.
The full specification can be found in the supplementary material (Massink et al. 2012a).
As shown in Fig. 2, the system is described by eight Bio-PEPA locations: two boundary
locations, start and goal; a location A where robot teams select the short or long path
to goal according to the decision taken when leaving start and, similarly, location B ,
where robot teams select the short or long path back to start, again according to the
previously taken decision. We have then two locations for each path, L1 and L2 for the long
path and S1 and S2 for the short one. We also define a set of Bio-PEPA species to specify
the behaviour of the robots. For example in start we distinguish two species of robots:
those that the last time returned via the short path, denoted as Robo_start_ fromS, and those
that returned via the long path, denoted as Robo_start_ fromL. In the sequel we will refer to
these two groups also as the S-population and the L-population, respectively. Similarly, other
locations contain populations of teams of robots that move in the direction from the start area
to the goal area and those that move in the opposite direction. For example, in location S1
we can have Teams_S1_StoG and Teams_S1_GtoS, where StoG denotes the direction from
the start area to the goal area and GtoS the opposite direction.

The Bio-PEPA fragment below specifies the behaviour of a robot. Robots leave the start
area in groups of three. Each group is randomly composed by either three robots from the

210 Swarm Intell (2013) 7:201–228

Fig. 3 Two components
synchronised on action S2L1

Robo_start_ fromS = (allS,3)↓Robo_start_ fromS@start+
(S2L1,2)↓Robo_start_ fromS@start+
(S1L2,1)↓Robo_start_ fromS@start+
(go_S1_start,3)↑Robo_start_ fromS@start;

Teams_A_S = (allS,1)↑Teams_A_S@A+
(S2L1,1)↑Teams_A_S@A+
go_A_S1↓Teams_A_S@A;

S-population, three from the L-population or two from S and one from L or two from L and
one from S. These combinations are modelled as four different actions: allS, allL, S2L1
and S1L2. In Bio-PEPA the formation of teams of robots is modelled by the coefficient
that indicates how many entities are involved in an action. For example, upon action allS
three robots of the S-population leave start (indicated by (allS,3)↓), to form an addi-
tional team of robots in choice point A (indicated by (allS,1)↑ in Teams_A_S) which is
ready to take the short path when the team continues its journey towards the goal area
(population Teams_A_S@A). Since action allS is shared between the species components
Robo_start_ fromS and Teams_A_S this movement occurs simultaneously with the rate of
action allS that will be defined later on.

In a similar way, upon action S2L1, which is present in three components (Robo_start_
fromS, Teams_A_S and Robo_start_ fromL, of which the first two are shown in Fig. 3), all
three components synchronise, resulting in two robots from the S-population and one from
the L-population leaving the start area and forming at the same time 1 new team in choice
point A in the population Teams_A_S, that is, those teams in choice point A that decided to
take the short path. The synchronisation pattern of the components is given by the model
component shown later on. The excerpt above only shows the behaviour of teams voting for
the short path. The behaviour of those voting for the long path is similar and omitted for
reasons of space. For the same reason also the behaviour of teams moving between different
locations is not shown.

The actions denoting teams of robots leaving the start area need to occur with appropriate
rates. For example, a group of three robots that are all from the S-population has a probability
to occur equal to

pSSS = (RSS)

(RSS) + (RSL)
· (RSS − 1)

(RSS − 1) + (RSL)
· (RSS − 2)

(RSS − 2) + (RSL)

where, for the sake of readability, Robo_start_ fromL@start is abbreviated by RSL and RSS
abbreviates Robo_start_ fromS@start. The rate with which the action occurs is the product
of the probability of the action to occur and the rate of leaving the start area. A similar
probability pLLL and rate can be defined for a group of three robots from the L-population.

The probability to extract two robots from the S-population and one from the L-
population is:

pSSL = (RSS)

(RSS) + (RSL)
· (RSS − 1)

(RSS − 1) + (RSL)
· (RSL)

(RSS − 2) + (RSL)

Similarly, probabilities for pSLS, pLSS, pLLS, pLSL and pSLL can be defined. Therefore,
the total probability that two, out of the three members of a team, vote for the short path
is pSSL + pSLS + pLSS, while for the long path it is pSLL + pLSL + pLLS. Consequently,
the rates of actions S2L1 and S1L2 can now be defined as (pSSL + pSLS + pLSS) · move
and (pSLL + pLSL + pLLS) · move, respectively. Note that the sum of these six probabili-
ties and pSSS and pLLL amounts to 1. So the total rate at which teams of robots leave the

Swarm Intell (2013) 7:201–228 211

start area is constant and given by the parameter ‘move’. The rate at which teams move
from A to S1 and to L1 is also dependent on the number of teams present in A and are
walk_normal · Teams_A_S@A and walk_normal · Teams_A_L@A, respectively. The rate pa-
rameter walk_normal specifies the time it takes a robot team to move from choice-point A
to the first section of a path.

The overall system definition shows the initial size of robot populations in each location.
The overall robot behaviour is defined using cooperation on shared actions (see Sect. 3 for
a definition and example):

Robo_start_ fromS@start(SS) ��∗ Robo_start_ fromL@start(SL) ��∗
Teams_A_S@A(0) ��∗ Teams_A_L@A(0) ��∗
Teams_S1_StoG@S1(0) ��∗ Teams_S1_GtoS@S1(0) ��∗
Teams_S2_StoG@S2(0) ��∗ Teams_S2_GtoS@S2(0) ��∗
Teams_L1_StoG@L1(0) ��∗ Teams_L1_GtoS@L1(0) ��∗
Teams_L2_StoG@L2(0) ��∗ Teams_L2_GtoS@L2(0) ��∗
Teams_goal_ fromS@goal(0) ��∗ Teams_goal_ fromL@goal(0) ��∗
Teams_B_ fromS@B(0) ��∗ Teams_B_ fromL@B(0)

where the number SS in Robo_start_ fromS@start(SS) (resp. SL) is the initial size of the
robot S-population (resp. L-population) present in the start area (@start).

There is a further issue to consider which is the way to model the length of the paths. This
can be done in two ways. The first is to model each path by two sections, as illustrated above,
and vary the time it takes teams to traverse these sections by choosing a different rate for the
movement between sections on the short and the long path, respectively. However, as also
discussed in Montes de Oca et al. (2011), this model has the disadvantage that the duration
of path traversal is essentially modelled by a short series of exponential distributions which
in general approximates the average duration well, but not the variability. It therefore does
not reflect very well real robot behaviour. An alternative is to choose the same rate for each
section and to vary the number of sections on each path to model their difference in length.
This way the traversal time of a path is modelled by a sequence of say m exponentially
distributed random variables with rate λ, also known as an Erlang distribution, using the
well-known method of stages (see Kleinrock 1975, p. 119).4

We model the two paths of the environment with eight sections for the short path and 15
sections for the long path. Each section takes, on average, ten time units to traverse by a robot
team. This is modelled in the system by defining the rate walk_normal = 0.1. Considering
also the movements from the choice points to the path and those from the path to the start
area and the goal area, the short path takes on average 100 time units to traverse, and the
long one 170. This is comparable to the latency periods used in Montes de Oca et al. (2011)
and provides a good approximation of the actual variability observed in robot movement.
Other free variables of the model not provided in Montes de Oca et al. (2011) have been
selected by us.

The analysis presented in Montes de Oca et al. (2011), that we will use to compare our
results with in the next section, is based on the assumption that there is a constant number
of teams, say k, active (that is, not present in the start area) at any time. The number k

is a parameter of the model. In the Bio-PEPA model we use parameter min_start which

4The mean (variance, resp.) of an Erlang distribution with m phases of rate λ is m/λ (m/λ2 resp.). Thus an
appropriate choice of m and λ can guarantee the required values for the mean and variance, approximating a
normal distribution.

212 Swarm Intell (2013) 7:201–228

Fig. 4 Graphical representation
of the full Bio-PEPA swarm
decision-making model

specifies the minimum number of robots in the start area at any time. As we will see in the
next section, after a short initial transitory period, the following holds in the model with a
good approximation: k = (32 − min_start)/3.5

A more detailed graphical representation of the complete Bio-PEPA specification is pre-
sented in Fig. 4. It presents the various locations, with eight locations on the short path (S1

through S8) and 15 on the long path (L1 through L15). In each location there are two pop-
ulations. Their names have been abbreviated for reasons of presentation. Names starting by
R indicate populations of robots, names starting by T refer to populations of teams. Names
ending in S refer to populations of elements that are in favour of the short path, those ending
in L refer to elements in favour of the long path. The arrows after the names of the pop-
ulations in the locations on the paths indicate the direction of movement of the elements
of the population, so those moving from the start area to the goal area are indicated by an
arrow pointing downwards, whereas those moving from the goal to the start are indicated
by an arrow pointing upwards. Also the actions that label the transitions between locations
correspond to those in the Bio-PEPA specification; however, for reasons of readability, only
one action is shown (allS) of all those between the start area and choice point A.

5In Bio-PEPA, one can make use of a predefined function H which takes a number as an argument. If this
number is zero, H returns zero, otherwise it returns 1. To guarantee a minimum number min_start of robots
in the start area, the rate of action S2L1 can then be defined as: S2L1 = (pSSL + pSLS + pLSS) ∗ move ∗
H((RSS + RSL) − min_start); the same must be done for the other related rates.

Swarm Intell (2013) 7:201–228 213

5 Analysis

For the analysis, in this section we consider a Bio-PEPA swarm decision-making specifi-
cation with a population of 32 robots, unless stated otherwise. We furthermore consider
the following parameters for the specification: initially SS = 16 and SL = 16, move = 0.28,
walk_normal = 0.1.

In the following, we illustrate three different forms of analysis of the same Bio-PEPA
specification and compare their results with those validated in the literature (Montes de Oca
et al. 2011). Good correspondence of the results would mean that Bio-PEPA is a viable for-
mal language to model this kind of swarm robotics system but with the additional advantage
that a single specification can be used for multiple kinds of analysis. This also means that,
due to the precise and unambiguous mathematical semantics of the language, the results of
the different analyses are formally related and coherent since they are systematically derived
from the same specification.

In the following sections, the directly relevant aspects of each kind of analysis are re-
called, in particular for what concerns its connection to Bio-PEPA. We omitted such a
description for stochastic simulation because we assume readers to be familiar with this
well-known and widely applied method in the context of swarm robotics. Following each
description, the application of the method is illustrated on the Bio-PEPA swarm robotics
model and results are discussed and compared with those in the literature.

5.1 Stochastic simulation

The first kind of analysis uses stochastic simulation to check the average number of active
teams in the system over time for different assumptions on the minimal number of robots that
are present in the start area. The Bio-PEPA tool suite relies on an implementation of Gille-
spie’s stochastic simulation algorithm (Gillespie 1977). The original algorithm assumed that
only interactions with at most two species were used in the model and that the rates were
simple products of a constant and a population size. In the Bio-PEPA model this is indeed
the case with the exception of the rate functions involved in the team formations, which are
slightly more general, but which do not cause any problem.

Figure 5 presents two stochastic simulation results (average over 10 simulation runs) for
min_start = 5 (Fig. 5, left) and min_start = 2 (Fig. 5, right), showing the number of robots
on both paths and in the start area and also the number of teams on each path. The figure
also shows that the number of active teams on the paths quickly increases to 9 (resp. 10)
and then stabilises at that level. This means that the rate at which robots leave the start area,

Fig. 5 Number of active teams for min_start = 5 (left) and min_start = 2 for move = 0.28 (right)

214 Swarm Intell (2013) 7:201–228

i.e., move = 0.28, is sufficiently high to quickly reach a situation that presents the desired
number of active teams. This makes it possible to compare the results of this analysis with
the results obtained with the physics-based simulation and Monte Carlo simulation reported
in Montes de Oca et al. (2011), which will be discussed in Sect. 5.2.3.

5.2 Statistical model checking

Model checking has first been developed in a non-quantitative setting. Pioneers of this tech-
nique, starting their developments in the early 1980s, are, among others, Clarke et al. (2009)
and Holzmann (1991). This verification technology provides algorithmic means to deter-
mine whether an abstract model of, for example, a hardware or software component, satis-
fies a formal property expressed as a temporal logic formula. Moreover, when the formula is
found not to be satisfied, it can provide automatically a counterexample that illustrates the
potential source of the problem.

At the heart of model checking algorithms are efficient and flexible search procedures
used to verify behavioural properties on the finite, but potentially huge, state space, typi-
cally represented as a graph, of (a model of) a real-world system. Concurrent systems often
produce huge state spaces which is due to the largely asynchronous composition of a con-
siderable number of processes.

More recently, model checking techniques have been extended to deal with quantitative
performance aspects of concurrent systems and related probabilistic versions of the tempo-
ral logics for the specification of quantitative properties have been formulated, such as the
Continuous Stochastic Logic (Aziz et al. 2000; Baier et al. 1999). Efficient model checking
methods for these stochastic variants are based on well-known numerical algorithms for the
calculation of standard measures of continuous/discrete time Markov chains, like transient
or steady state probabilities.

Although stochastic model checking, as this probabilistic variant is called, may gener-
ate very accurate answers, it relies on building the state space of the complete underlying
Markov chain of the abstract system model, which (currently) restricts its realistic applica-
bility to system models with a number of states in the order of 107.

A recently proposed related way to analyse large concurrent systems is via statistical
model checking. In its most general form, statistical model checking is an analysis method
in which a logic formula, formalising a probabilistic property of interest, is automatically
checked against a set of randomly generated simulation runs of a high-level model of the
system. The probability that the formula holds for the model is then estimated via statistical
analysis rather than numerical analysis. This has various consequences. On the one hand,
statistical model checking can deal with system models that have very large state spaces
because only a set of paths need to be generated instead of the whole state space. On the
other hand, in cases in which high accuracy is required the set of paths that need to be
generated may be huge as well. So, in case of very large systems and when high accuracy is
not the main issue, statistical model checking may be the right option.

Various statistical techniques have been implemented and added to existing stochastic
model checkers such as PRISM (Kwiatkowska et al. 2011). Among these are techniques to
approximate the probability with which a formula holds and techniques to establish whether
such a probability is above or below a certain given bound. The former is based on various
confidence interval methods, whereas the latter is based on hypothesis testing, in particular
Wald’s sequential probability ratio test (Younes et al. 2006).

For the analysis of properties of the Bio-PEPA model we will make use of two of the
above techniques, in particular confidence interval methods to estimate probability and re-
wards. Before we present these two techniques in more detail, we first give an overview of

Swarm Intell (2013) 7:201–228 215

the type of properties of interest for the case study. Since we only deal with CTMCs, we
will only review a relevant selection of Continuous Stochastic Logic properties. For a more
complete overview and further details we refer the interested reader to Nimal (2010).

5.2.1 Performance properties

In the following we will encounter two types of performance property: (bounded) until for-
mulae and reward formulae. The first type is given by the following grammar:

property ::= P=?[proposition U≤t proposition]

| P=?[proposition U proposition]

| P�b[proposition U≤t proposition]
where φ1U

≤t φ2 holds on a path σ of the model if φ2 is true for a state on the path reached
within time t and that until then φ1 is true. More formally, for σ a path of the model,

σ |
 φ1U
≤t φ2 ≡ ∃t1 ≤ t.σ (t1) |
 φ2 ∧ ∀t0 < t1.σ (t0) |
 φ1

were σ(t) is the state in σ occupied at time t and σ |
 φ means that path σ satisfies for-
mula φ. In the variant without time bound t it is required that eventually a state is reached
in σ in which φ2 holds, and that all preceding states satisfy φ1. Again, more formally:

σ |
 φ1Uφ2 ≡ ∃t1.σ (t1) |
 φ2 ∧ ∀t0 < t1.σ (t0) |
 φ1

Note that in statistical model checking only paths of a maximum length, say �, are consid-
ered: � is one of the parameters of the model checking algorithm. This parameter should be
sufficiently large for unbounded until formulae to make sense and needs to be considered
carefully on a case by case basis. An alternative is to consider only bounded until formulae.

P=?[φ] denotes the probability measure of the set of paths of the model that satisfy φ.
P�b[φ] is the property stating that the probability measure of the set of paths satisfying φ is
bounded by b, where b is a probability value and � ∈ {<,≤,>,≥}.

Propositions are given by the following grammar, where ∧ denotes conjunction, | dis-
junction and ! negation and the label needs to be defined separately:

proposition ::= label
| proposition ∧ label
| ! proposition
| proposition | label

The second type of formulae that we will consider are reward formulae. Reward formulae
make use of reward structures that are added to the abstract system model. Reward structures
can be used, for example, to count the number of times that certain actions occur, such as
the formation of a team. This is captured by a reward structure that accumulates the number
of occurrences of the event of interest. They can also be used to record the amount of time
that passes until a certain event occurs, for example the time until the first team reaches the
goal area. This is captured by a reward structure that accumulates time with rate 1 in every
state of the system. The accumulation of time stops as soon as the specified event occurs.

An example of a reward structure to accumulate time is shown in Fig. 6.

216 Swarm Intell (2013) 7:201–228

Fig. 6 Reward structure to
accumulate time

reward “total_time”
true : 1;

endreward

We will consider the following types of reward formula:

expectation ::= R{rwlabel}=?[F proposition]

| R{rwlabel}�r [F proposition]

| R{rwlabel}=?[C≤t]

| R{rwlabel}�r [C≤t]

where rwlabel is the name of the reward structure in the model which the formula refers to.
R{“id”}=?[F φ] returns the expected reward, using reward structure “id”, based on the set
of randomly generated paths σ , where for each σ the reward is accumulated until a state of
σ is reached in which proposition φ holds. R{“foo”}�r [F φ] compares the expected reward
with bound r . It is also possible to obtain the expected cumulative reward up to a certain
point in time t , this is expressed by the formula R{“id”}=?[C≤t]. To compare the expected
reward with a given bound r the formula R{“id”}�r [C≤t] is used.

5.2.2 Confidence interval methods

An overview of the statistical model checking approach is given in Fig. 7. Confidence in-
terval methods in statistical model checking seek to provide an estimate of the probability
that a given property holds for the paths of an abstract system model with a certain level
of reliability. A confidence interval is an estimated interval of a certain width 2w such that,
if the estimation is repeated a number of times, then the real probability lays within this
interval 100 × (1 − α) % of the times. The reliability parameter α is the level of confidence.
Assume, for all i ∈ {1, . . . ,N}, that {Yi}i is a set of realisations of the Bernoulli random
variables Xi , where Xi is 1 if property φ on a randomly generated path σ of length k holds,
and 0 otherwise. It is assumed that all Yi are independent and identically distributed (i.i.d.)
and normally distributed. Using the Central-limit theorem it is possible to derive a lower
bound on the required number of paths N that need to be generated in order to provide an
estimate of the probability with the required accuracy w and level of confidence α. It is also
possible, given α and a desired number of paths N , to calculate the accuracy w. The latter is
the approach we will follow in this paper in order to obtain results that can be compared with

Fig. 7 Overview of the statistical model checking approach

Swarm Intell (2013) 7:201–228 217

those available in the literature that refer to a given number of sample paths. Several other
methods are available as well, such as the asymptotic confidence interval method (ACI) and
the approximate model checking technique (AMC) that use different bounds for the mini-
mal sample size N . The latter also uses different notions of accuracy and confidence. For a
detailed comparison of these methods we refer to Nimal (2010).

The confidence interval method has also been adapted to estimate the expected value of
rewards, that is, for reward formulae of type R=?[φ]. Let Σ be a reward structure and φ a
property over paths σ . The random variable Xφ,Σ(σ) can now be defined to produce a reward
value, that is, it is of type Xφ,Σ(σ) ∈ Ω → R

+. It is assumed that the random variables are
i.i.d. and normally distributed. For the rest the method is similar to the confidence interval
method described above.

5.2.3 Results

The statistical model checking approaches described above are provided by various model
checkers among which the model-checker PRISM described in Kwiatkowska et al. (2011).
The Bio-PEPA specification developed in Sect. 4 can be translated automatically into a
model expressed in the PRISM input language by the Bio-PEPA tool suite described in Cioc-
chetta et al. (2009). The translation approach itself is described in Ciocchetta and Hillston
(2009). The resulting PRISM specification can be found in the supplementary material pro-
vided by Massink et al. (2012a). The PRISM model is a stochastic model having a CTMC
as underlying mathematical structure.

One of the principal properties of interest for robot swarm decision making concerns the
convergence aspects of the decision strategy. The first concern is whether convergence on
one of the paths occurs at all. In principle, mixed decision situations could occur in which
the swarm does not converge entirely on a single path. We will show that such a situation
occurs with zero probability. A second concern is whether convergence on a single path
always occurs eventually, that is, the system does not enter in some form of oscillating
behaviour that prevents convergence. Convergence on the short path (Convergence_on_S)
can be defined as the situation in which each of the 32 robots is either in a team on the short
path, or in the S-population in the choice points, the start area or the goal area. In terms of the
population sizes in the various locations, convergence on the short path can be formalised
as the following proposition:

3 ∗ (Teams_S1_StoG@S1 + · · · + Teams_S8_StoG@S8)+
3 ∗ (Teams_S1_GtoS@S1 + · · · + Teams_S8_GtoS@S8)+
3 ∗ Teams_goal_ fromS@goal + Robo_start_ fromS@start+
3 ∗ (Teams_A_S@A + Teams_B_ fromS@B) = 32

“Convergence_on_L” can be defined similarly, but requiring that the above sum is equal to
0 instead of 32.

The formula to obtain an estimate of the probability that the system eventually converges
either on the long or on the short path can now be expressed in terms of the formulae that
were introduced before:

P =?
[
true U (“Convergence_on_L” | “Convergence_on_S”)

]
(1)

Recall that P =? is used to compute a probability, and U reads as “until”.
For 100 sample paths, a confidence level α = 0.01 and a maximum sample path length

of 20,000 we obtain the result that for each k ranging from 1 to 10 the system converges to
the short or the long path with probability 1. In fact, convergence takes place in each of the
sample paths, so mixed decision situations do not occur.

218 Swarm Intell (2013) 7:201–228

Fig. 8 Probability of
convergence on the short path
(100 samples). k is the number of
active teams in the system

Fig. 9 Reward structure to count
team formations

reward “teams”
[go_A_S1] true : 1;
[go_A_L1] true : 1;

endreward

The next question of interest is then what is the probability that the system converges on
the short path. More precisely, this question should be formulated as “what is the probability
that the system did not converge on the long path until it converges on the short path”. The
latter can be expressed as:

P =? [!“Convergence_on_L” U “Convergence_on_S”] (2)

where that ! stands for negation.
The analyses of Eq. (2) for a number of teams k ranging from 1 to 10 is shown in Fig. 8

as a solid line. The analyses have been based on 100 random sample paths, a confidence
level α = 0.01 and a maximal sample path length of 20,000. In the figure the widths of the
confidence interval are shown as vertical bars. The results are compared to those obtained
via physics-based simulation and Monte Carlo simulation of the same case-study reported
in Montes de Oca et al. (2011) and shown as dotted and dashed lines, respectively. The
latter are close to the results obtained with the Bio-PEPA specification and well within the
error-margins.

The expected number of teams formed until convergence has taken place on the short
or the long path can then be analysed by statistical model checking using the logic reward
formula:6

R{“teams”} =?
[
F (“_Convergence_on_S”|“_Convergence_on_L”)

]
(3)

The formula refers to a reward structure “teams” that counts the number of teams that were
formed. In terms of the Bio-PEPA model, the formation of teams is directly related to the
occurrence of the actions ‘go_A_S1’ and ‘go_A_L1’, that is, when teams move from choice
point A to one of the paths. The specific reward structure required is shown in Fig. 9.
Essentially this represents the fact that every time action ‘go_A_S1’ or ‘go_A_L1’ occurs,
the total number of teams formed so far is incremented by 1.

6See Sect. 5.2.1.

Swarm Intell (2013) 7:201–228 219

Fig. 10 Expected number of
team formations until
convergence (1,000 samples). k

is the number of active teams in
the system

Fig. 11 Expected number of
team formations until
convergence for different rates at
which teams leave the start area
in the Bio-PEPA model. k is the
number of active teams in the
system

Figure 10 shows results on the expected number of team formations until convergence
on the short or long path (Eq. (3)) using 1000 samples, α = 0.01 and maximal path length
of 20,000. The width of the confidence intervals are shown as error-bars.

The results obtained by stochastic model checking, physics-based simulation and Monte
Carlo simulation are consistent for values of k up to 7. They diverge for higher values of k.
The divergence can be explained by the differences in the underlying models that are used.
The Monte Carlo simulations are obtained from an ODE model in which it is assumed that,
at any point in time, a constant fixed fraction of the total population is in the start area.
Such a fixed fraction can only be maintained if, upon arrival of a team in the start area, a
new team forms and leaves the start area immediately. In the Bio-PEPA model this can be
approximated by choosing a high rate for the parameter ‘move’. In fact, as can be observed
in Fig. 11, for move = 30 the results of the Bio-PEPA model follow a similar tendency as
the results for the Monte Carlo simulation. An explanation for this tendency is that, for high
values of k, the system needs more team formations to converge. This is due to the fact that
when k is high, a robot team returning to the start area can influence the opinion only of the
few robots that are in the start area: five robots for k = 9 and only two for k = 10.

For k = 9 there is a further divergence between the results obtained by Monte Carlo
simulation and stochastic model checking. This can most likely be explained by the fact
that Monte Carlo simulations start from an initial state in which a large fixed fraction of
the population is already out of the start area and distributed over the paths in a particular

220 Swarm Intell (2013) 7:201–228

Fig. 12 Number of active teams
for min_start = 5 (k = 9) and
min_start = 2 (k = 10) for
move = 0.025 (average over 10
independent simulation runs)

proportion. The number of team formations needed to reach such a state is not considered in
the Monte Carlo simulation. On the other hand, in the Bio-PEPA model (and in the physics-
based model) all robots are initially in the start area and subsequently distribute over the
two paths. This results in many different intermediate distributions over the paths, which
are likely to have an effect on the average number of team formations needed to reach
convergence. Furthermore, for k = 10 (and k = 9 to a somewhat lesser extent) border effects
might arise: the system is stretched to an extreme situation in which, at any time, only two
robots remain in the start area. This small number is a source of strong stochastic fluctuations
that might cause ‘accidental’ convergence earlier than what one could expect given the size
of the population.

The physics-based simulation is based on the assumption that the teams leave the start
area on average every 40 seconds, until a number of k teams are active. In the Bio-PEPA
specification, this can be modelled by letting move = 0.025. The formation of teams is sus-
pended whenever there are k teams active and is resumed when teams return to the start area.
For this value of move, statistical model checking produces results that are comparable with
those produced by the physics-based simulation (as shown in Fig. 11). This can be explained
by observing that in the model used for the physics-based simulation when k is high, the av-
erage number of active teams is actually substantially lower than the nominal value k. This
can also be made visible using simulation of the Bio-PEPA specification as shown in Fig. 12
for an average of the number of active teams over 10 simulation runs for k = 9 and k = 10
and move = 0.025. As a consequence, the number of robots in the start area is larger than
the nominal N − 3k, which in turn means that there are more robots that provide implicitly
feedback on which of the two paths is the shortest. This explains why the expected number
of teams formed until convergence obtained with statistical model checking does not differ
much from those obtained with physics-based simulation (for move = 0.025).

The difference between physics-based simulation and statistical model checking for
higher values of the parameter move can be explained by looking at the early phases of
the experimental runs. In the early phases there are more robots in the start area and they
leave that area relatively quickly before feedback from returning teams can be taken into ac-
count. This is possibly leading to larger stochastic fluctuations before the system converges
on one of the paths, resulting in more team formations.

A similar analysis using the same formula as used for the expected number of teams (see
Fig. 9), but substituting teams with the reward structure total_time, gives the expected time

Swarm Intell (2013) 7:201–228 221

Fig. 13 Expected convergence
time (100 samples), move = 0.28

Fig. 14 Expected S-teams and
L-teams formed until
convergence (move = 0.28)

until convergence (for move = 0.28). Figure 13 shows the expected convergence time. No
data from the literature concerning this aspect are available for comparison.

The total model-checking time to produce the data in Fig. 8 was ca. 10 minutes, those in
Fig. 10 ca. 48 minutes and those in Fig. 13 ca. 5 minutes.7

By separating the reward structure in Fig. 9 into one for the expected number of teams
that decide to take the short path (S-teams) and one for those that decide to take the long
path (L-teams) the contribution of each kind can be made visible using a reward formula
similar to that shown in Eq. (3). The result is shown in Fig. 14. For any value of k the
number of S-teams is always higher than the number of L-teams. This can be explained by
the fact that initially the S-population and the L-population in the start area have equal size
and moreover that the probability that the system converges on the short path is more than
50 % in all cases.

5.3 Fluid flow analysis

The third kind of analysis we consider is a fluid flow approximation of the ODE underlying
the Bio-PEPA specification. Based on the Bio-PEPA syntax, the underlying ODE model

7Model-checking was performed on an iMAC with a 3.2 GHz Intel core i3 processor and 4 GB memory
running the MacOS X operating system.

222 Swarm Intell (2013) 7:201–228

can be generated automatically and in a systematic way, as shown in Hillston (2005) and
in Ciocchetta and Hillston (2009), using the Bio-PEPA tool suite presented in Ciocchetta
et al. (2009). This provides yet another view on the behavioural aspects of the system. One
can, for example, explore numerically the sensitivity of the system to initial values and
discover stationary points and other aspects related to stability analysis.

The derivation of ODEs from a Bio-PEPA specification is based on the following steps
(see Ciocchetta and Hillston 2009):

1. definition of the stoichiometry (n × m) matrix D, where n is the number of species and
m is the number of actions. The entries of the matrix D are obtained in the following
way. For each species component Ci the prefix sub-terms Cij , that is, those of the form
(αj , κij) op Si@l, are considered. Such sub-terms represent the change of the species i

as a consequence of action j . If the term contributes to an increase of the population size
of the species then the entry is +κij , if it contributes to a decrease then the entry is −κij ;

2. definition of the functional rate (m × 1) vector v̄f (t) containing the functional rate of
each action;

3. association of the variable xi(t), the expected value of the population size at time t , with
each component Ci and the definition of the (n × 1) vector x̄(t).

The ODE system is then obtained as

dx̄(t)

dt
= D × v̄f (t)

with initial population sizes xi0 , for i = 1, . . . , n.
To illustrate these steps, consider the slightly extended small toy Bio-PEPA example

introduced in Sect. 3 in which teams can also be dissolved into individual red and blue
robots as follows:

R
def= (mk_team,2)↓R + (dis,2)↑R

B
def= (mk_team,1)↓B + (dis,1)↑B

T
def= (mk_team,1)↑T + (dis,1)↓T

with the following model component:
(
R(r0) ��

{mk_team,dis} B(b0)
) ��

{mk_team,dis} T (t0)

If we let the functional rates for this toy example be mk_team = 0.002 ∗ R ∗ B and dis =
0.2 ∗ T we obtain the following ODE:

dR(t)

dt
= −2.0 · r · R(t) · B(t) + 2.0 · s · T (t)

dB(t)

dt
= −1.0 · r · R(t) · B(t) + 1.0 · s · T (t)

dT (t)

dt
= +1.0 · r · R(t) · B(t) − 1.0 · s · T (t)

where r = 0.002 and s = 0.2, to be solved with respect to the initial condition r0 = 200,
b0 = 100 and t0 = 500. The numeric solution of this ODE for the above mentioned initial
values is shown in Fig. 15.

We now return to the real swarm robotics case study in Bio-PEPA, which leads to a
model composed of 54 ordinary differential equations, and discuss various aspects of the
relation between stochastic simulation and fluid approximation results. In Fig. 16 we can

Swarm Intell (2013) 7:201–228 223

Fig. 15 Expected population
sizes of R, B and T over time
(ODE) for the small toy example

Fig. 16 Fraction of the
S-population

observe the total fraction of robots in the S-population over time, that is, both those present
in the start area and those in the teams.8 Clearly, the fluid approximation for a model with
initially 32 robots in the start area, of which 16 would vote for the short path and 16 for
the long path, predicts that the system converges in 100 % of the cases to the short path
for the given initial values. Stochastic simulation over 100 independent runs (G100) shows
that such convergence happens only in 85 % of the cases, which corresponds to what we
found with statistical model checking for a comparable value of k (see Fig. 8). The differ-
ence can be explained by the larger effect of stochastic fluctuations that occur in stochastic
simulations of the system when the population is small. The probability that the system ‘ac-
cidentally’ converges on the long path is in that case relatively high. In fact, if a somewhat
larger population is considered, a good correspondence can be observed between the fluid
approximation and stochastic simulation over 1,000 independent runs (G1000), as shown in
Fig. 17 for N = 320.

For large populations the probability that the system ‘accidentally’ converges to the long
path tends to zero. In fact, single simulation trajectories tend to approximate the determinis-
tic ODE solution very well for a finite time horizon when the specification satisfies certain

8To guarantee continuity of the ODE model, the H-function has been removed and replaced by setting move =
0.03 to approximate a scenario in which k = 7.

224 Swarm Intell (2013) 7:201–228

Fig. 17 Fluid approximation
(ODE) versus the mean of 1,000
simulation trajectories (G1000),
for NS = NL = 160. Parameters
are move = 0.03 ∗ 10 and
walk_normal = 0.1

Fig. 18 Fluid approximation
(ODE) versus single simulation
trajectory (G1), for
NS = NL = 16,000. Parameters
are move = 0.03 ∗ 1,000 and
walk_normal = 0.1

scaling conditions and the population considered in the simulation is sufficiently large. An
example is shown in Fig. 18 for N = 32,000. This is a well-studied phenomenon (Kurtz
1970): it has also been applied recently in the context of stochastic process algebra (Triba-
stone et al. 2012), for an analysis of the double bridge experiment with ants in Bio-PEPA
(Massink and Latella 2012) and for the analysis of crowd dynamics (Massink et al. 2011a).

Note that for large populations the model abstracts from the increased risk of collisions
between robots on both paths, or, in other words, it is assumed that the size of the paths
is scaled in such a way that the number of collisions is proportionally the same as in the
model with 32 robots. This model can provide interesting insights in the behaviour of the
decision-making strategy as such, that is, abstracting from accidental stochastic fluctuations
that occur with small populations. An example of such analysis is given in Fig. 19 which
shows a number of ODE trajectories for different initial values of the S-population (NS)
and the L-population (NL) in the start area. The trajectories start from the points indicated
on the diagonal and end in one of the two stationary points of the system indicated by a
cross at (0, 15,710) and at (3,110, 0). Clearly, the system is bi-stable. For some initial value
combination of NS between 12,000 and 14,000 and NL between 20,000 and 22,000, such that
NS + NL = 32,000, a sudden shift takes place from trajectories converging on the long path
to trajectories converging on the short path. A further interesting observation can be made
with the help of the graph in Fig. 18. Different phases of behaviour can be distinguished.
There is a first phase in which robots leave the start area at a constant rate. This can be

Swarm Intell (2013) 7:201–228 225

Fig. 19 Phase-space diagram of
S-population versus L-population
in the start area for a population
of 32,000 robots. ODE
trajectories for different initial
values of NS and NL starting
from the diagonal line and
finishing in one of the two
stationary points indicated by a
cross at (0, 15,710) and at
(3,110, 0). Parameters are
move = 0.03 ∗ 1,000 and
walk_normal = 0.1

observed up to ca. time 200. After that, robots start to return to the start area, first from the
short path and later on from the long path, providing feedback to the population in the start
area. At about time 600 it can be observed that the feedback is starting to have effect on the
decision on which path to take, and an increasing number of teams take the short path rather
than the long path with the consequence that the S-population in the start area continues to
increase, while the L-population continues to decrease. The various phases in behaviour can
also be observed in Fig. 19 where the change due to the arrival of feedback leads to small
circle-like shapes in the curves.

Both in Figs. 18 and 19 the number of robots in the start area stabilises around 15,710
in case of convergence on the short path, and around 3,110 in case of convergence on the
long path. That means that in the former case about 50% of the total population resides in
the start area and that, on average, 5,430 teams circulate on the short path. In the latter case,
there are far fewer robots in the start area and on average 9,630 teams circulate on the long
path.

Note that Fig. 19 has been obtained via an automatic translation of the Bio-PEPA spec-
ification into SBML (Bornstein et al. 2004), which is a standard markup language widely
used in systems biology, and then via another translator9 from SBML into the Octave (Eaton
2002) or equivalently into the Matlab language (Gilat 2004). Such a tool-chain allows fur-
ther numerical exploration of the generated ODEs with powerful applied mathematics tool
suites.

6 Conclusions

In this paper, we analysed a swarm robotics system using Bio-PEPA. The behaviour analysed
is a decision-making behaviour originally presented in Montes de Oca et al. (2011). Bio-
PEPA (Ciocchetta and Hillston 2009) is a language based on the process algebra PEPA. It
was originally developed for the stochastic modelling and analysis of biochemical systems.
By using Bio-PEPA we were able to model the swarm robotics system at the microscopic
level addressing issues like direct and indirect cooperation, team formation, heterogeneous
team behaviours, voting, and certain spatial and temporal aspects.

9See http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoOctave.html.

http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoOctave.html

226 Swarm Intell (2013) 7:201–228

The main advantage of the use of Bio-PEPA is that it allows the researcher to perform
a variety of analyses starting from a single microscopic specification. Among the possible
analyses, we performed stochastic simulation, fluid flow (ODE) approximation and statis-
tical (stochastic) model checking. The possibility to perform different analyses from the
same specification reduces the effort necessary for the analysis process, while preserving
the mutual consistency of the results.

In the presented analysis of the collective decision-making behaviour, we show that using
Bio-PEPA we obtain results compatible with those obtained using other approaches, such as
the results presented in Montes de Oca et al. (2011) via physics-based simulation and Monte
Carlo simulation.

Our long term goal is to extend Bio-PEPA to facilitate the modelling and analysis process
of swarm robotics systems. We believe that this could promote a more widespread uptake of
modelling and analysis in swarm robotics.

Currently, Bio-PEPA provides relatively limited mechanisms to model and analyse more
sophisticated spatial and temporal concepts. In future work, we plan to address this. We
also plan to develop formal methods to further explore non-linear behavioural aspects using
numerical techniques. Of particular interest are a further integration of formal modelling and
the generation of phase diagrams and bifurcation diagrams to obtain insight in the stability
aspects of non-linear systems. Furthermore, the development of advanced model-checking
techniques for swarm robotics that exploit fluid approximation along the lines of the work
presented in Bortolussi and Hillston (2012) is of direct interest too.

Another open problem that we plan to tackle is the gap between Bio-PEPA models and
physics-based simulations. Currently, there is no direct link between a Bio-PEPA model
and a physics-based simulations of the same system, neither from model to simulation, nor
from simulation to model. This passage must be done manually relying on ingenuity and
experience. As future work, we plan to create ways to partially or completely automatise
these passages. We think that this could greatly stimulate the use of Bio-PEPA, as it would
reduce the effort necessary to model and analyse a system.

Acknowledgements The research leading to the results presented in this paper has received funding from
the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–
2013)/ERC grant agreement no. 246939, and by the EU project ASCENS, 257414. Manuele Brambilla,
Mauro Birattari and Marco Dorigo acknowledge support from the F.R.S.-FNRS of Belgium’s Wallonia-
Brussels Federation. Diego Latella has been partially supported by Project TRACE-IT—PAR FAS 2007–
2013—Regione Toscana. The authors would like to thank Stephen Gilmore and Allan Clark (Edinburgh
University) for their help with the Bio-PEPA tool suite and templates.

References

Aldini, A., Bernardo, M., & Corradini, F. (2010). A process algebraic approach to software architecture
design. Heidelberg: Springer.

Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. (2000). Model checking continuous time Markov chains.
ACM Transactions on Computational Logic, 1(1), 162–170.

Baier, C., Katoen, J.-P., & Hermanns, H. (1999). Approximate symbolic model checking of continuous-time
Markov chains. In Lecture notes in computer science: Vol. 1664. Concur ’99 (pp. 146–162). Heidelberg:
Springer.

Benkirane, S., Norman, R., Scott, E., & Shankland, C. (2012). Measles epidemics and PEPA: an exploration
of historic disease dynamics using process algebra. In D. Giannakopoulou & D. Méry (Eds.), Lecture
notes in computer science: Vol. 7436. FM 2012: formal methods (pp. 101–115). Berlin: Springer.

Bergstra, J., Ponse, A., & Smolka, S. (Eds.) (2001). Handbook of process algebra. Amsterdam: Elsevier.

Swarm Intell (2013) 7:201–228 227

Bornstein, B., Doyle, J., Finney, A., Funahashi, A., Hucka, M., Keating, S., Kovitz, H. K. B., Matthews, J.,
Shapiro, B., & Schilstra, M. (2004). Evolving a lingua franca and associated software infrastructure
for computational systems biology: the systems biology markup language (SBML) project. Systems
Biology, 1, 4153.

Bortolussi, L., & Hillston, J. (2012). Fluid model checking. In M. Koutny & I. Ulidowski (Eds.), Lecture
notes in computer science: Vol. 7454. CONCUR (pp. 333–347). Berlin: Springer.

Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Property-driven design for swarm robotics.
In Proceedings of 11th international conference on autonomous agents and multiagent systems (AAMAS
2012) (pp. 139–146). IFAAMAS.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a review from the swarm
engineering perspective. Swarm Intelligence, 7(1), 1–41.

Burch, J., Clarke, E., McMillan, K., & Dill, D. (1990). Sequential circuit verification using symbolic model
checking. In Proceedings of the 27th design automation conference (pp. 46–51). Washington: IEEE
Press.

Ciocchetta, F., & Hillston, J. (2008). Bio-PEPA: an extension of the process algebra PEPA for biochemical
networks. Electronic Notes in Theoretical Computer Science, 194(3), 103–117.

Ciocchetta, F., & Hillston, J. (2009). Bio-PEPA: a framework for the modelling and analysis of biological
systems. Theoretical Computer Science, 410(33–34), 3065–3084.

Ciocchetta, F., & Hillston, J. (2012). Bio-PEPA http://www.biopepa.org. Last checked on October 2012.
Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M. L., & Hillston, J. (2009). The Bio-PEPA tool suite.

In Proceedings of the 6th international conference on quantitative evaluation of SysTems (QEST 2009)
(pp. 309–310). Washington: IEEE Computer Society.

Clarke, E. M., Emerson, E. A., & Sifakis, J. (2009). Model checking: algorithmic verification and debugging.
Communications of the ACM, 52(11), 74–84.

Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm
robotic systems. In Lecture notes in computer science: Vol. 6856. Towards autonomous robotic systems
(pp. 336–347). Heidelberg: Springer.

Eaton, J. W. (2002). GNU octave manual. London: Network Theory Ltd.
Evans, W., Mermoud, G., & Martinoli, A. (2010). Comparing and modeling distributed control strategies for

miniature self-assembling robots. In IEEE international conference on robotics and automation (ICRA)
(pp. 1438–1445).

Gilat, A. (2004). MATLAB: an introduction with applications (2nd ed.). New York: Wiley.
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chem-

istry, 81(25), 2340–2361.
Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. (1989). Self-organized shortcuts in the Argentine ant.

Naturwissenschaften, 76, 579–581.
Havelund, K., Lowry, M., & Penix, J. (2001). Formal analysis of a space-craft controller using spin. IEEE

Transactions on Software Engineering, 27(8), 749–765.
Hermanns, H., Herzog, U., & Katoen, J.-P. (2002). Process algebra for performance evaluation. Theoretical

Computer Science, 274(1–2), 43–87.
Hillston, J. (1996). Distinguished dissertation in computer science: A compositional approach to performance

modelling. Cambridge: Cambridge University Press.
Hillston, J. (2005). Fluid flow approximation of PEPA models. In Proceedings of the 2th international con-

ference on quantitative evaluation of SysTems (QEST 2005) (pp. 33–43). Washington: IEEE Computer
Society.

Holzmann, G. J. (1991). Design and validation of computer protocols. Upper Saddle River: Prentice-Hall
Kleinrock, L. (1975). Queueing systems: Vol. 1. Theory. New York: Wiley.
Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model check-

ing. Robotics and Autonomous Systems, 60(2), 199–213.
Kurtz, T. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Jour-

nal of Applied Probability, 7, 49–58.
Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: verification of probabilistic real-time sys-

tems. In Lecture notes in computer science: Vol. 6806. Proceedings of 23rd international conference on
computer aided verification (CAV’11) (pp. 585–591). Heidelberg: Springer.

Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm
robotic systems. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 143–152). Hei-
delberg: Springer.

Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in col-
laborative distributed manipulation. International Journal of Robotics Research, 23(4–5), 415–436.

Massink, M., & Latella, D. (2012). Fluid analysis of foraging ants. In M. Sirjani (Ed.), Lecture notes in
computer science: Vol. 7274. Coordination (pp. 152–165). Heidelberg: Springer.

http://www.biopepa.org

228 Swarm Intell (2013) 7:201–228

Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011a). Modelling non-linear crowd dynamics in Bio-
PEPA. In D. Giannakopoulou & F. Orejas (Eds.), Lecture notes in computer science: Vol. 6603. FASE
(pp. 96–110). Heidelberg: Springer.

Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011b). Modelling non-linear crowd dynamics in
Bio-PEPA. In Lecture notes in computer science: Vol. 6603. Fundamental approaches to software engi-
neering (pp. 96–110). Heidelberg: Springer.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012a). Analysing robot
swarm decision-making with Bio-PEPA: complete data. Supplementary information page at http://
iridia.ulb.ac.be/supp/IridiaSupp2012-012/.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012b). Analysing robot swarm
decision-making with Bio-PEPA. In Lecture notes in computer science: Vol. 7461. Swarm intelligence
(pp. 25–36). Heidelberg: Springer.

Massink, M., Latella, D., Bracciali, A., Harrison, M., & Hillston, J. (2012c). Scalable context-dependent
analysis of emergency egress models. Formal Aspects of Computing, 24(2), 267–302. doi:10.1007/
s00165-011-0188-1. Published online: 03 July 2011.

Mather, T., & Hsieh, M. (2012). Ensemble synthesis of distributed control and communication strategies. In
IEEE international conference on robotics and automation (ICRA) (pp. 4248–4253).

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-
rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-
making. Swarm Intelligence, 5(3–4), 305–327.

Napp, N., Burden, S., & Klavins, E. (2011). Setpoint regulation for stochastically interacting robots. Au-
tonomous Robots, 30, 57–71.

Nimal, V. (2010). Statistical approaches for probabilistic model checking. MSc mini-project dissertation,
Oxford University Computing Laboratory

Sahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In Lecture notes in
computer science: Vol. 3342. Swarm robotics (pp. 10–20). Heidelberg: Springer.

Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83, 031116.
Tribastone, M., Gilmore, S., & Hillston, J. (2012). Scalable differential analysis of process algebra models.

IEEE Transactions on Software Engineering, 38(1), 205–219.
Tschaikowski, M., & Tribastone, M. (2012). Exact fluid lumpability for Markovian process algebra. In

M. Koutny & I. Ulidowski (Eds.), Lecture notes in computer science: Vol. 7454. CONCUR 2012—
concurrency theory: 23rd international conference (pp. 380–394). Heidelberg: Springer.

Valentini, G., Birattari, M., & Dorigo, M. (2013). Majority rule with differential latency: an absorbing Markov
chain to model consensus. In European conference on complex systems (ECCS’12).

Younes, H. L. S., Kwiatkowska, M. Z., Norman, G., & Parker, D. (2006). Numerical vs. statistical probabilis-
tic model checking. International Journal on Software Tools for Technology Transfer, 8(3), 216–228.

Zarzhitsky, D., Spears, D., Thayer, D., & Spears, W. (2005). Agent-based chemical plume tracing using
fluid dynamics. In M. Hinchey, J. Rash, W. Truszkowski, & C. Rouff (Eds.), Lecture notes in computer
science: Vol. 3228. Formal approaches to agent-based systems (pp. 146–160). Heidelberg: Springer.

http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/
http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/
http://dx.doi.org/10.1007/s00165-011-0188-1
http://dx.doi.org/10.1007/s00165-011-0188-1

	On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics
	Abstract
	Introduction
	Related work
	Microscopic modelling
	Macroscopic modelling
	Model checking
	Discussion

	Bio-PEPA
	Collective decision-making: a Bio-PEPA specification
	The Bio-PEPA specification

	Analysis
	Stochastic simulation
	Statistical model checking
	Performance properties
	Confidence interval methods
	Results

	Fluid flow analysis

	Conclusions
	Acknowledgements
	References

