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{rmiletitch,acampo,mdorigo}@ulb.ac.be
3ISTC, National Research Council, Rome, Italy

vito.trianni@istc.cnr.it

Abstract

Multi-robot exploration and navigation is a challenging task,
especially within the swarm robotics domain, in which the
individual robots have limited capabilities and have access
to local information only. An interesting approach to explo-
ration and navigation in swarm robotics is social odometry,
that is, a cooperative strategy in which robots exploit odom-
etry for individual navigation, and share their own position
estimation through peer-to-peer local communication to col-
lectively reduce the estimation error. In this paper, the robots
have to localize both a home and a goal location and navi-
gate back and forth between them. The way in which naviga-
tional information is aggregated influences both the efficiency
in navigation between the two areas, and the self-organized
selection of better paths. We propose three new parameter-
free mechanisms for information aggregation and we provide
an extensive study to ascertain their properties in terms of
navigation efficiency and collective decision.

Introduction
Navigation is a basic task for robots in most application do-
mains, would that be for cleaning a room or demining a
field. In few cases, the environment is completely known
in advance, and therefore a detailed navigation plan can be
produced. Most often, the environment is not completely
known and exploration is required to identify and reach the
desired locations. When multiple robots explore an un-
known environment, cooperative strategies can be used to
improve exploration and navigation efficiency. This is par-
ticularly useful in the swarm robotics domain, in which indi-
vidual robots cannot rely on global information or complex
algorithms (Brambilla et al., 2013). In this paper, we study
a cooperative exploration and navigation strategy based on
the peer-to-peer exchange of information among robots in a
swarm. We propose three variants of the information aggre-
gation mechanism, and we investigate their impact over the
dynamics of navigation of the swarm as well as the result-
ing efficiency with respect to an exploration and exploitation
task.

Exploration and navigation strategies in swarm robotics
should present a low complexity to match the limited capa-
bilities of the individual robots. The simplest way to explore

and navigate in a closed area is through random walk. While
not being the most efficient way, it assures that the robots
reach every part of the environment, even if this may require
a long time. In order to improve over a purely random explo-
ration, the robots can memorize and map their surroundings
to avoid previously explored zones (Thrun, 2008) to reach
specific areas of interest. To this purpose, the robot can po-
sition itself on the map and navigate in the environment us-
ing dead-reckoning techniques such as odometry. Odometry
relies on the integration over time of the movement vector—
as perceived through the robot (proprioceptive) sensors—, in
order to maintain an estimate of the robot position. However,
this approach is quite error prone since estimation errors are
cumulated over time, therefore requiring techniques for er-
ror reduction such as Kalman filters (Thrun et al., 2005).

Alternatively, the estimation error can be reduced through
the shared effort of multiple robots exchanging structured in-
formation (Martinelli et al., 2005). By sharing the estimated
position of a landmark, the robots can collectively reduce
the overall odometric error. This is a straightforward mech-
anism that easily lends itself to implementation on very sim-
ple robots. Therefore, the collective reduction of odometry
errors can be instantiated also in swarm robotics contexts, as
it complies with the inherent limitations of the robots. This
mechanism was first introduced by Gutiérrez et al. (2009)
and is referred to as social odometry. In this approach, the
robots estimate the navigation path between two target ar-
eas in the environment (i.e., home and goal locations) using
odometry and attach to this estimate a confidence level that
decreases with the distance travelled. At the same time, the
robots share their navigation information within the swarm
in a local peer-to-peer manner. Thanks to this process, in-
formation about target areas spreads gradually within the
swarm, contributing to reduce the error in the position es-
timation. Overall, this decentralized process results in an
increased efficiency in the swarm navigation abilities.

An interesting aspect of social odometry is that it natu-
rally leads to the emergence of collective decisions within
the swarm (Gutiérrez et al., 2010). Indeed, when there are
multiple goal areas to localize (e.g., multiple resources to
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exploit), by sharing the available information the robots not
only improve the accuracy of their localization but can also
decide which area to target. The sum of individual decisions
leads to a self-organized behaviour that makes the swarm
choose between focusing on a single area/resource or ex-
ploiting in parallel several ones.

The efficiency of social odometry as a navigation mecha-
nism and the resulting collective dynamics of decision mak-
ing depend heavily on the way information is shared and
aggregated in the robot swarm. In particular, we found that
even small variations in some parameters of the individual
behaviour may lead to huge differences in the swarm dy-
namics. For this reason, in this paper we propose three new
parameter-free mechanisms for information aggregation and
processing, and study them to ascertain their properties in
terms of (i) the efficiency in supporting the swarm naviga-
tion and (ii) the ability to produce a collective decision when
multiple goal locations are present. The results we obtain
allow us to understand the properties of the collective be-
haviours generated by each information processing mecha-
nism. On the basis of such knowledge and depending on the
specific needs of the application at hand, a principled choice
of the most appropriate mechanism can be made.

State of the Art

Navigation in Swarm Robotics There are various ways
to improve navigation through information-sharing within a
swarm. Ducatelle et al. (2011) model a swarm as a commu-
nication network that propagates relevant information. Each
robot in the swarm maintains a table with navigation infor-
mation about all known robots, similar to how nodes in a
mobile ad hoc network maintain routing tables. Then, the
robots propagate the available information and use the ta-
ble to find the best path to reach a target robot within the
swarm. Sperati et al. (2011) also study navigation in a
swarm robotics context. In this case, communication is per-
formed through visual signals only and therefore the infor-
mation exchanged is much less structured. For this reason,
they used artificial evolution to synthesize effective naviga-
tion strategies.

Several studies in swarm robotics implement navigation
and exploration algorithms without sharing structured in-
formation, sometimes exploiting robots as physical land-
marks. Rekleitis et al. (2001) divided the swarm in two
teams, one moving and the other stationary, serving as a ref-
erence for navigation. The teams alternate between station-
ary and moving states. Nouyan et al. (2009) exploit robots to
form complex structures such as chains, in which one end of
the chain connects to a central place while the other end ex-
plores the environment. Once the goal location is reached,
the chain can be exploited by other robots for navigation
purposes, or a bucket brigade method can be used for trans-
porting objects along the chain (Ostergaard et al., 2001).

Collective Decisions When there are several goal/resource
locations present in the environment, the robots may make a
collective decision and focus on the exploitation of a single
one. This can be beneficial if it is necessary to aggregate a
sufficient number of robots in support of the collective lo-
calization, or if exploitation requires several robots at the re-
source. However, this may lead to congestion (i.e., the path
to the resource is overused and robots have trouble navigat-
ing) or overexploitation of the resource. In this case, the
swarm is better off exploiting several resources in parallel.

In order to agree on one option, the robots can either
switch to the best option available in their neighbourhood,
or average out all the available information. Social odom-
etry allows doing both simply by tuning a single parame-
ter (Gutiérrez et al., 2010). Olfati-Saber et al. (2007) study
the swarm as a multi-agent network and present a theoreti-
cal framework for the analysis of consensus algorithms. It
is possible to obtain collective decisions also through the
amplification of the various opinions present in the swarm.
Following this approach, the more an opinion is represented
in the swarm, the higher the probability of robots switch-
ing their opinion (Garnier et al., 2007, 2009; Montes de Oca
et al., 2011). This approach requires gathering the opinion of
several neighbours, while social odometry works with peer-
to-peer interactions, which is easier to implement.

Social Odometry & Information Processing
In our experiments, the goal of the robots is to locate both
a home area and a goal area and then to efficiently navigate
back and forth between them. Once one of these two target
areas is discovered, its position is kept in memory and up-
dated using odometry. The information about target areas is
shared with other robots upon encounter, following the so-
cial odometry mechanism. Within this framework, we study
the navigation process, the social dynamics, and the link be-
tween the two. In the following, we first describe how robot
use the available information (either from individual or so-
cial odometry) for navigation purposes. Then, we introduce
the information processing mechanisms we have devised.

The Controller
The behaviour of the robot is defined by a finite state au-
tomaton with five states: Explore, Go Home, Go to Goal,
Leave Home, Leave Goal (Fig. 1). Robots start in the Ex-
plore state and return to it whenever they lack relevant infor-
mation. The other four states form a loop that corresponds
to the robot navigating back and forth between the target ar-
eas: go to a target area, enter and leave it, then go to the
next one. On top of these control states, both short and long
range collision avoidance is implemented.

The robots start without any prior knowledge about the
location of the target areas. Therefore, they first have to
explore the arena. When in the Explore state, the robots
perform a random walk until they discover the position of
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Figure 1: Robot’s finite-state automaton. The circles define
the states while the arrows define the transitions. In(Area),
Area ∈ {Home,Goal}, is true when a robot senses the grey
level of the area, Know(Area) is true when the robot knows
the position of the area, Got(Area) is true when it just gets
this estimation. The robots start in the Explore state.

both target areas (home and goal). This can happen in two
ways: either they receive relevant information from team-
mates or they stumble upon a target location (Got(Area) be-
comes true, with Area ∈ {Home,Goal}). In both the Go
to Goal and Go Home states, the robots move straight to the
target location, possibly avoiding other robots and obstacles.
Along their travel, they update the target areas location us-
ing odometry and update their confidence in the informa-
tion. The confidence is defined as the inverse of the distance
that the robot had travelled from the target area. Therefore,
a straight path results in a higher confidence than a curved
one.

Once a robot reaches an area (i.e., In(Area) is true), it tra-
verses it in a straight line (possibly dodging other robots to
avoid collisions) and stores the area location. In order to
get an estimated position closer to the center of the area,
the robot averages its entering and its exiting positions. No
matter how many goals there are in the arena, the robots al-
ways memorize only one home and one goal (the last seen
or agreed upon).

Information Sharing and Processing
While robots navigate between target areas, they share the
information they have on relative locations in order to coun-
terbalance the decrease in information confidence. Not all
information is shared at the same time. When in the Explore
state the robots share the sole information they have. In the
other states, the robots share only the information of the last
visited location. The information received by a robot is ag-
gregated with the robot’s own information. The way this ag-
gregation is performed depends on the information process-
ing mechanism implemented. Given that robots do not share
the same reference frame, a transformation is needed. This
is made possible by knowing the relative position (range and
bearing) of the robot that is sharing its information (for more
details, see Gutiérrez et al., 2009). Once the location is ob-
tained in a shared reference frame, the information aggrega-

tion process takes place. Here, we first describe the informa-
tion aggregation mechanism used by Gutiérrez et al. (2009),
and then we introduce our contributed mechanisms.

Let i and j be two robots, i receiving a message from
j. Let pi, pj be their estimated position of an area (either
home or goal) and ci, cj the confidence over their respective
estimation. The result of any aggregation is the updated cou-
ple 〈pi, ci〉. The aggregation mechanism used by Gutiérrez
et al. (2009) is based on a Fermi distribution. A weight is
calculated from the difference in confidence in order to make
a linear combination of the positions:

〈pi, ci〉 ← k · 〈pi, ci〉+ (1− k) · 〈pj , cj〉

k =
1

1 + e−β(ci−cj)

The parameter β measures the importance of the relative
confidence levels in the information aggregation. For low
values, the aggregation is close to an average, ignoring the
confidence. For higher values, the aggregation is stiff: only
the information with highest confidence is kept. Finding the
right value of β is often a process of trial and error. Our con-
tribution in this paper is the introduction of three parameter-
free aggregation mechanisms: Hard Switch (HS), Random
Switch (RS) and Weighted Average (WA).

Hard Switch (HS) In this winner-take-all mechanism, the
robots keep the information with highest confidence (either
the current information or the received one) and discard the
other one. This mimics the Fermi mechanism with a high β.

〈pi, ci〉 ← 〈px, cx〉, x = argmax
k∈{i,j}

ck

Random Switch (RS) As in the mechanism above, here
the robots keep one piece of information and discard the
other. In this case, however, the switch is stochastic: the
higher the confidence, the higher the probability of accept-
ing the information. In practice, this mechanism is a stochas-
tic version of the HS.

P (〈pi, ci〉 ← 〈pj , cj〉) =
cj

ci + cj

Weighted Average (WA) This mechanism consists in a
linear combination of both estimated positions with their
confidence as weight. On the one hand this implies no loss
of information, on the other hand, when information about
different goals is aggregated, the new position may not co-
incide with a real goal location, leading to the apparition of
artefacts. While the Fermi mechanism focuses on the differ-
ence between the two confidences, here we directly use each
of them as weights.

〈pi, ci〉 ←
〈
ci · pi + cj · pj

ci + cj
,
ci + cj

2

〉
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Figure 2: Setup of the experimental arena. The home area
is placed in the center of a circular arena of 11 m radius
surrounded by walls (not displayed). The goals are charac-
terised by their distance to the home di, dj and the angles
they form with each other αij .

Experiments
We used an experimental setup with as few variables as pos-
sible: a circular arena (radius: 11 m) with the home in the
center and the goals scattered around (Fig. 2, surrounding
walls not shown). The goals are defined by their distance
to the home (di) and the angle between each other (αij ∈
[π/3, π]). Both goal and home are of radius 50 cm, and are
differently coloured in grey levels to be distinguished by the
robots.

Our experiments are performed in the ARGoS open
source multi-robot simulator (Pinciroli et al., 2012). The
robots we use are the marXbots (Bonani et al., 2010). To
accomplish their task, the robots are equipped with several
sensorimotor and communication devices. In our experi-
ments, the robots use the infrared ground sensors to check
whether they entered an area and to detect its type (home or
goal) depending on the area’s grey level. They also use the
infrared proximity sensors for short range collision avoid-
ance and the range&bearing device for both communication
and long range collision avoidance among robots (Bonani
et al., 2010). This last device gives both angle and distance
between neighbouring robots and allows them to send short
messages. Wheels encoders provide the movement vector
for odometry. A simulated gaussian noise with 5% standard
deviation models the odometry estimation error. The control
loop is executed 10 times per second. Unless stated other-
wise, we used 75 robots spawned randomly.

By varying the number of goals, we study different as-
pects of the collective behaviour, such as the impact of the
density of robots on their navigation abilities, the collective
decision made by the swarm in a two goals setup, and how
this generalizes in multiple goals setups. In the following,
we briefly describe the experiments we present in this paper.

Single Goal When a single goal is present, we expect that
all robots will converge on the same path. The more robots
in the arena, the harder it is for them to avoid each other. As
density rises, the robots have to handle more and more con-
gestion on their path, which leads them to travel bigger dis-
tances and to accumulate more error. This also corresponds
to less round trips between home and goal, hence lowering

the efficiency of the swarm. We define the density on a path
as the number of robots on it divided by its length.

In order to study the impact of density on navigation, we
devised an experimental setup in which we vary both the
distance between the home and the goal and the number of
robots. All three information processing mechanisms are
tested and compared with a benchmark condition in which
the robots are provided with perfect information (PI) about
the goal and home locations. In each experiment, we mea-
sure the navigation speed, computed as the number of round
trips over time and we study its evolution for values of den-
sity between 2 and 40 robots/m. For each density value, we
run 100 trials in which we randomly draw the distance be-
tween home and goal in the interval [3,8] m, and we compute
the corresponding number of robots to obtain the specified
density value (which will be in the range [6,320]).

Two Goals When there is more than one goal, a decision
has to be made as how to spread the robots among the avail-
able paths. In this setup, we study if and how the robots
converge on one path as well as the implications of such
convergence over efficiency. In order to study this decision
making process, we count the number of robots committed
to each goal, as well as the uncommitted ones. Given that
robots do not distinguish between different goals and only
store one estimated position pg , a robot is considered to be
committed to a goal i among n possible if it has information
about both goal (cg �= 0) and home (ch �= 0), and if goal i is
the closest one to the robot’s estimated goal position pg .

In this setup, we have two goals which can be either at
short distance (5 m) or at long distance (8 m). We run exper-
iments with both equal and different distances for the goals:
Short/Short (SS), Short/Long (SL) and Long/Long (LL). For
each condition, we perform 1000 replications by randomly
varying the angle between the sources with αij ∈ [π/3, π]
(cf. Fig. 2).

Multiple Goals The environment in which a swarm
evolves is rarely as simple as in the two goals setup. Through
a multiple goals setup, we enquire about the scalability of
the results previously gathered. M goals are uniformly dis-
tributed around the home location, with an angular separa-
tion between adjacent goals of π/M , where M ∈ [3, 6]. To
investigate both the navigation and the decision making abil-
ities, we test three different conditions. Either all goals are at
the same distance, short (SSS) or long (LLL), or a single goal
is closer to home (SLL). For each condition, we performed
250 trials.

Results
Each trial in all the previous setups lasts 20 minutes of sim-
ulated time. We use the same random initialization in all
the runs for the different opinion processing. For each run

ECAL - General Track

105 ECAL 2013



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40Effi
ci

en
cy

 (r
ou

nd
 tr

ip
 p

er
 s

ec
on

d)

Density (robot per meter)

HS
RS
WA

PI

Figure 3: Impact of density on navigation efficiency for each
mechanism and in the perfect information control condition.
Each line is the mean over 100 trials.

we compute the number of robots on each path to study the
dynamics of collective decisions, and the number of round
trips to study the navigation efficiency.

Navigation
As we can see in Fig. 3, all the proposed mechanisms and the
control condition with perfect information (PI) follow the
same tendency. For low densities, we can observe a linear
increase in the number of round trips. With higher densities,
the growth slows down. As expected, robots with perfect
information are the most efficient at first, but their efficiency
reaches a peak because of the artefacts created by perfect
information. With PI, since all robots aim at the center of
the target areas (either home or goal), as the density rises
they have increased difficulties in avoiding collisions and in
entering or exiting the target areas.

Congestion has a lower impact on navigation efficiency
with social odometry. In this case, WA proves to be more
resilient to congestion than HS and RS. This is due to a
smoother navigation in the surrounding of the home and
goals, where robots try to enter small and densely populated
area. First, since the WA mechanism never discards informa-
tion but averages it, the precision on the estimated position
is better than with HS or RS. Second, the reception of even a
slightly better information is smoothly integrated in the WA
mechanisms, while in both HS and RS it may cause a large
leap of the new location, which may be difficult to reach in
case of high densities.

Collective Decision
Congestion explains why sometimes it is better to spread
along multiple paths when there is more than one
goal/resource. This decisions impacts not only the efficiency
but also the spatial arrangement of the swarm and the way it
reacts to changes in the environment.

Decision The decision pattern of the swarm results from
the sum of local decisions made by the robots. The dynam-

ics of the collective decision are shown in Fig. 4, which plots
the convergence pattern generated by the HS mechanism
when confronted with the SL experimental condition. Here
the swarm decides to focus on the closest area/resource and
most robots converge quickly on the associated path. This
behaviour is typical of all three social mechanisms when
there is a goal closer to home. We can observe three differ-
ent phases. At first (0-120 s), most robots are uncommitted
and explore for goal areas, reinforcing each as they discover
them. Then (120-400 s), a competition among the two al-
ternative paths occurs. The shorter path is reinforced more
because of the better information the robots have when en-
countering robots coming from the other goal. Eventually,
the swarm enters a maximization state in which mostly one
path is exploited while uncommitted robots continue to join.

Fig. 5 left shows the percentage of robots that choose path
A (i.e., the shortest path in the SL condition). We note that
in the SL case, all information aggregation mechanisms lead
to convergence on a single path with at least 90% of the
robots. Both HS and RS always lead to a convergence on
the closest goal. Similarly for WA, which however presents
also a low probability to make the robots converge on the
distant goal. This happens because with WA no informa-
tion is discarded. When a large number of robots discovers
the distant goal early in the experiment, they may influence
the whole swarm despite the lower confidence in their in-
formation. This cannot happen in the HS and RS, because
low quality information is instantly discarded. In both the
SS and LL experimental conditions, when there is no better
choice, HS and RS lead to a split in the swarm, and robots
spread among the two paths (Fig. 5 left). In these experi-
mental conditions, the more robots on a path, the higher the
congestion, and the larger the distance the robots travel. This
causes robots to have worse confidence in their information
with respect to those from a less congested path. Therefore,
switches to the other path are very likely. Congestion cre-
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to path A (the shortest possible path). Right: efficiency of the swarm for two goals, for all mechanisms and conditions. Each
box represents the inter-quartile range, whiskers extend to 1.5 times the corresponding quartiles, and dots represent outliers.

ates a sort of negative feedback that leads to an oscillating
dynamics in which no decision ends up being taken. On
the contrary, WA is not affected by such negative feedback
and systematically leads to convergence (randomly on either
path, the setup being symmetrical). Indeed, the worse con-
fidence resulting from congestion is counterbalanced by the
larger number of robots with which the information is shared
and averaged. Therefore, the swarm converges to the more
populated path.

Efficiency The robot behaviour does not explicitly encode
the ability to make collective decisions. Instead, it is con-
ceived to provide efficient navigation ability thanks to the
information shared within the swarm. The decision process
is an emergent result of this behaviour and so is the variation
in efficiency depending on the setup and the mechanisms in-
volved, as shown in Fig. 5 right. In the SL condition, all
three mechanisms make the robots converge on the closest
path, therefore resulting in density of 15 robots/m. As shown
in Fig. 3, WA is more resilient to congestion, and this is why
it is the most efficient mechanism in this setup, followed by
RS and HS. In the SS condition, both HS and RS result in the
swarm splitting between the two paths as discussed above.
By exploiting two paths with a low density of 7.5 robots/m
(instead of one with high density of 15 robots/m) the robots
create less congestion, which explains why the performance
for HS and RS is slightly better than in the WA case. Indeed,
WA makes the swarm converge on a single path with high
density, and navigation is slightly less efficient. Congestion
has a lower impact in the LL conditions as both densities (9.4
robots/m on a single path, 4.7 robots/m on two paths) fall in
the linear part of the congestion curve (see Fig. 3), explain-
ing why the mechanisms result in the same efficiency.

Generalization to Multiple Goals
The dynamics we observe with multiple goal locations are
similar to the ones displayed in the two goals setup, no mat-

ter the number of added goals. Fig. 6 shows the percentage
of robots that choose path A (i.e., the shortest path in the
SLL condition), when multiple goal locations are present.
All mechanisms leads to convergence in the SLL case, even
if WA sometimes leads to the selection of one of the distant
goals, for the same reasons discussed in the two goals setup.
We can observe a similar splitting behaviour in the SSS and
LLL conditions for both HS and RS, while convergence is
observed for WA. When the swarm splits, the repartition of
robots is not anymore centred on 50% but closer to 33%,
meaning that the repartition is not anymore among only two
paths. Nonetheless, not all are exploited at the same time,
as can be inferred from the existence of paths selected by
no robot. This can be explained by the oscillation dynamics
discussed earlier. When the amplitude of the oscillations is
greater than the number of robots on a path, all the robots on
this path switch to another one. This happens in the case of
multiple goals because robots are spread among more paths
and therefore their number on each is lower.

To better understand the exploitation of the available re-
sources/goals, in Tab. 1 we report the average percentage of
robots on the different paths, ordered from the most to the
least exploited path. We note that the number of exploited
goal locations is most of the time no more than 3. This ex-
plains why the efficiency of the swarm does not vary with
the number of available resources, as shown in Fig. 7. The
slight increase in performance can be attributed to the fact
that the more goals there are, the easier it is for uncommit-
ted robots to join a path earlier in the experiment. Overall,
we note similar patterns over efficiency between the multiple
goals condition and the two goals condition.

When there are multiple goals, WA in the SLL condition
leads to a frequent selection of a distant goal instead of the
closest one, as shown in Fig. 6. If several distant locations
are present, they end up reinforcing each other as their an-
gular distance becomes smaller. In other words, two distant
goal locations that are close to each other attract more robots
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Table 1: Repartition in percentage of robots for 3, 4, 5 and
6 goals. The 1st goal is the one associated with the highest
number of robots. The mean and maximum of the standard
deviation is (4.7, 10.5) for HS and RS and (6.1, 16.9) for WA.

SL SS LL
HS RS WA HS RS WA HS RS WA

1st 98.5 98.1 96.0 48.0 52.6 93.0 48.8 47.0 90.8
2nd 0.1 0.6 2.3 34.3 37.3 5.7 33.4 32.5 7.0
3rd 0.0 0.0 0.0 17.2 9.7 0.0 17.4 19.7 0.1
1st 98.4 97.7 95.2 50.6 54.1 92.3 44.8 43.8 89.5
2nd 0.2 1.0 3.6 35.2 38.0 6.8 32.0 31.0 9.2
3rd 0.0 0.1 0.0 12.5 6.9 0.0 17.6 17.2 0.1
4th 0.0 0.0 0.0 2.1 0.7 0.0 5.1 7.0 0.0
1st 98.6 97.3 92.4 51.1 51.1 94.8 44.9 42.6 89.4
2nd 0.2 1.0 6.8 35.2 37.0 4.5 31.6 30.0 9.5
3rd 0.0 0.1 0.0 12.5 10.4 0.2 17.7 17.7 0.5
4th 0.0 0.0 0.0 1.1 1.1 0.0 5.1 7.3 0.0
5th 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 0.0
1st 98.6 97.3 93.6 50.1 53.0 94.7 43.7 42.4 88.5
2nd 0.2 1.5 5.4 34.9 36.1 4.7 31.7 28.2 10.4
3rd 0.0 0.1 0.5 13.5 9.2 0.2 17.2 17.3 0.6
4th 0.0 0.0 0.0 1.4 1.3 0.0 6.0 8.3 0.0
5th 0.0 0.0 0.0 0.1 0.2 0.0 0.8 2.3 0.0
6th 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

than a single closer location. This explains why the chance
of WA leading to the selection of a distant goal increases
with the number of goals.

Discussion
The experiments above reveal the specificities of the three
information aggregation mechanisms. WA leads to conver-
gence to a single path in all conditions, but this is slower and
error-prone. In the whole, WA leads to better cohesion of the

swarm and deals better with congestion thanks to more ac-
curate information about the target areas. HS and RS also
lead to convergence when there is a shorter path to exploit,
and handle better the presence of multiple distant goal lo-
cations. When congestion results in inefficient navigation,
both mechanisms lead to the exploitation of multiple paths,
spreading the load of robots in a balanced way with similar
dynamics, although HS appears to be stiffer than RS.

Conclusions
In this paper, we presented an extensive analysis of three
parameter-free information processing mechanisms for so-
cial odometry. We studied the impact of these mechanisms
on the navigation efficiency and on the dynamics of the
swarm. In particular, we observed how the information pro-
cessing mechanism can either lead to convergence on the
exploitation of a single path, or to splitting over multiple
comparable options. These results are meant to give future
designer a guideline of which mechanism to choose depend-
ing on the situation at hand.

In future work, we plan to further investigate the dynam-
ics of social odometry in order to provide an optimal load-
balancing behaviour. This would maximize the exploitation
of different resources and provide the swarm the ability to
react to changes in its environment in real time. Addition-
ally, we will experiment with more complex paths, for in-
stance in the presence of obstacles. Also, physical objects
to be retrieved may be placed within the goal areas in order
to simulate a more realistic environment and making it pos-
sible to test the collective behaviour with real robots. Last,
heterogeneity can be added in the swarm. On the one hand,
individual robots may get committed to a goal with different
individual preferences, leading to a better exploration of the
environment. On the other hand, different groups of robots
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Figure 7: Efficiency of the swarm for multiple goals and all
mechanisms and conditions. See Fig. 5 for more details.

could compete for the best source, each of them having dif-
ferent information aggregation mechanisms, leading to a dif-
ferent exploitation of resources among different groups.
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