)

Check for
updates

Real-Time Coordination of a Foraging
Robot Swarm Using Blockchain Smart
Contracts

Alexandre Pacheco®™)®, Volker Strobel®, Andreagiovanni Reina
and Marco Dorigo

)

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{alexandre .melo.pacheco,volker.strobel,andreagiovanni.reina,
marco.dorigo}@ulb.be

Abstract. We present a novel control scheme for robot swarms that
exploits the computation layer of a blockchain to coordinate the actions of
individual robots in real-time. To accomplish this, we deploy a blockchain
smart contract that acts as a “decentralized supervisor” during a swarm
foraging task. Our results show that using blockchain-based global coor-
dination rules can improve the foraging behavior of robot swarms, while
maintaining a decentralized, scalable, and democratic system in which
every robot contributes homogeneously to the decision-making process.

1 Introduction

The application of blockchain technology to robotic systems is a fast growing
research topic. Particularly, in swarm robotics, the most noteworthy advance-
ment was the recent introduction of a blockchain in order to achieve secure
consensus in the presence of Byzantine agents: in [19,27], it was shown that
blockchain-secured robot swarms can be deployed in situations where security
against unauthorized agents is paramount.

The introduction of a decentralized and secure database such as the block-
chain might have a strong impact on the field of swarm robotics. However, fur-
ther research is required to understand the extent of this impact, as well as its
potential drawbacks.

Ethereum [3] extended the application of blockchains from financial ledgers
to decentralized computing platforms. This means that the participants in the
Ethereum network can agree not only on the execution of financial transactions,
but also on the execution of computer programs known as smart contracts.

In this paper, we argue and validate the claim that smart contracts can be
very valuable when applied to the real-time coordination of robot swarms. In
this context, a smart contract is control code that is executed in a decentralized
manner by the swarm; that is, each robot executes the code independently and
the swarm comes to an agreement on its output. On a micro perspective, the
individual robots collect local information and deliver it to the smart contract by
broadcasting local messages. On a macro perspective, the smart contract extends
© Springer Nature Switzerland AG 2022

M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 196-208, 2022.
https://doi.org/10.1007/978-3-031-20176-9_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_16&domain=pdf
http://orcid.org/0000-0001-5933-3553
http://orcid.org/0000-0003-2974-9827
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-031-20176-9_16

Coordination of Robot Swarms Using Blockchain 197

the swarms’ ability to self-organize by aggregating the input of the robots and
returning action policies on which the robots can act in real-time.

To demonstrate this, we deploy a blockchain smart contract to act as a
“decentralized supervisor” during a collective foraging task in which the swarm
needs to collect resources spread in an unknown environment. The robots broad-
cast messages—known as transactions—that contain information the robots
obtained from scouting the environment for resources and that should be
included in new blocks of the blockchain. The information about the environ-
ment contained in these transactions is aggregated by the smart contract into a
shared database of resource locations. The blockchain consensus protocol guar-
antees that these transactions are executed orderly and conflict-free, and that
all robots reach an agreement on the most recent state of this database. Further-
more, the smart contract distributes the available robots (recruits) to the various
resources, while (i) prioritizing resources with better quality; and (ii) limiting
the number of foragers per resource. These simple rules are shown to increase
the resource collection rate and energy efficiency during the task. As consen-
sus protocol we use proof-of-authority [29], which we have shown in previous
research [19] to be suitable for robot swarms since it requires low power and is
robust to network partitioning and temporary unavailability of robots.

The rest of the paper is organized as follows. In Sect. 2, we review related
works. In Sect. 3, we introduce the foraging task, the environment, and other
methods relevant for the implementation of the experiments: the simulations
software, the robot’s model, the blockchain, and the robot controllers. In Sect. 4,
we present and discuss the experimental results. In Sect. 5, we deliver the con-
clusions of this study.

2 Related Work

Cooperation in Foraging Robot Swarms. Foraging is one of the most studied
behaviors in swarm robotics because it models a wide range of application scenar-
ios, such as search and rescue, agriculture, mining, waste cleaning, and planetary
exploration. It can be described as the combination of two sub-tasks: searching
the environment for objects, and performing actions on those objects (e.g., trans-
portation, consumption, destruction, ...). In this work we focus on central place
foraging [13], where agents are tasked with finding and transporting objects back
to a target location (called “nest”).

Inspired by the foraging behavior of ants, which deposit pheromones along
paths leading to objects [5], robot swarm algorithms are most frequently based on
indirect communications (stigmergy). Researchers have attempted to mimic ant
behavior by using chemicals [24]; augmented reality pheromones [10]; and virtual
pheromones, which are advertised locally by robots with the role of pheromone
beacons [4,12,17]. The main advantages of these methods are scalability and
robustness; however, their implementation either requires specific equipment and
infrastructure (e.g., a smart environment or sensors/actuators for chemicals) or
reduces efficiency by allocating part of the swarm to play the role of beacons.



198 A. Pacheco et al.

Additionally, it has recently been shown that stigmergy is particularly fragile
when malicious agents are present [1].

For these reasons, some researchers have employed forms of explicit communi-
cation to coordinate the collective foraging behavior, inspired by the recruitment
dances that honeybees perform to signal foraging locations to peers [2,25].

Pitonakova et al. [21,22] compare swarms where robots recruit other robots
at the nest with swarms of individualist foragers. They show that when resources
are scarce or difficult to find, nest-site recruitment can be helpful to maximize
the total resources collected. Conversely, if resources are abundant, it may be
more advantageous to forage individually as this might prevent both physical
interference (when robots foraging for the same resources collide) and informa-
tional interference (when robots are misguided by incorrect social information).
Despite this insight, no coordination strategy nor methodology to enable the val-
idation of the information are proposed in order to limit or reduce interference.

Applications of Blockchain to Swarm Robotics. The application of blockchain
technology to robot swarms was demonstrated for the first time in [26-28],
where the authors presented a proof-of-concept (in simulation) showing how
blockchain-based smart contracts can be used to neutralize the negative effects
of Byzantine robots in a consensus problem. In [19] the authors presented the
first implementation of a blockchain in a swarm of real robots using proof-of-
authority consensus [3,29], which is shown to be suitable to robot swarms given
that it is energy efficient and robust to network partitioning.

Although these studies showcase the promise of smart contracts to achieve
generic swarm-wide agreements, it is not yet clear whether the network consen-
sus delay is too large to allow a wider range of applications—particularly, real-
time control. Some researchers have presented control architectures in which the
blockchain is maintained outside of the robot’s network [9]. This design is akin
to using an external control element (albeit, a distributed one in this case), and
does not grant the autonomy and fault-tolerance properties warranted in a robot
swarm. In this paper, we present a decentralized and autonomous robot swarm
that uses blockchain smart contracts for real-time coordination.

3 Methods

Task. The goal of the swarm is to retrieve resources from the environment and
deposit them at the nest. Resources have various qualities that yield a dif-
ferent reward when deposited. The performance of the swarm is measured in
terms of the total reward collected, and of the scouting efficiency, which is the
ratio between the reward collected and the distance traveled by the robots while
exploring the environment. Each experiment lasts 15 min.

Environment. The environment consists of a square arena with the nest located
at the center. The size of the arena is a function of the number of robots (i.e.,
we maintain a constant robot density of 3 robots per m?), and the nest occupies



Coordination of Robot Swarms Using Blockchain 199

SSP (scattered, small) SBP (scattered, big) CSP (clustered, small)
0. > ‘ ’ ' ?‘
® e ° ° °
L oo : o0 ® ‘ ° o > ) 9 ] 2
e | e | e
° : °° ) ° b ,u ° @

¢
4

o0 i'}
@

N
2
\\
Y

40/.

7

% ¢
NEY 0 o
‘ . o,

e e ” I

Fig.1. A frame from a simulation run for each resource patch distribution: SSP
(left), SBP (middle) and CSP (right). The patches are circles with items inside (the
resources). A gray background means that the patch is included in the blockchain
database, and the black dots above represent the remaining quantity of resources
according to the blockchain database. The brown circle and annulus in the center
are the nest and its deposit area, respectively. (Color figure online)

10% of the arena’s total area. The nest is divided into two areas (Fig.1): an
external annulus, where robots can deposit resources; and an internal circle,
where robots can idle. The nest broadcasts a homing signal which allows the
robots to navigate to the nest from any location.

Resource patches are circular areas distributed randomly in an annulus cen-
tered on the nest and with radiuses 0.83m and 1.44 m. Resources are individual
items contained in a patch that the robots can collect and deposit at the nest.
The patches can be of 4 different types (red, green, blue and yellow), and the
resources collected from each type yield a different reward (2, 4, 6 and 8, respec-
tively). Once a patch runs out of resources, an identical patch spawns elsewhere.

We consider three distributions of patches and resources in the environment.
In all distributions, approximately 3% of the environment area is covered with
patches, and there is an identical number of red, green, blue and yellow patches.

— Scattered small patches (SSP) The patches are distributed uniformly in
the annulus, have a diameter of 16cm and contain 10 resources (Fig. 1, left).

— Scattered big patches (SBP) The patches are distributed uniformly in the
annulus, have a diameter of 36cm and contain 15 resources (Fig. 1, middle).

— Clustered small patches (CSP) The patches are distributed according to
a normal distribution that is biased towards the upper left quadrant of the
arena, have a diameter of 16cm and contain 10 resources (Fig. 1, right).



200 A. Pacheco et al.

Simulation Setup. The simulation setup consists of the swarm robotics sim-
ulation software ARGoS [20]; the blockchain software Ethereum [3]; and the
virtualization software Docker [14]. The nodes of a custom Ethereum network
are executed in Docker containers. Each ARGoS robot controller is associated
with an Ethereum node, and can interact with the client application software
(geth). In this way, ARGoS interacts with the client-side of Ethereum, while the
maintenance of the blockchain is handled by the Docker containers.

We use Python wrappers for both ARGoS [11], and geth [8]. This allows the
robot control routines and interactions with the blockchain client to be fully
written in Python. Our code is available online [18].

Robot Model. The agent used in the simulations is a model of the Pi-puck
robot [15]. In previous research, we showed that the Pi-pucks are capable of
executing the blockchain software [19]. In order to perform the foraging task,
the Pi-pucks use infrared sensors for obstacle avoidance; a range-and-bearing
board for local peer discovery; a ground sensor for scouting resource patches;
and two motors for locomotion. The manipulation of resources is not modeled.

Blockchain Protocol. For a thorough understanding of blockchain technology, we
refer the readers to the papers on Ethereum [3] and Bitcoin [16]. Here we focus
on the two components of blockchain technology which are most relevant for this
work: consensus protocols and smart contracts.

The consensus protocol consists of the rules used by a blockchain network
to agree on the addition of new blocks of information to the blockchain. In
situations of conflict (known as blockchain forks), it also establishes the rule that
defines what becomes the current accepted state of the blockchain. To accomplish
this, proof-of-work, the original blockchain consensus protocol introduced with
Bitcoin [16], requires the expenditure of computational resources. As such, it
is often considered contraindicated for swarm robotics applications [23], which
typically consider robots with limited capabilities and resources [6].

In our research, we have decided to use proof-of-authority [29] as an alterna-
tive to proof-of-work. Proof-of-authority keeps a core of authorized and account-
able nodes which share the role of producing new blocks. In this protocol, anyone
can create a block and propose it to be added to the chain, but in order to be
considered a valid block three conditions must be met: (i) the difference between
the timestamp of two consecutive blocks must be at least ¢ = T}, seconds (7}, is
called the block period); (ii) the block must be correctly signed by an authorized
node (known as a “sealer”) using its private key; and (iii) a sealer can only sign
one block every |£] 41 blocks (N is the number of sealers).

Every node in the network checks if a proposed block meets these conditions.
If this is the case, the node appends that block to its local copy of the blockchain.
The consensus protocol establishes that the current version of the blockchain is
the one which has the highest cumulative difficulty. Blocks which are signed
in-turn (i.e., that are signed by an appointed preferred sealer for that block),
contribute with a difficulty of 2; while other blocks contribute with 1.



Coordination of Robot Swarms Using Blockchain 201

When deploying a robot swarm it is important to consider that: (i) some
robots may be unavailable when the network is partitioned; and (ii) some robots
may join or leave the swarm during its operation. In the first situation, it is possi-
ble that the robots disconnected from the partition hosting the main blockchain
(which has the highest cumulative difficulty) operate on a different version of the
blockchain (i.e., a blockchain fork). Eventually, when the partitions reconnect,
the main blockchain is established by consensus and the transactions included
in the fork are rebroadcast. In the second situation, we note that the proof-of-
authority consensus protocol allows current sealers to democratically elect or
remove sealers, thus allowing for dynamic swarm sizes. In this paper, however,
we maintain constant swarm sizes and every robot is a sealer throughout the
duration of the experiment.

A blockchain smart contract is a computer program that is stored on the
blockchain, and that encapsulates code (its functions) and data (its state). Net-
work participants can execute its functions by broadcasting transactions to the
smart contract address, which in turn will change its state. It is the role of the
blockchain system to agree on the irrefutable execution of these state-altering
transactions in a decentralized manner.

Our smart contract allows robots: (i) to store information regarding discov-
ered resource patches; (ii) to enlist themselves as recruits in order to forage at a
certain patch; and (iii) to query information about the known resource patches.
Its programming code ensures that the information the robots provide is syn-
chronized without conflicts; that the highest-reward resources are prioritized for
foraging; and that there is a limit on the number of foragers per patch.

The robots can interact with functions by broadcasting transactions (to exe-
cute the function on the blockchain network), or by invoking calls (to execute
the function locally and read its output). Our smart contract has 3 functions:

— update_patches(patches[]) The input is a list of formatted strings which
contain the relevant information about a patch: position, radius, quality, and
quantity of resources. If the position is unique (within an error margin) a new
resource is added to the database, otherwise an existing resource is updated.

— assign patch() If there are available patches (i.e., patches with fewer for-
agers than the maximum number allowed), then the transacting robot is
assigned as a forager to the highest quality patch.

— query_patches () Returns a database of resources, including the current for-
agers for each resource.

Robot Controller. The robots are controlled by a finite-state machine. At each
simulation step, the robots perform a routine corresponding to their current
state, as well as a local peer discovery routine.

The finite-state machine starts at the state Scout and is composed of 5 states:

— Idle Wait for 30 s; then, transition to Scout.
— Scout Perform a random-walk, with a duration sampled from A (u = 40 s,
o = 2 s) and store the discovered patches in a list stored locally; then, broad-



202 A. Pacheco et al.

cast a transaction to execute update_patches(scouted_patches). Once the
transaction is included in a block, delete the list and transition to Plan.

— Plan Return to the nest using the homing signal and invoke a call to
query_patches (). If assigned to forage a resource, transition to Search; oth-
erwise, broadcast a transaction to execute assign_patch(), and wait until
it is included in a block. If the transaction fails (no resources available to
forage), transition to Idle.

— Search Navigate from the nest towards the direction of the assigned
patch and search its neighborhood for 10 s. If resources are found,
transition to Forage; otherwise broadcast a transaction to execute
update_patches(depleted_patch) and transition to Scout.

— Forage Collect a resource from the patch and navigate to the nest
using the homing signal. Then, broadcast a transaction to execute
update_patches(current_patch) to inform that one resource was removed.
Once the transaction is included in a block, deposit the resource and, if there
were more resources, transition to Search; otherwise, transition to Scout.

The local peer discovery routine enforces that all communications, including
blockchain synchronization, occur locally (up to 30 cm). Within this range, the
robots broadcast and receive IP addresses using infrared signals on the range-
and-bearing board. After receiving an IP address, robots use TCP to share their
enode—a unique URL used to identify and connect to nodes in the Ethereum
network. If the infrared signal is lost, the robot disconnects from that peer on the
blockchain network and deletes its IP address and enode from its local memory.
This peering scheme serves two purposes: (i) to ensure that communications are
only local and thus mimic a real-world swarm deployment where network parti-
tioning can occur; and (ii) to provide an additional layer of security which pre-
vents external agents from participating in the network (since the robots reject
connections which are not accompanied by the short-range infrared greeting).

4 Results and Discussion

In general, our goal is to show that a blockchain can extend the swarm’s ability
to self-organize, and thus improve its collective performance, while maintaining
the properties of a robot swarm: decentralization, scalability and adaptability.

The blockchain allows robots to agree on the state of the environment and
on a coordination strategy, without the need for delegated supervisors (in con-
trast with centralized or hybrid control). Since the proof-of-authority consensus
algorithm is robust to the unavailability of up to 50% of the network nodes, our
blockchain-coordinated robot swarm does not have a singular point-of-failure
and could be deployed in situations where a system that relies on information
traveling to and from supervisors would fail (for example, in environments with
limited or no communication infrastructure). In this sense, a blockchain enables
a decentralized and democratic swarm, in which all robots contribute homoge-
neously to the decision-making process.



Coordination of Robot Swarms Using Blockchain 203

On the downside, it is important to analyze the impact of consensus latency,
i.e., the time it takes for messages to be disseminated through the network and
for robots to reach agreements in this democratic process—as well as the costs
of data storage, since each robot keeps a local copy of the blockchain database.
These aspects could raise scalability concerns in terms of communication and
hardware requirements for robot swarms. In Sect. 4.1 we discuss these concerns,
and show that they are manageable for swarms of different sizes.

In foraging, cooperation is not always an advantage [22]. Sharing informa-
tion can lead to an increased rate of physical interference, for example, when the
robots forage the same resources rather than finding a balance between exploita-
tion and exploration. It may also lead to informational interference, which occurs
when robots propagate incorrect or outdated information (e.g., if a resource
patch becomes depleted during the time the information is being processed, or
if the robots’ sensors provide inaccurate positions).

The role of our smart contract supervisor is to improve the performance of the
swarm (in terms of the reward collected and the scouting efficiency) by aggre-
gating information about resource patches from the robot scouts, and assigning
resource patches to robot recruits—thus minimizing the impact from both forms
of interference. In Sect. 4.2 we report the performance results of a blockchain-
coordinated robot swarm and we compare them to those obtained with a swarm
of uncoordinated robots, which explore the environment and forage resources as
they discover them individually, in environments with different resource distri-
butions. In these experiments, we keep the swarm size constant (25 robots) and
analyze how performance changes as the maximum number of foragers that the
smart contract allows per patch increases.

4.1 Scalability

Consensus Latency. Figure2 (left) shows the Block Reception Delay, which is
the difference between the timestamp at the moment a robot receives a block and
the timestamp at the moment the block was produced (in other words, the time
it took for a block to be disseminated through the network from its producer
to any other robot). Figure2 (right) shows the Block Production Delay, which
is the difference of the timestamps between two consecutive blocks on the final
version of the blockchain. The first metric is calculated online by the robots,
while the second is calculated offline after the experiment is finished.

The block period (T,) parameter sets the minimum required difference
between the timestamps of two consecutive blocks (see Sect. 3), and thus has a
big effect on the information delay introduced by the blockchain: if it is too high,
it reduces the possibility to employ the shared knowledge to perform time-critical
tasks. Conversely, if it is too low, it increases the frequency of block production
which leads to (i) higher costs of communication, computation, and data storage;
and (ii) an increased rate of blockchain forks which contain redundant, or more
dangerously, conflicting information. In Fig.2 (left) we observe that a majority
of blocks are received within 2 s. This observation justifies our choice of T, = 2,



204 A. Pacheco et al.

o [
001 2345678 9101112131415 01 23 456 7 8 9101112131415
Block Reception Delay [s] Block Production Delay [s]

Fig. 2. The histograms represent cumulative probability distributions, and are gener-
ated from the combined data of all experiments performed in this study. Left: In 70%
of the instances a robot received a block, that block was produced less than 2 s earlier;
and in 100% of the instances, less than 15 s earlier. Right: The minimum and ideal
production delay is equal to T, = 2s. An additional delay occurs due to network delays
(e.g., temporary unavailability of the preferred block producer). In our experiments,
90% of the blocks were produced within 2 s to 3 s, which means that the blockchain is
operating as designed.

as there is a high chance that the previous block has been disseminated through
the network before it is time to produce the next block.

Data Storage. In previous research [19], we set the block period to 15 s. With
a block period of 2 s, we expect that the cost of storing the blockchain will be
higher since the amount of data stored depends on the number of blocks created
(as well as on the number of transactions performed by the robots).

Figure 3 (left) shows the data storage required by each robot, which is seen to
increase linearly with the number of robots in the swarm. On average, each robot
requires 8 MB for 15 min of operation, which we consider reasonable given current
data storage technology. Furthermore, the robots in our experiments are full
blockchain nodes, i.e., each robot stores the complete blockchain history. In a real
deployment this might not be necessary, since only the most recent information is
relevant for the robots’ operations, and the task of storing the blockchain history
can be delegated to external agents when connection is available, or it can be
segmented and stored by the robots in a distributed manner. In this case, the
hardware-limited robots would host light blockchain nodes [7], while remaining
able to verify the status of the blockchain and of the transactions by leveraging
cryptographic primitives. For these reasons, we do not expect data storage to
pose a scalability problem in a real deployment.

Performance. Figure3 (right) shows that the swarm is capable of maintaining
performance (the total reward collected increases with the number of robots) as
the environment size, number of robots and quantity of resources scale accord-
ingly. However, we also observe decreasing performance returns (the total reward
collected increases sublinearly with the number of robots). Rather than a lim-
itation of our blockchain-coordinated approach, this seems to occur due to the
layout of the environment, which is prone to interference at the centrally located
nest when the swarm size increases.



Coordination of Robot Swarms Using Blockchain 205

10 T T T T T T T T T T
" 400 O
58—
s
g g 8r = = ? ] E % %
2] 200 8
Bl = = & 8
a° 6F ]
1 1 1 1 1 O 1 1 1 1
5 10 15 20 25 5 10 15 20 25
Number of Robots Number of Robots

Fig. 3. Left: The storage space required for each robot grows linearly with the number
of robots, at a rate of approximately 1 MB per 10 robots. Right: The collected reward
grows sublineary with the number of robots, due to the increasing rate of physical
interference at the centrally located nest. These experiments were repeated 25 times
using the SSP distribution.

4.2 Performance in Different Distributions

SSP Distribution. In this environment there is a large number of patches ran-
domly spread on the map. Previous research [22,30] indicates that individualist
foragers tend to perform well, or even better than cooperating robots (when the
benefits of cooperation do not overcome the negative effects of interference). In
Fig.4 (left) the total reward collected saturates at 2 foragers per patch, but is
consistently higher than the non-collaborating swarm (‘NC’ in the x-axis). The
scouting efficiency can be significantly higher but also has a high spread. This
happens because cooperating robots, when lucky, will discover higher quality
patches and better allocate foragers to those resources.

SBP Distribution. The blockchain-coordinated swarm is capable to retrieve 50%
to 100% more reward, and to be twice more efficient in scouting for resources,
as seen in Fig. 4 (middle). In this environment, the advantage of coordination is
more pronounced since (i) the patches last longer as they contain more resources,
and (ii) they are larger in size and there is therefore less interference.

CSP Distribution. The blockchain-coordinated swarm is capable to retrieve more
than double of the reward and be 2 to 5 times more efficient during scouting,
as seen in Fig.4 (right) than non-collaborating swarms. This occurs because
the scouting robots which move in the direction of the resource cluster are very
successful, while others robots do not find any resources. The ability to aggregate
and share information prevents unsuccessful robots from idling or wasting energy
performing redundant exploration. Conversely, given the tight aggregation of
resources, the foraging efficiency quickly drops as the number of recruits increases
above 3 due to physical interference between robots.



206 A. Pacheco et al.

SSP (scattered, small) SBP (scattered, big) CSP (clustered, small)
600 a2 T T T T T T ] E T T T T é T ] E T T T T T T ]
500 F 1F o 1F @ %'—
E 400 F H F @- L ]
E3
3]
& 300 F : @ 1F ]
rI] o
200 F 1F % ] —é .
100 1 1 1 1 i ¥ — C1L 1 1 i 1 i3 | 1 1 i i i-
S LS| 1 F 1 F .
g
2 o
£ 1.0 4 F 4 L %—
g
E 1 1t ]
30 é é % o é 0= o°
1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 1
NC 1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5

Number of foragers Number of foragers Number of foragers

Fig. 4. Performance results for three distributions: SSP (left), SBP (middle) and CSP
(right). The top row shows the reward collected by the swarm at the end of the exper-
iment, and the bottom row the scouting efficiency. The x-axis (number of foragers) is
a parameter in the smart contract which limits how many robots can be tasked as for-
agers for each resource patch. The uncoordinated robot swarm shows “NC”. A swarm
of 25 robots was used, and the experiments were repeated 10 times.

5 Conclusions

We showed that the coordination rules provided by a smart contract supervisor
can improve the performance of the robot swarm during the foraging task, while
keeping reasonable data storage costs and manageable delay in the control loop.
These are positive results that showcase the potential of deploying blockchains
for the real-time coordination of robot swarms in a wider range of scenarios.

The usage of a blockchain in a swarm robotics system enables a new class
of distributed control algorithms that use explicit communication and coordi-
nation, while preserving decentralization and local exchanges of information.
It is important to note the contrast between the macro perspective that is used
when creating smart contract supervisors and the micro perspective that is more
frequent in the design of robot swarm controllers. In our research, we present
the two approaches as complementary since the behavior of individual robots
emerges from local sensing and interactions, while the blockchain is regarded as
an additional layer that is reserved for high-level decision making.

Acknowledgements. This work was partially supported by the program of Concerted
Research Actions (ARC) of the Université libre de Bruxelles and by the Brussels-
Capital Region via the Brussels International contract n. BI-MB-531-004021. A. Reina



Coordination of Robot Swarms Using Blockchain 207

and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are
Chargé de Recherches and Research Director, respectively.

References

10.

11.

12.

13.

14.

. Aswale, A., Lépez, A., Ammartayakun, A., Pinciroli, C.: Hacking the colony: on the

disruptive effect of misleading pheromone and how to defend against it. In: Proceed-
ings of the 21st International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2022), pp. 27-34. International Foundation for Autonomous
Agents and Multiagent Systems, Richland (2022)

Biesmeijer, J.C., de Vries, H.: Exploration and exploitation of food sources by
social insect colonies: a revision of the scout-recruit concept. Behav. Ecol. Sociobiol.
49(2), 89-99 (2001). https://doi.org/10.1007/s002650000289

Buterin, V.: A next-generation smart contract and decentralized application
platform. Technical report, Ethereum Foundation (2014). https://github.com/
ethereum/wiki/wiki/White-Paper. Accessed 18 July 2019

Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm
of robots. Biol. Cybern. 103(5), 339-352 (2010). https://doi.org/10.1007/s00422-
010-0402-x

Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.. The self-organizing
exploratory pattern of the argentine ant. J. Insect Behav. 3(2), 159-168 (1990).
https://doi.org/10.1007/BF01417909

Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

Ethereum Foundation: Ethereum project (2017). https://ethereum.org

Ethereum Foundation: ethereum/web3.py: A Python interface for interacting with
the Ethereum blockchain and ecosystem (2022). https://github.com/ethereum/
web3.py

Fernandes, M., Alexandre, L..A.: Robotchain: using tezos technology for robot event
management. Ledger 4 (2019). https://doi.org/10.5195/ledger.2019.175. https://
www.ledgerjournal.org/ojs/ledger/article/view /175

Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135-149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7_11

Hasselmann, K., Parravicini, A., Pacheco, A., Strobel, V.: KenN7/argos-python:
python wrapper for ARGoS3 simulator (2022). https://github.com/KenN7/argos-
python

Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for
robot swarm foraging. In: Martinoli, A., et al. (eds.) Distributed Autonomous
Robotic Systems, vol. 83, pp. 417-430. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-32723-0_-30

Houston, A.I., McNamara, J.M.: A general theory of central place foraging for
single-prey loaders. Theor. Popul. Biol. 28(3), 233-262 (1985). https://doi.org/10.
1016,/0040-5809(85)90029-2

Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239) (2014)


https://doi.org/10.1007/s002650000289
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/BF01417909
https://ethereum.org
https://github.com/ethereum/web3.py
https://github.com/ethereum/web3.py
https://doi.org/10.5195/ledger.2019.175
https://www.ledgerjournal.org/ojs/ledger/article/view/175
https://www.ledgerjournal.org/ojs/ledger/article/view/175
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11
https://github.com/KenN7/argos-python
https://github.com/KenN7/argos-python
https://doi.org/10.1007/978-3-642-32723-0_30
https://doi.org/10.1007/978-3-642-32723-0_30
https://doi.org/10.1016/0040-5809(85)90029-2
https://doi.org/10.1016/0040-5809(85)90029-2

208

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Pacheco et al.

Mondada, F., et al.: The e-puck, a robot designed for education in engineering.
In: Gongalves, P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59—-65.
IPCB: Instituto Politécnico de Castelo Branco (2009)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

Nouyan, S., Grof}, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695-711 (2009).
https://doi.org/10.1109/TEVC.2008.2011746

Pacheco, A., Strobel, V.: teksander/geth-argos at ANTS2022. https://github.com/
teksander/geth-argos

Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm
communicating via an ad-hoc network. In: Dorigo, M., et al. (eds.) ANTS 2020.
LNCS, vol. 12421, pp. 3-15. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-60376-2_1

Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271-295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

Pitonakova, L., Crowder, R., Bullock, S.: Understanding the role of recruitment
in collective robot foraging. In: Proceedings of the 14th International Conference
on the Synthesis and Simulation of Living Systems (ALIFE 2014), pp. 264-271
(2014). https://doi.org/10.7551/978-0-262-32621-6-ch043

Pitonakova, L., Crowder, R., Bullock, S.: The information-cost-reward frame-
work for understanding robot swarm foraging. Swarm Intell. 12(1), 71-96 (2017).
https://doi.org/10.1007/s11721-017-0148-3

Reina, A.: Robot teams stay safe with blockchains. Nat. Mach. Intell. 2, 240-241
(2020). https://doi.org/10.1038 /s42256-020-0178-1

Salman, M., Garzén Ramos, D., Hasselmann, K., Birattari, M.: Phormica: pho-
tochromic pheromone release and detection system for stigmergic coordination in
robot swarms. Front. Robot. AI 7 (2020). https://www.frontiersin.org/article/10.
3389 /frobt.2020.591402

Seeley, T.D.: Division of labor between scouts and recruits in honeybee forag-
ing. Behav. Ecol. Sociobiol. 12(3), 253-259 (1983). https://www.jstor.org/stable/
4599586

Strobel, V., Castell6 Ferrer, E., Dorigo, M.: Managing Byzantine robots via block-
chain technology in a swarm robotics collective decision making scenario. In:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2018), pp. 541-549. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2018)

Strobel, V., Castell6 Ferrer, E., Dorigo, M.: Blockchain technology secures robot
swarms: a comparison of consensus protocols and their resilience to Byzantine
robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V.
(eds.): ANTS 2018. LNCS, vol. 11172. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7

Szilagyi, P.: EIP 225: clique proof-of-authority consensus protocol (2017). https://
github.com/ethereum/EIPs/issues/225. Accessed 10 May 2020

Wilson, E.O.: Sociobiology: The New Synthesis, Twenty-Fifth Anniversary Edition.
Harvard University Press, Cambridge (2000)


https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/TEVC.2008.2011746
https://github.com/teksander/geth-argos
https://github.com/teksander/geth-argos
https://doi.org/10.1007/978-3-030-60376-2_1
https://doi.org/10.1007/978-3-030-60376-2_1
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.7551/978-0-262-32621-6-ch043
https://doi.org/10.1007/s11721-017-0148-3
https://doi.org/10.1038/s42256-020-0178-1
https://www.frontiersin.org/article/10.3389/frobt.2020.591402
https://www.frontiersin.org/article/10.3389/frobt.2020.591402
https://www.jstor.org/stable/4599586
https://www.jstor.org/stable/4599586
https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1007/978-3-030-00533-7
https://doi.org/10.1007/978-3-030-00533-7
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225

	Real-Time Coordination of a Foraging Robot Swarm Using Blockchain Smart Contracts
	1 Introduction
	2 Related Work
	3 Methods
	4 Results and Discussion
	4.1 Scalability
	4.2 Performance in Different Distributions

	5 Conclusions
	References




