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Abstract In this article, we study the relationship between
the two techniques known as ant colony optimization (ACO)
and stochastic gradient descent. More precisely, we show
that some empirical ACO algorithms approximate stochastic
gradient descent in the space of pheromones, and we
propose an implementation of stochastic gradient descent
that belongs to the family of ACO algorithms. We then use
this insight to explore the mutual contributions of the two
techniques.

1 Introduction

The study of self-organization in social insects as a source of inspiration for novel
distributed forms of computation is a promising area of AI known as ant algorithms
(or sometimes as swarm intelligence ) that is experiencing growing popularity [3, 4, 8,
11, 13]. A particularly successful form of ant algorithm is that inspired by ant colony
foraging behavior. In these algorithms, applied to combinatorial optimization problems,
a number of arti�cial ants are given a set of simple rules that take inspiration from the
behavior of real ants. Arti�cial ants are then left free to move on an appropriate graph
representation of the considered problem: they probabilistically build a solution to the
problem and then deposit on the graph some arti�cial pheromones that will bias the
probabilistic solution construction activity of future ants. The amount of pheromone
deposited and the way it is used to build solutions are such that the overall search
process is biased toward the generation of approximate solutions of improving quality.

The historic �rst example of an algorithm inspired by ant foraging behavior is the ant
system (AS) [7, 14] and its �rst application was to the traveling salesman problem (TSP), a
well known NP-hard problem [21]. As a follow-up of AS, a number of similar algorithms,
each one trying either to improve performance or to make AS better �t a particular
class of problems, were developed. Currently, many successful applications of such
algorithms exist for N P-hard academic combinatorial optimization problems such as
quadratic assignment [18, 23], sequential ordering [16], resource-constrained project
scheduling [24], vehicle routing with time windows [17], routing in packet-switched
networks [6], shortest common supersequence [25], and frequency assignment [22].
Applications to real-world combinatorial optimization problems are starting to appear:
For example, a gasoline distribution company in Switzerland is using ACO algorithms to
choose routes of its trucks [17], while Fujitsu-Siemens Computers in Germany is testing
ant colony optimization (ACO) for an important logistic problem [R. Palm, personal
communication]. As a consequence, the ACO metaheuristic was recently de�ned [9, 10]
to put in a common framework all the algorithms that can be considered as offspring
of AS.1

1 A notable exception is the ABC algorithm for routing that, although belonging to ACO, was developed independently of AS [31].
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Despite these successes, the basic mechanisms at work in ACO are still loosely
understood, and there is usually no analytical tool to explain the observed effectiveness
of an ACO algorithm. In this article, we make a step in the direction of providing such
tools by formally relating the ACO metaheuristic and the technique known as stochastic
gradient descent (SGD), which has been extensively used in machine learning [26, 29].
More precisely, we show that some ACO algorithms approximate gradient descent of
the expected value of the solution produced by an ant, in the space of pheromone trails.
Moreover, we present an algorithm for combinatorial optimization that is, at the same
time, an SGD algorithm working in the space of pheromones, and an instance of the
ACO metaheuristic. This algorithm is an instance of the gradient-based reinforcement
learning algorithm known as REINFORCE [35]. It can be seen both as a distributed,
stigmergic2 implementation of SGD, or as an ACO algorithm where the overall effect of
ants’ activity is to descend the gradient of a given function in the space of pheromones.

The interest of establishing connections between ACO and SGD is that it offers many
opportunities of cross-fertilization. On one side, many questions asked in the study of
ACO algorithms receive a second look under the gradient-descent interpretation. For
instance, a new way of understanding and proving convergence of ACO algorithms is
proposed. Moreover, some classical acceleration techniques for gradient-based rein-
forcement learning can be easily transposed to ACO algorithms. On the other side, ACO
algorithms show how to implement effectively the technique of SGD for solving large
combinatorial optimization problems. Several improvements to the basic trial-and-error
search of arti�cial ants developed in the best ACO algorithms suggest, in turn, new ways
of using gradient descent in the framework of combinatorial optimization.

In this introductory article, we present our main arguments using the example of
the asymmetric TSP (ATSP). First (Sect. 2.1), we brie�y review the AS algorithm using
the ATSP as the example problem, and we show that AS is indeed closely related to
the technique of SGD (Sects. 2.2 and 2.3). We then describe an implementation of
SGD—or, more precisely, of William’s REINFORCE [35]—that belongs to the family of
ACO algorithms (Sect. 2.4). In Section 2.5, we show how to generalize this reasoning
to any combinatorial optimization problem that can be solved by an ACO algorithm.
Finally, we comment on these results and outline some future research directions in
Section 3.

2 Ant System and Stochastic Gradient Descent

Ant system is a simple distributed algorithm that can be applied to any (constrained)
minimum cost path problem on a graph. Throughout this article, we use the application
of AS to the ATSP as a basic example to present our arguments.

2.1 Ant System
The ATSP can be de�ned as follows. Let X be a set of cities, |X | D n, and D D [d (x , y ) ]
be a distance matrix, with d (x , y ) 2 RC for all (x , y ) 2 X 2. We will denote by NX t µ X t

the set of acyclic paths of length t 2 f1, . . . , ng in terms of the number of cities crossed
( NX 1 D X and NX 2 D f (x , y ) 2 X 2: x 6D yg). ATSP can be de�ned as the problem of
�nding a path hn D (x1, x2, . . . , xn) 2 NX n that minimizes the length of the corresponding
tour, de�ned as

L (hn) D
n¡1X

tD1

d (xt , xt C1 ) C d (xn , x1 ) .

2 Stigmergy is a particular form of indirect communication used by social insects to coordinate their activities. Its role in the
de� nition of ant algorithms is discussed at length in [3, 4, 8, 10].
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The main variables of the AS algorithm are the pheromone trails t (x , y ) associated
with each pair of cities (x , y ) 2 NX 2. Let T be the bidimensional vector gathering all the
t (x , y ) ’s. The basic principle of AS is to simulate arti�cial ants that use the pheromone
trails to build a random tour. Once its tour is completed, each ant makes a backward
trip following the same path and updates the pheromones on its way back. Finally,
the pheromone trails partially evaporate, that is, they decrease by a constant factor r ,
0 < r · 1, called the evaporation rate. The behavior of each ant can be summarized
as follows:

Forward:

� Draw the start city x1 at random uniformly;

� At each step t 2 f1, . . . , n ¡ 1g, after following the path
ht D (x1, x2, . . . , xt ) 2 NX t , draw the next city at random following

Pr(xt C1 D x | T , ht ) D

(
0 if x 2 ht ,

t (xt , x ) /
P

y2X
y /2ht

t (xt , y ) otherwise,
(1)

where x 2 ht means that the acyclic path ht traverses x .

Backward:

� After generating the path hn D (x1, x2, . . . , xn ) 2 NX n, reinforce the pheromone
trails t (xt , xt C1 ) for each t 2 f1, . . . , n ¡ 1g and t (xn , x1) by the amount
1/L (hn ) .

There are many ways of implementing the algorithm. In the original implementation
of AS, a set of m arti�cial ants synchronously built m solutions as follows: First, all the
ants perform their forward trip without updating the pheromones, and then all of them
execute their backward trip and update the pheromones for the next “generation” of m
ants. A pheromone evaporation stage takes place at each generation, before sending
the ants backward. The total update at each generation of each pheromone t (x , y ) ,
(x , y ) 2 NX 2 is then

Dt (x , y ) D

Á
mX

iD1

dx ,y (hi
n)

L (hi
n )

!

¡ rt (x , y ) ,

where hi
n 2 NX n is the path followed by the ith ant during its forward trip (i 2

f1, 2, . . . , mg), and dx ,y (hn) D 1 if y is the immediate successor of x in the tour as-
sociated to hn 2 NX n and 0 otherwise. When m D 1, the different ants are sent one after
the other in a fully sequential way, waiting for the previous ant to complete its back-
ward trip before sending a new one. In this case, the pheromone update implemented
by each ant is, for all (x , y ) 2 NX 2,

Dt (x , y ) D
dx ,y (hn )

L (hn )
¡ rt (x , y ) , (2)

where hn D fx1, x2, . . . , xng 2 NX n is the path followed by the ant during its forward
trip. This pheromone update rule may also be used in a fully asynchronous and parallel
implementation of ant system in which ants act completely independently of each other,
and a pheromone evaporation stage is associated with each ant. Equation 2, originally

Arti�cial Life Volume 8, Number 2 105



N. Meuleau and M. Dorigo ACO and Stochastic Gradient Descent

introduced in [7, 14], is often replaced by the following rule, introduced for the �rst time
in [12], in which the reinforcement of pheromone trails is multiplied by the evaporation
rate r :

Dt (x , y ) D r
dx ,y (hn )

L (hn )
¡ rt (x , y ) D r

³
dx ,y (hn )

L (hn )
¡ t (x , y )

´
. (3)

Ant system was extensively tested together with a few other algorithms inspired
by real ants’ behavior on the TSP [14]. Although AS did not compete with the best
known algorithms for TSP, its relative success inspired a great number of algorithms for
different combinatorial optimization problems (cf. Introduction). Often the AS-based
algorithms provide state-of-the-art performance. These algorithms have recently been
put in a unifying framework called an ACO metaheuristic [9, 10]. ACO is composed of
three main procedures. In the �rst one, arti�cial ants probabilistically construct feasible
solutions to the considered problem by moving on a proper graph representation. In
this phase the construction process is biased by previous experience memorized in
the form of pheromone trails, and, in some implementations, by heuristic information
available about the considered problem (see discussion in Sect. 3.1.1). The second
phase, brie�y discussed in Section 3.1.2, is optional: Here the solutions generated by
the arti�cial ants can be taken to their local optima by a suitable local search routine.
In the last phase, pheromone trails are updated by the ants, pheromone evaporation,
and/or other suitable processes.

2.2 Stochastic Gradient Descent
ACO algorithms are usually regarded as optimization techniques working in the solution
set of the combinatorial problem at hand. For instance, the ant system for ATSP is
usually seen as an algorithm that tries to �nd a tour of minimal length (i.e., an optimal
solution of the combinatorial problem). However, we adopt in this work a different
approach and we look at ACO algorithms as working in the space of pheromone trails.
In other words, we aim at �nding an optimal set of pheromones, which can be de�ned in
different ways. In this article, we focus on a particular form of optimality for pheromone
values. We will call an optimal set of pheromones a con�guration that optimizes the
expected value of the solution produced by an ant during its forward trip. We then
study how this problem may be solved using gradient descent in the continuous space
of pheromone trails.

In the case of ATSP, we aim at maximizing the expected value of the inverse length
of an ant’s forward trip, given the current pheromone trails and the city-selection rule of
Equation 1. That is, we will climb stochastically the gradient of the “error” E de�ned as3

E defD E

µ
1

L (hn)
| T

¶
D

X

hn 2 NX n

Pr(hn | T )
1

L (hn )
.

Note that the expectation is conditional on T because the probability of a given tour
happening depends on the current pheromone trail vector T , while the “local error”

3 Althoughwe are dealing with maximizationproblemsusingstochastic gradientascent, we use in this article the vocabulary associated
with gradient descent algorithms, which is much more common in the machine learning literature (see the example of arti�cial
neural networks in Sect. 3.2.1). The variable E represents the objective function of the gradient ascent algorithm (and not of the
original combinatorial optimization problem), and it must be maximized. However, it plays the same role as the error function
used in gradient descent algorithms.
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1/L (hn ) does not depend on the weights t (x , y ) . Then we have

@E
@t (x , y )

D
X

hn 2 NX n

@ Pr(hn | T )

@t (x , y )
1

L (hn )
,

for each pair of cities (x , y ) 2 NX 2.
The probability of a given path is equal to the product of the probabilities of all the

elementary events that compose it: if hn D (x1, x2, . . . , xn) 2 NX n, then

Pr(hn | T ) D
nY

tD1

Pr(xt | T , ht ¡1 ) ,

where ht is equal to hn truncated after step t : ht D (x1, x2, . . . , xt ) 2 NX t , and h0 is the
empty sequence. Therefore,

@ Pr(hn | T )
@t (x , y )

D Pr (hn | T )
nX

tD1

@ ln (Pr(xt | T , ht¡1) )
@t (x , y )

.

Here we have supposed that Pr(xt | T , ht¡1) > 0, which is always true because xt /2
ht¡1, as ht is an acyclic path; and because the pheromone trails never fall to 0 in the
original AS algorithm (however, we will see later that this is a problem for the new
algorithm). De�ne the eligibility trace4 of (x , y ) in path hn as

Tx,y (hn ) defD
@ ln (Pr(hn | T ) )

@t (x , y )
D

nX

tD1

@ ln (Pr (xt | T , ht¡1) )

@t (x , y )
, (4)

then

@E
@t (x , y )

D
X

hn 2 NX n

Pr(hn | T )
Tx ,y (hn )

L (hn )
D E

µ
Tx ,y (hn)

L (hn )
| T

¶
. (5)

We will see later how to calculate the traces Tx ,y . We can already outline the basis
of the SGD algorithm. Climbing the gradient of E corresponds to updating T iteratively
in the direction of the gradient of E :

DT D arT E ,

that is,

Dt (x , y ) D a
@E

@t (x , y )
,

for each individual “weight” t (x , y ) , where a > 0 is the step-size parameter or learn-
ing rate. Following Equation 5, we could do exact gradient ascent in the space of
pheromone trails by enumerating all possible paths hn and calculating, for each of
them, the probability Pr(hn | T ) that an ant follows this path during its forward trip

4 We borrow this vocabulary from reinforcement learning literature. It is used in a similar gradient-based algorithm for optimal
control of Markov decision processes [1, 35]. The eligibility of a weight is a measure of how much this weight will be involved in
the next update. The Tx,y variables are called traces because they keep track of the eligibility of the weights at each step t.
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(given the current pheromone trails), the length of the corresponding tour L (hn ) , and
the variable Tx ,y (hn ) for each (x , y ) 2 NX 2. Obviously, this approach would make no
sense in practice: Once we have enumerated all possible paths we can solve our orig-
inal problem simply by taking the best. Moreover, the size of NX n grows exponentially
with the number of cities, so that this approach quickly becomes infeasible. Finally,
the exact gradient descent performs poorly in many complex domains because it gets
trapped in the �rst local optimum on its way.

In stochastic gradient descent (SGD), an unbiased random estimate of the gradient
is used instead of the true gradient. In the case of our application to ATSP, Equation 5
shows that the gradient of E is the expected value of the random variable Tx ,y /L given
the current pheromones (and the selection rule of Equation 1). Therefore, if we draw
independently m paths h1

n , h2
n , . . . , hm

n in NX n following the probability Pr(hn | T ) , and
average their contributions Tx ,y (hi

n ) /L (hi
n ) to the gradient, then the result

1

m

mX

iD1

Tx ,y (hi
n )

L (hi
n )

is a random vector whose expected value is equal to the gradient. In other words, it
is an unbiased estimate of the gradient. This is true regardless of the number of paths
sampled, even if only one sample is used to estimate the gradient (i.e., m D 1). The
resulting stochastic algorithm has a reasonable complexity.5 Moreover, it may escape
from some low-value local optima on its path. It sometimes makes bad moves because
the gradient estimate is wrong, but these moves may allow jumping out of a bad local
optimum. Therefore SGD usually performs better than the exact gradient descent in
large, highly multimodal search spaces.

The basis of our comparison between ACO and SGD is the analogy between the
actions of sending an ant forward and sampling a tour hn from Pr (hn | T ) . During
its forward trip, the action of an ant is precisely to sample a solution following this
probability distribution. Therefore, the forward component of AS can be used in an
SGD algorithm as well, and we just have to change the weight update rules. We show
below that the updates associated with a given sampled tour are very similar in the two
algorithms.

2.3 A � rst ACO/SGD Algorithm
In our ACO/SGD algorithm, each arti�cial ant samples a tour hn 2 NX n using the current
pheromones and then updates every pheromone t (x , y ) following

Dt (x , y ) D a
Tx ,y (hn )

L (hn )
(6)

In a synchronous implementation, arti�cial ants are sent by groups of m ants that
sample m tours without updating the pheromones (i.e., following the same probability
distribution Pr(hn | T ) ). Then, each of them updates the pheromones adding a quantity
of pheromone function of the quality of the solution it generated during its forward
trip. The total amount of pheromone added by the m ants is then

Dt (x , y ) D a
mX

iD1

Tx,y (hi
n )

L (hi
n)

,

5 We may actually in� uence the complexity by � xing the number m of samples drawn to calculate the estimate of the gradient. More
samples allow a more accurate estimate.
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for all (x , y ) , where hi
n 2 NX n is the path followed by the ith ant. This corresponds to

using m independent samples hn to calculate the gradient estimate (note that the factor
1/m has been absorbed in the learning rate a). The particular case m D 1 that is based
on Equation 6 corresponds to a fully sequential implementation where only one sample
is used to estimate the gradient and make a step in the space of pheromones. Equation 6
may also be used as the basis of a fully asynchronous and parallel implementation of
the algorithm where the arti�cial ants act completely independently of each other. In
this case, the gradient estimates may be slightly biased by the simultaneous read and
write activity of the different ants. However, this bias will probably be negligible in
many applications, provided that the learning rate a stays within reasonable bounds.6

Given a path hn D (x1, x2, . . . , xn ) 2 NX n and a pair of cities (x , y ) 2 NX 2, the problem
is now to calculate Tx ,y (hn ) as de�ned by Equation 4. Using Equation 1, we see that

� if x 6D xt¡1 or y 2 ht¡1, then Pr(xt | T , ht¡1 ) is independent of t (x , y ) and

@ ln (Pr(xt | T , ht¡1 ) )

@t (x , y )
D 0I

� if x D xt¡1 and y D xt then

@ ln (Pr(xt | T , ht¡1 ) )

@t (x , y )
D

@ ln
±

t (x , y ) /
P

y 0 /2ht¡1
t (x , y 0 )

²

@t (x , y )
,

D
@ ln (t (x , y ) )

@t (x , y )
¡

@ ln
±P

y 0 /2ht¡1
t (x , y 0 )

²

@t (x , y )
,

D
1

t (x , y )
¡ 1P

y0 /2ht¡1
t (x , y 0 )

,

D
1 ¡ Pr(y | T , ht¡1 )

t (x , y )
I

� if x D xt¡1, y 6D xt , and y /2 ht¡1 then, similarly,

@ ln (Pr(xt | T , ht¡1 ) )
@t (x , y )

D ¡Pr(y | T , ht¡1 )
t (x , y )

.

Therefore, the SGD algorithm can be implemented using distributed, local information,
as done in AS. The weight update corresponding to a sampled tour can be performed
by the ant that sampled this tour during a backward trip. When returning to the tth
city of the tour,7 the ant updates the pheromone trail t (xt , x ) for all x 2 X following

Dt (xt , x ) D a
1

L (hn )
1

t (xt , x )
(d (xt C1 D x ) ¡ Pr(x | T , ht ) ) , (7)

6 Typically, the learning speed of a constant step-size SGD algorithm increases with the learning rate, up to a certain limit where the
quality of the solution obtained decreases and the algorithm becomes unstable. By a “reasonable” learning rate value, we mean
any value that is small enough to preserve the quality of the solution found and avoid instability.

7 We assume here that the pheromone variables are stored as a set of tables T x D [t (x, y)]y2X , each T x being accessible to the
arti�cial ants (or “physically located”) in city x 2 X.
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where d (xt C1 D x ) D 1 if xt C1 D x and 0 otherwise, and Pr(x | T , ht ) represents the
probability that the ant chooses x 2 X as the next city when it stands in xt and it has
already followed the path ht 2 NX t . Note that the ants need a little bit more memory
than in the original AS. They need to remember not only the tour they followed, but
also the probability of choosing each city at each step of the forward trip. If they
do not have such a memory, they can always recompute the probabilities using the
pheromone trails, but the trails must not have changed in between due to another ant
updating pheromones. Therefore, this solution works exactly only in a synchronous
implementation of the algorithm.

The previous results show that the SGD of the error E[1/L (hn ) | T ] is close to
the original AS algorithm. This appears clearly when we compare Equation 7 to the
analogous step-by-step update rule used in an asynchronous implementation of AS
based on Equation 3:

Dt (xt , x ) D r

³
d (xt C1 D x )

L (hn )
¡ t (xt , x )

´
. (8)

The step-size a of SGD plays the role of the evaporation rate r in AS. The main
differences are8

� the pheromone value t (xt , x ) in AS update rule is replaced in SGD by the
probability Pr(x | T , ht ) of moving from xt to x ;

� the decrease of pheromones (through the term ¡t (xt , x ) in Equation 8, and
through the term ¡ Pr(x | T , ht ) in Equation 7) is proportional to the reward
1/L (hn) in our algorithm, whereas it is independent of it in the original AS;

� the presence of the factor 1/t (xt , x ) in the update rule (Equation 7) of the
gradient-based algorithm.

It is important to note that, in our algorithm, the pheromones that are not used during
an ant’s forward trip are not modi�ed during the ant’s backward trip. If we had already
visited y when we were in x , then t (x , y ) was not used to choose the next city after
x , and hence, it was not used at all during the whole forward trip. As a consequence,
t (x , y ) is left unchanged during the backward trip (that was not the case in the original
AS where each pheromone trail evaporates). This makes sense, because if t (x , y ) is not
used during the generation of a tour, then the value of this tour provides no information
about the good way to change t (x , y ) . This will be true in any application of SGD. It
implies that the weight update associated with a forward trip (i.e., a sampled solution),
can always be performed in a backward trip following the same path. This is the basis
of “ant” implementations of SGD presented in this article.

There are a few problems with the algorithm we just de�ned. First, the update rule
may bring the weights t (x , y ) at or below 0. Negative pheromone trails do not really
make sense. Moreover, we supposed the pheromones to be (strictly) positive when
calculating the gradient. When some pheromones are 0, the analytical expression of the
gradient is more complex. An empirical solution to this problem consists of arti�cially
preventing the weights from falling below a given value 2 > 0. However, there is
another problem with this algorithm: the contribution Tx ,y (hn ) /L (hn ) of a sequence
hn 2 NX n may tend to in�nity when some pheromone trails t (x , y ) tend to 0, which
induces a very unstable behavior of the algorithm in some regions of the search space.

8 Another difference between the two algorithms is that the pheromone t (xn , x1 ) between the last and � rst city of the tour is
reinforced by AS, whereas it is left untouched by SGD.

110 Arti�cial Life Volume 8, Number 2



N. Meuleau and M. Dorigo ACO and Stochastic Gradient Descent

For instance, if t (x , y ) ¼ 0 for some (x , y ) 2 NX 2 and an ant unluckily goes through this
edge during its forward trip, then the subsequent weight update, which is proportional
to 1/t (x , y ) , may bring the algorithm very far from its original state. This is a case of
unstable behavior due to unboundedness of the gradient estimate variance [2]: Although
the expected value of the gradient estimate (i.e., the gradient itself) is always �nite, the
variance of the gradient estimate tends to in�nity when some weights t (x , y ) tend to
0. In the next section, we present a new implementation of SGD that does not exhibit
this instability and still belongs to the family of ACO algorithms.

2.4 A Stable ACO/SGD Algorithm
A classical solution to the problem of unbounded variance and unstable behavior is to
use Boltzmann’s law instead of the proportional selection rule of Equation 1 (e.g., [1]).
In our case, the city-selection rule takes the form

Pr(xt C1 D x | T , ht ) D

8
><

>:

0 if x 2 ht ,

et (xt ,x ) /
X

y2X
y /2ht

et (xt ,y ) otherwise. (9)

The derivation presented in Section 2.2 is still valid; the only changes are in the calcu-
lation of the traces (Sect. 2.3):

� if x 6D xt¡1 or y 2 ht¡1, then

@ ln (Pr(xt | T , ht¡1 ) )

@t (x , y )
D 0I

� if x D xt¡1 and y D xt then

@ ln (Pr(xt | T , ht¡1 ) )
@t (x , y )

D

@ ln

Á

et (x ,y ) /
X

y 0 /2ht¡1

et (x ,y 0 )

!

@t (x , y )
,

D
@ ln (et (x,y ) )

@t (x , y )
¡

@ ln

Á
X

y 0 /2ht¡1

et (x ,y 0 )

!

@t (x , y )
,

D 1 ¡ et (x,y )
X

y 0 /2ht¡1

et (x ,y 0 ) ,

D 1 ¡ Pr(y | T , ht¡1 )I

� if x D xt¡1, y 6D xt and y /2 ht¡1 then, similarly,

@ ln (Pr(xt | T , ht¡1 ) )
@t (x , y )

D ¡ Pr(y | T , ht¡1 ) .

As in the previous case, the gradient-descent weight updates may be performed by the
arti�cial ants during backward trips when they retrace their path backward. The new
pheromone update rule, which replaces Equation 7, is

Dt (xt , x ) D a
1

L (hn )
(d (xt C1 D x ) ¡ Pr(x | T , ht ) ) . (10)
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Note that the factor 1/t (xt , x ) has disappeared from the right-hand side, making this
rule very similar to the original AS update rule (Equation 8).

Ants need the same memory capacity as in the previous SGD algorithm. This new
algorithm does not have the drawbacks of the previous one. The weights t (x , y ) are
unconstrained and can take any real value while keeping the probability of each path
(strictly) positive. Moreover, the gradient estimate is uniformly bounded (i.e., bounded
by the same bound for all hn 2 NX n ) by the value 1/L¤, where L¤ is the length of the
shortest path, and so its variance is bounded by (1/L¤) 2. Therefore, this algorithm is
stable in any region of the search space.

Bounded variance is a necessary condition for convergence to a local optimum,
but it is not suf�cient [2]. As a matter of fact, it can be shown that stochastic gradi-
ent algorithms such as ours may exhibit unbounded behavior, that is, some weights
may tend to in�nity [28]. A typical case of unbounded behavior is when the weights
that generate an optimal solution tend to plus in�nity, while all the other weights
tend to minus in�nity. The problem is that an optimal set of pheromone values
(i.e., a set that generates an optimal tour with probability 1) is obtained when some
weights are positively or negatively in�nite. Therefore, the algorithm may continue
to climb a given choice forever, so that some weights diverge to in�nity. However,
this limitation has no consequence in our combinatorial optimization framework be-
cause we are not interested in having all the ants follow an optimal path; we just want
an optimal solution to be generated (at least) once. Moreover, some classical tricks
may be used to derive a formally convergent variant of our algorithm. Notably, we
can

� either arti�cially bound the weights away from in�nity (i.e., they are enforced to
stay in a compact subset of Rl , where l is the total number of weights), as in [28];

� or add to the objective function a penalty term in the form ¡c ¢ kT k, where c is a
constant and kT k is a norm of T , so that the objective function tends to ¡1 when
the weights tend to in�nity [2].

We conjecture that either of these two solutions may be used to design a variant of
our algorithm that converges with probability 1 to a local optimum of the error func-
tion.

2.5 Extensions
It is easy to modify the algorithm so that it optimizes other criteria than E[1/L (hn ) | T ].
For instance, if we want to minimize the expected tour length E[L (hn ) | T ], then the
update rule of the (stable) SGD algorithm becomes

Dt (xt , x ) D ¡aL (hn ) (d (xt C1 D x ) ¡ Pr(x | T , ht ) ) .

Here, the algorithm may be understood as maximizing the reward ¡L (hn ) , which is al-
ways negative.9 It is important to note that, because the shape of the objective function
strongly determines the behavior of a gradient-following algorithm with constant step-
size such as ours, the performance of SGD may vary with different objective functions,
even if these functions have the same local and global optima.

More generally, the same approach could be applied to every combinatorial op-
timization problem for which an ACO algorithm can be designed.10 The generic

9 Conversely to the original AS, our gradient algorithm does not assume that the objective function is positive.
10 That is, for which a constructive heuristic can be de� ned [9, 10].
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ACO/SGD approach to a given maximization problem with solution set S and ob-
jective function f : S ! R can be summarized as follows: First, design a stochastic
controller that generates solutions in an iterative way using a set of weights T . The
controller is represented as a construction graph G such that the generation of a solu-
tion corresponds to some sort of path in this graph, and the weights T are attached to
the arcs (or vertices) of G . The weights, called pheromones, determine the transition
probabilities in G during the random generation of a solution. This �rst stage, which is
called the choice of a problem representation in [10], is crucial. It transforms the static
combinatorial problem maxf f (s ) : s 2 Sg into the problem of optimizing a trajectory,
that is, a dynamic problem.

The next step is to de�ne the “error” function as the expected value of a solution
produced by the controller, given the current weights:

E D E[F (s ) | T ] D
X

s2S
Pr(s | T )F (s )

where F : S ! R strictly increases with f (that is, f (s ) > f (s 0 ) H) F (s ) > F (s 0 ) ).
Solutions s are generated by an iterative stochastic process that follows a �nite num-

ber of steps. Let H be the set of trajectories in G that the controller may follow when
generating a solution, and g: H ! S be the function that assigns the solution produced
to a given trajectory. The error may be rewritten as:

E D E[F (g (h) ) | T ] D
X

h2H

Pr(h | T )F (g (h) ) .

The gradient of the error is then the expectation over all possible trajectories of the
value of the solution produced multiplied by an eligibility trace Tt :

@E
@t

D
X

h2H

Pr(h | T )F (g (h) )Tt (h) D E[F (g (h) )Tt (h) | T ],

for each individual weight t . The trace Tt (s ) is the sum of the partial derivatives
of the log of every elementary event that composes the trajectory s. Note that this
decomposable structure of the gradient derives from the fact that solution generation
is an iterative process, that is, from the very nature of the ACO approach.

Stochastic gradient descent can thus be implemented by sampling a few trajectories
h—which can be seen as sending a few ants forward in the construction graph G —
and calculating their contribution to the gradient. In general, the weights that are not
used when sampling a trajectory h have zero update according to the contribution of
h. Therefore, the weight updates can be performed by arti�cial ants during backward
trips in G .11 Finally, if the ants use Boltzmann’s law to make random choices during
forward trips, then the gradient estimate is uniformly bounded and the algorithm is
stable in any part of the search space.

3 Discussion

Technically speaking, the ACO/SGD algorithm described above is not new. It is an in-
stance of the generalized learning automaton [27] and, more precisely, of the gradient-

11 Note that the construction process does not necessarily have the same “taboo” aspect as in ATSP, where each weight is used at
most once during an ant’s forward trip. The calculation of the SGD update is not more dif� cult in this case. The general rule is
that if an ant traverses a vertex of G (and uses the associated pheromone values) several times during its forward trip, it must
traverse that vertex (and update the associated pheromone values) the same number of times during its backward trip.
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based reinforcement learning algorithm known as REINFORCE [1, 35]. The originality of
our work is to apply REINFORCE in the framework of ACO for combinatorial optimiza-
tion, instead of the traditional Markov decision process (MDP) or partially observable
MDP (POMDP) used in the reinforcement learning literature [20, 33]. Therefore, this
work establishes connections between “classical” reinforcement learning and the less
classical ACO learning. It suggests a general approach for applying reinforcement
learning to combinatorial optimization that can be resumed as follows:

1. Design a parametrized stochastic controller that generates solutions in an
incremental way, which turns the original static (optimization) problem into a
dynamic (control) problem;

2. Use a reinforcement learning algorithm to (learn to) optimize the controller.

It is tempting to over-generalize the previous results and see in any ACO algorithm a
more or less accurate approximation of the mechanism of gradient descent in the space
of pheromones. In a sense, SGD is a very intuitive trial-and-error Monte-Carlo technique
that samples solutions, increases the probability of the best sampled solutions, and
decreases the probability of the worst. Its particularity is to be grounded on a solid
theoretical framework so that it is possible to give a sense to the updates performed
by the algorithm, but the basic intuition is the same as in ACO algorithms. Researchers
in the �eld of ACO algorithms might �nd this position a little bit reductive. In fact,
the best ACO algorithms are not limited to the simple trial-and-error ant search but
also use other optimization techniques such as constructive heuristics and local search
routines [16, 32]. However, these features may also be grounded in the gradient-
descent framework and improve the algorithm’s performance (see Sect. 3.1). It is
also interesting to note that the assimilation of ACO to approximate SGD allows us
to draw a parallel with arti�cial neural networks (ANNs), because SGD is the basic
principle behind the well-known backpropagation algorithm [26, 30]. Accordingly,
we suggest in this work that the basic mechanisms at work in ACO and ANNs could
be the same. In the following, we discuss some opportunities of cross-fertilization
between ACO and SGD and then survey some important issues in the study of ACO
algorithms.

3.1 Mutual Contributions
There are many opportunities for cross-fertilization between ACO and SGD (or, more
generally, gradient-based reinforcement learning). On one side, several ef�cient accel-
eration techniques for gradient-based reinforcement learning can easily be implemented
in our ACO/SGD algorithm and then generalized to other ACO algorithms (this is the
subject of ongoing research). On the other side, existing ACO algorithms suggest dif-
ferent ways of implementing the technique of SGD in the context of combinatorial
optimization. The most successful applications of the metaheuristic are not limited to
the simple trial-and-error ant search but also use some “external” information in the
form of constructive heuristics or (discrete) local search routines. They suggest differ-
ent ways of merging SGD and these two combinatorial optimization techniques. In this
section, we examine how our simple ACO/SGD algorithm can be used in combination
with these techniques, as inspired by previous ACO algorithms.

3.1.1 Using Constructive Heuristics
Many successful implementations of the ACO metaheuristic combine information from
the pheromone trails and heuristic information when generating solutions. In the case
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of AS, the city selection rule (1) is replaced by

Pr(xt C1 D x | T , g, ht ) D

8
><

>:

0 if x 2 ht ,

t (xt , x )ag (xt , x ) b /
X

y2X
y /2ht

t (xt , y ) ag (xt , y ) b otherwise,

where g ¸ 0 is a (constructive) heuristic function of (x , y ) 2 NX 2, and a and b are
two (positive) parameters that determine the relative in�uence of pheromone trails and
heuristic information. The function g re�ects heuristic information about the good way
to complete a partial solution. For instance, in the case of ATSP, a common choice
is g (x , y ) D 1/d (x , y ) for all (x , y ) 2 NX 2. In this case, the closest unvisited cities
have larger probability to be chosen than without heuristic information. Moreover, in
the successful applications of ACO to nonstationary (time-varying) problems, such as
data packet routing in AntNet [6], the function g is used to provide information to the
algorithm about the current state of the problem.

There are several ways of integrating a similar mechanism in our algorithm. A par-
ticularly simple and elegant formulation is obtained when we replace the exponential
selection rule (9) of our gradient algorithm with the following equation:

Pr(xt C1 D x | T , g, ht ) D

8
><

>:

0 if x 2 ht ,

eat (xt ,x ) Cbg (xt ,x ) /
X

y2X
y /2ht

eat (xt ,y ) Cbg (xt ,y ) otherwise, (11)

where a and b ¸ 0 are two external parameters that play the same role as in the
previous equation.12 Equation 9 is obtained when a D 1 and b D 0. When a D 0 and
b > 0, the algorithm does not use the pheromone trails at all. It is then an iterative
stochastic heuristic search similar to the �rst stage of GRASP [15].

Therefore, we dispose of a whole range of algorithms that extend from pure (heur-
istic-free) gradient-based reinforcement learning to simple (constant probability ) sto-
chastic heuristic search.

The next step is to recalculate the gradient to take into account the new selection rule.
Once again, only the last part of the calculation is modi�ed. We have the following:

� if x 6D xt¡1 or y 2 ht¡1, then

@ ln (Pr(xt | T , g, ht¡1 ) )
@t (x , y )

D 0I

� if x D xt¡1 and y D xt then

@ ln (Pr(xt | T , g, ht¡1 ) )
@t (x , y )

D

@ ln

Á

eat (x ,y ) Cbg (x ,y ) /
X

y0 /2ht¡1

eat (x ,y0 ) Cbg (x ,y 0 )

!

@t (x , y )
,

12 Note that this formalism is compatible with negative heuristic functions. Therefore, we could choose g (x, y) D ¡d (x, y) in the
case of ATSP.
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D
@ ln (eat (x ,y ) Cbg (x,y ) )

@t (x , y )
¡

@ ln

Á
X

y 0 /2ht¡1

eat (x ,y 0 ) Cbg (x ,y 0 )

!

@t (x , y )
,

D a

0

BB@1 ¡ eat (x,y ) Cbg (x ,y )
X

y0 /2ht¡1

eat (x ,y 0 ) Cbg (x ,y 0 )

1

CCA ,

D a (1 ¡ Pr(y | T , g, ht¡1) )I

� if x D xt¡1, y 6D xt , and y /2 ht¡1 then, similarly,

@ ln (Pr(xt | T , g, ht¡1 ) )

@t (x , y )
D ¡a Pr(y | T , g, ht ¡1 ) .

This leads to the following pheromone update rule, after absorbing the constant factor
a in the learning rate a:

Dt (xt , x ) D a
1

L (hn )
(d (xt C1 D x ) ¡ Pr(x | T , g, ht ) )

The only difference with the update rule of the previous algorithm (Equation 10) is that
the heuristic-independent probability Pr (x | T , ht ) calculated following Equation 9 is
replaced by the heuristic-dependent probability Pr(x | T , g, ht ) de�ned by Equation 11.
Therefore, the basic principle of the heuristic-free algorithm generalizes to the new
selection rule: Each ant has to memorize the probability distribution it uses at each step
of its forward trip and then decrease the pheromones on its way back proportionally
to these distributions.

It is important to note that, by varying the values of the external parameters a and b,
we change two factors that strongly in�uence the effectiveness of the algorithm. The
�rst is the shape of the “error” function E (de�ned as a function from pheromone vectors
to real number) that the algorithm is approximately “descending.” It is not clear to us
what is exactly the effect of the new selection rule on the “landscape” we are exploring.
A globally optimum set of pheromones is still obtained by putting in�nite weights on
the best paths (that do not change when changing the parameter values), but some
important aspects, such as the steepness of some peaks, are modi�ed. The second and
probably most important feature that is modi�ed by varying parameters a and b is the
sampling process used to estimate the gradient. The probability of sampling different
paths and the update of the corresponding pheromones changes as a function of the
parameter values. In the case of ATSP, the overall effect of using heuristic information
(i.e., having b > 0) is that when an unvisited city y is close to the current city x , it has
a greater chance to be chosen than without heuristic information. On the other side,
the pheromone trail t (x , y ) is decreased by a larger amount each time y is considered
as a candidate successor of x . Further research is needed to understand how better
performance may be obtained using heuristic information appropriately.

3.1.2 Using Discrete Local Search
The ACO metaheuristic is often used in conjunction with local search algorithms [16, 32].
In this approach, an ACO algorithm generates starting points for a discrete local search
routine.13 Each ant produces a solution, say s1, which is then transformed into another

13 Gradient descent is itself a local search procedure, but it operates in the continuous space of pheromones, whereas the discrete
local search used here operates in the discrete set of solutions.
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solution, say s2, by the local search. Then the pheromones are updated. As our
goal is to maximize the quality of the �nal solution s2, pheromone updates must be
proportional to the quality of s2, not s1. Given this, there are still two ways of updating
the pheromones:

� either we reinforce the pheromones corresponding to the �nal solution s2—in other
words, we do as if the solution s2 was generated directly by the ant algorithm,
without the help of the local search (in this approach, we suppose that there is a
mapping between the solution set and the set of possible forward trajectories);

� or we reinforce the pheromones corresponding to the intermediate solution s1.

By analogy with similar procedures in the area of genetic algorithms [34], we call the
�rst alternative the Lamarckian approach, and the second the Darwinian approach.

The main argument supporting the Lamarckian approach is that it is reasonable to
think that, if the ant algorithm can be trained directly using the better solution s2,
then it would be stupid to train it using the worse solution s1. In fact, in published
ACO implementations, only the Lamarckian alternative has been used. In the case of
SGD, however, the Darwinian approach may make more sense. It is easy to show
that, if we try to maximize the expected value of the solution s2 produced by the
local search algorithm, then the update rule of an SGD algorithm is to reinforce the
pheromones corresponding to the intermediate solution s1 proportionally to the value
of the �nal solution s2. The formal framework developed in Section 2.5 can be used
for this calculation, the effect of the local search being modeled in the function F .
Having understood this, we can derive qualitative arguments in favor of the Darwinian
approach. For instance, if the good starting points of the local search are very far
from the corresponding local optima in the topology of the gradient algorithm, then
the Darwinian approach could outperform the Lamarckian.

3.2 Important Issues
By establishing connections with ANNs on one side, and reinforcement learning on
the other side, we also show that ACO algorithms are concerned with two important
issues paradigmatically illustrated in these techniques. They are, respectively, the issue
of generalization and the exploration versus exploitation dilemma. In this section, we
examine how these problems arise in ACO algorithms. It is clear that any reinforcement
learning algorithm for combinatorial optimization has to deal with these two issues
simultaneously.

3.2.1 Generalization
The most famous application of SGD is surely the algorithm known as backpropagation
in ANNs, and the issue the most studied in backpropagation is probably the ability of
the algorithm to generalize over inputs [30]. Stated simply, the problem is to �nd a
set of weights W D [w ] for a network encoding a function F from an input set I to
an output set O (say, O D R), so that F approximates as much as possible a target
function F ¤: I ! O. Backpropagation learns an optimal con�guration of weights by
observing a set of training examples, that is, pairs (i, F ¤ (i ) ) with i 2 I , and memorizing
and generalizing these observations. In general, the input set I is a huge combinatorial
set, if not an in�nite set. Therefore, it is not possible to present every instance i 2 I in
the training set. However, backpropagation is able to generalize the observed data to
unseen instances. That is, it assumes that any unseen input i has a value F ¤ (i ) that is
close to the value of the observed examples that are similar to i in some sense. It is
well known that the ability of an ANN to generalize and its ef�ciency in generalization
strongly depend on the network structure [5].
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As we said, the backpropagation algorithm is an instance of SGD. More precisely,
its overall effect is to descend the gradient of the mean square error

EMS D
X

i2I

pi (F (i ) ¡ F ¤ (i ) ) 2 D E[ (F ¡ F ¤) 2 | W ],

where [pi ]i2I is a given probability distribution on instances (
P

i2I pi D 1). Note that,
differently from the case of our ACO/SGD algorithm, the expectation in this equation
is conditional on the weights W because the local error

eMS
defD (F ¡ F ¤)2

depends on the weights, whereas the probabilities pi do not. Therefore,

@EMS

@w
D

X

i2I

pi
@eMS (i )

@w
D E

µ
@eMS

@w
| W

¶
.

This result suggests an exact gradient algorithm that enumerates all possible inputs
i 2 I for each step of gradient descent. Conversely, backpropagation uses an unbiased
estimate of the gradient obtained by sampling a unique input i 2 I . After sampling input
i and comparing the actual output F (i ) and the desired output F ¤ (i ) , backpropagation
updates the weights of the network following

Dw D ¡a
@eMS (i )

@w
.

for each weight w. The values of F (i ) and F ¤ (i ) are used here to calculate the partial
derivative @eMS (i ) /@w .

We see that the basic principles of backpropagation and of our algorithm are the
same. It is, in both cases, a Monte-Carlo estimation of the gradient of a given error
function, with respect to a set of weights attached to the components of a graph (the
construction graph G in one case, and the ANN itself in the other case). Also, both
algorithms are distributed and parallel implementation of this principle. Therefore, our
algorithm should have, at least partially, the same ability to generalize observed data
over unseen instances as backpropagation.

Actually, it is not dif�cult to convince oneself that generalization is as big an issue
in ACO in general as in ANNs. For instance, it is clear that the application of AS to the
ATSP works by generalizing the observed solutions: If a majority of the sampled tours
that traverse a given arc (x , y ) 2 NX 2 are of good quality, then the algorithm increases
the probability of traversing this arc. In a sense, it assumes that, in general, the tours
that traverse (x , y ) are of good quality. That is, it generalizes the observations. As in the
case of backpropagation, the ability and ef�ciency of an ACO algorithm to generalize
is mostly determined by the structure of the graph, that is, the problem representation
used by the arti�cial ants.

3.2.2 Exploration versus Exploitation
As we stressed above, the ACO metaheuristic can be seen as a way of applying reinforce-
ment learning to combinatorial optimization problems. Thus, every ACO algorithm has
to deal with one of the main issues in reinforcement learning: the exploration versus
exploitation dilemma [19]. This is the problem of �nding an optimal compromise be-
tween obtaining additional information about the least known solutions (exploration),
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and maximizing rewards by taking the estimated best actions (exploitation). This prob-
lem is characteristic of real-time on-line learning, where one motivation is to learn as fast
as possible, and another is to maximize the reward received during each experience.

In the case of ACO algorithms, the mechanisms of the exploration versus exploita-
tion dilemma are intimately linked with those of generalization. For instance, in the
application to the ATSP, since the pheromones are attached to pairs of cities (x , y ) 2 NX 2,
the algorithm is confronted with questions like: “Is it necessary to try again a given
pair of cities that seems to be nonoptimal?” Clearly, different questions arise with
different problem representations. In fact, it appears that an optimal solution to the
exploration versus exploitation dilemma in the framework of ACO depends intimately
on the problem representation, that is, the structure of the construction graph.

In practice, our ACO/SGD algorithm does not really address the issue of exploration,
although it does face the dilemma. Its behavior is dictated by the trial-and-error search
of SGD, independent of any consideration about exploration.

4 Conclusions

In this article, we explored the connections between the two techniques of ACO and
SGD. First, we showed that the empirical designed AS algorithm is very similar to SGD
in the space of pheromones, and we proposed a stable implementation of gradient-
based reinforcement learning that belongs to the framework of ACO algorithms. Then
we outlined a general ACO/SGD algorithm for combinatorial optimization. The perfor-
mance of this algorithm depends crucially on some basic choices such as the problem
representation and the objective function. This insight may be used to develop simple
acceleration techniques for ACO algorithms, by transposing previous work on gradient-
based reinforcement learning. Moreover, the most successful applications of the ACO
metaheuristic suggest new ways of merging gradient descent with other optimization
techniques for combinatorial optimization.

In conclusion, we believe that this work constitutes a signi�cant step toward un-
derstanding the mechanisms at work in ACO algorithms, shedding new light on some
important issues in the theory of these algorithms.
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