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Abstract. This chapter presents a disaster recovery scenario that has
been used throughout the ASCENS project as a reference to coordinate
the study of distributed algorithms for robot ensembles. We first intro-
duce the main traits and open problems in the design of behaviors for
robot ensembles. We then present the scenario, highlighting its generality
as a framework to compare algorithms and methodologies for distributed
robotics. Subsequently, we summarize the main results of the research
conducted in ASCENS that used the scenario. Finally, we describe an
example algorithm that solves a selected problem in the scenario. The
algorithm demonstrates how awareness at the ensemble level can be ob-
tained without requiring awareness at the individual level.
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1 Introduction

Large multi-robot systems (robot swarms) [2] have the potential to display de-
sirable properties, such as robustness to individual failures through redundancy,
and enhanced performance through parallelism and cooperation [11,20]. Realiz-
ing such potential is challenging because of the lack of sound design methodolo-
gies [5].

In the literature, coordination among multiple robots has been achieved in
several ways. Existing approaches span from complete centralization to complete
decentralization, with hybrid centralized-decentralized systems in between. With
complete centralization, a master system must collect the data from the robots,
analyze it and send the actions to perform to each robot. In many applications,
the advantages of this approach do not counterbalance its drawbacks. Although
centralized control is usually simpler to design and can result in a globally op-
timized behavior, it suffers from poor robustness (the master system is a single
point of failure) and poor scalability (the master system’s CPU and network
connectivity are shared resources), and it requires global sensing and communi-
cation (which is not always available).
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In contrast, completely distributed coordination algorithms do not exploit
any kind of master system, global knowledge, or planning. Instead, coordination
is the result of the parallel pairwise interactions of the system’s components.
Completely distributed coordination algorithms achieve scalability through local
sensing and communication, and achieve robustness and high performance by
leveraging the natural parallelism and redundancy of the system. However, it is
very hard to design effective coordination algorithms of this kind [10].

To date, the design of swarm robotics systems follows two general types of
approaches: behavior-based and automatic methods. Behavior-based methods [1]
are typically bottom-up design methods whereby the designer gradually refines
the individual robot behaviors until the desired global (i.e., ensemble-level) be-
havior is achieved. The results obtained with behavior-based methods strongly
depend on the experience and ingenuity of the designer. The lack of methodolo-
gies above mentioned is partially circumvented by taking inspiration from models
of biological systems that display some form of swarm intelligence [3,13], such as
colonies of ants, bees and termites. However, the complexity currently achieved
by these methods is limited, and very far from that of the natural models which
inspire the design.

In automatic methods, such as reinforcement learning [36] evolutionary ro-
botics [28], and optimization-based approaches [15], the individual robot behav-
ior is regulated by a set of parameters that are set by a suitable algorithm. These
methods allow the designer to focus efforts more on the task to solve, rather than
on the individual robot behavior. However, the performance of these methods is
known to scale poorly with the complexity of the task to solve and of the robot
interactions.

A promising approach to the design of swarm robotics systems is a combi-
nation of behavior-based (compositional, pattern-based) aspects and automatic
procedures (not restricted to optimization methods). The work in the ASCENS
project followed the line of research that leads to the definition of such a com-
bined approach.

In this chapter, we describe the research activities we conducted to apply
the ASCENS concepts to state-of-the-art problems in swarm robotics. These
activities involved two primary tasks:

1. The definition of a class of application scenarios that provides sufficient
complexity to motivate the ASCENS research;

2. The development of algorithms that solve selected problems in the appli-
cation scenario, in order to nurture and showcase ASCENS techniques and
tools.

This chapter is structured as follows. In Section 2, we discuss the mapping of the
concept of service component ensemble to robot swarms, introduce the robotic
platform employed for experimentation, and present the scenario and its variants.
In Section 3, we discuss awareness and adaptation in robot swarms, illustrating
the work we made throughout the project. In Section 4 we present two algo-
rithms that demonstrate some of the concepts studied in ASCENS. We conclude
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the paper in Section 5, summarizing our work and proposing ideas for future
investigation.

2 Scenario: Disaster Recovery

In this section, we present the application scenario on which we based the
robotics case study. In Section 2.1 we discuss the mapping between the concepts
of service component ensemble and robot swarms. In Section 2.2 we present the
robotic platform we employed for the work in this case study. In Section 2.3
we provide a general description of the scenario. In Section 2.4 we illustrate the
possible variants of the robotics scenario.

2.1 Robot Swarms as Service Component Ensembles

Robots swarms can be cast as service component ensembles in several ways,
depending on the focus of the designer.

A first approach is to consider a single robot as a service component and
robot swarms as service component ensembles. In this case, the design neglects
the internals of the robot, which becomes a black box that exposes a set of
functionalities. The focus of the design is set on the coordination of the robot
swarm as a whole and on the correctness of the individual actions with respect
to a common goal.

Alternatively, one might represent a single robot as a distributed system
composed of a collection of microprocessors. Each microprocessor is responsible
for the control of a subset of the available devices. To achieve coordination, the
microprocessors communicate. Under this light, in ASCENS parlance each mi-
croprocessor is a service component, and a robot is a service component ensem-
ble. Robot swarms, in turn, become ensembles of service component ensembles.
Thus, the focus of the design spans two layers: at the lower layer, the design
must ensure that each robot device behaves correctly; at the higher layer, the
common goal of the swarm must be achieved.

The choice between these two approaches is ultimately dictated by the re-
quirements of the algorithm under development. Considering individual robots
as SCEs does not fit the scope of the ASCENS project, in that SC do not join
or leave the system dynamically. Moreover, this approach increases considerably
the complexity of system design and analysis. Thus, for the purposes of the AS-
CENS project, we chose to limit our scope to the first approach—considering
single robots as service components. In this way, we could target the most inter-
esting aspects of ensemble coordination directly.

A particularly important aspect for ASCENS is the fact that robot swarms
possess a dual nature. Being physical objects acting in an environment, robots
can be modeled through classical mechanics as bodies interacting through forces
(e.g. motion, collisions, assembly, transport). At the same time, a robot swarm
can be seen as a classical communication network, in which robots exchange
messages to achieve coordination.
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This dual nature of robot swarms affects every phase of the ensemble develop-
ment life cycle. Requirement specification, for instance, might include statements
regarding the correctness of the swarm state throughout an experiment. Such
statement might include spatial aspects, such as moving while maintaining a co-
hesive formation (also known as flocking [30]), as well as network aspects, such
as achieving consensus on the direction to follow. By the same token, modeling
might need to consider the position of each robot at any time during an exper-
iment (space), as well as the opinion of each robot on the direction to follow
(network) [32].

The duality of robot swarms is apparent also in the so-called global-to-local
problem [39,40]. The goals of a swarm, as well as its properties, are typically ex-
pressed and analyzed at the global (i.e., swarm) level. However, the actions that
realize the dynamics of a swarm are executed at the local level (i.e., by each robot
individually). A principled methodology to map local actions to global properties
is currently an open problem, for which research is ongoing [10,16,34,19].

The design of the robotics scenario for ASCENS follows these considerations.
The primary aim of the scenario was to expose the ASCENS researchers to
complex, real-world problems for which partial or no solutions exist today.

2.2 The marXbot Robot

The marXbot [4] is a mobile robot developed during the Swarmanoid project [12]
and the ASCENS project.4 The marXbot is equipped with several devices that
allow it to sense and act in the environment. The marXbot’s modular architec-
ture renders it easy to add new devices and configure the robot to suit the needs
of particular experiments.

Lower Module. The marXbot is a non-holonomic, differential-drive robot
equipped with a combination of wheels and tracks named treels. The treels allow
the marXbot to move on mildly rough terrain while maintaining good stability.
A ring of 24 equally-spaced infrared sensors placed around the lower module of
the robot body double as proximity sensors and light sensors. Through these
sensors, the marXbot can be programmed to avoid close obstacles and to detect
the direction to a light source. The lower module also offers two sets of ground
sensors. The first set is composed of 4 sensors located close to the treel motors,
which allow the marXbot to detect 255 levels of gray on the ground. The second
set, composed of 8 sensors intertwined with the infrared sensors, provides the
robot with binary information to detect the presence or absence of holes on the
ground.

LED-Gripper Module. Above the lower module, the marXbot houses a multi-
purpose module. It is designed to allow two marXbots to dock into each other

4 The robot is also called foot-bot to highlight its capabilities with respect to the other
Swarmanoid robots, the hand-bot and the eye-bot.
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Fig. 1. The marXbot robot is a modular robot that can be configured to suit the needs
of the experimenter. License: Creative Commons 3.0.

to form complex multi-robot assemblies. To this aim, the module is composed
of a gripper designed to lock inside the same module of a kin robot. The gripper
can be rotated freely around the yaw axis of the robot, making it possible for
complex assemblies to move while connected. Another important feature of this
module is the presence of 8 RGB LED embedded in the module frame. The color
of each LED can be set independently and is detectable through the cameras.
With these LEDs, a robot can convey its state or encode directional information
for other robots.

Range-and-Bearing Module. The range-and-bearing communication sys-
tem [33] is located above the LED-gripper module. This device allows two
marXbots to exchange 12 bytes of data every 100ms. The particularity of this
device is that each robot, upon receipt of a message, also detects the location
(distance and angle) of the message sender with respect to its own reference
frame. This device realizes the notion of situated communication, an important
communication modality to achieve coordination in swarm systems [35].

Distance Scanner Module. The marXbot also offers a long-range rotating
distance scanner, which can be used to map the surroundings and to localize the
robot in a static environment [25].

Top Module. The top module equips the marXbot with two cameras: (i) an
omni-directional camera, whose images are analyzed to detect colored blobs



476 C. Pinciroli et al.

around the robot; and (ii) a perspective camera, that can be oriented frontally
or towards the ceiling to detect objects. The top module also offers a beacon,
a high-power RGB LED that can be used in combination with the cameras to
highlight the position of a robot and convey its state through specific colors.
Finally, the top module is also home to the Linux board of the robot, equipped
with a 512MHz ARM7 processor and 256Mb of RAM.

2.3 General Scenario Description

The application scenario can be summarized as disaster recovery. We imagine
that a disaster happened, such as the catastrophic failure of a nuclear plant,
or a major fire in a large building. We also imagine that an activity of search-
and-rescue must be performed. For instance, people may be trapped inside the
building and they must be found and brought to safety. Given the high danger of
operating in such environment, it is realistic to think that an ensemble of robots
could be used to perform the most dangerous activities. Among these activities,
two are the focus of our attention: exploring the environment and finding targets
to rescue.

The screenshot in Figure 2 depicts an instantiation of the essential elements of
the scenario. The environment is a large rectangular area structured by several
walls. The victims to find are scattered throughout the environment. For the
purposes of the ASCENS project, there was no real need to design a specific
object to be retrieved. Thus, we used a marXbot that we suppose unable to
move. This choice enabled us to test variants of the scenario in which the object
is able to signal its location to nearby robots, and variants in which the object
is completely passive. The robots are initially deployed in the deployment area
marked in gray in Figure 2.

An important constraint is the fact that robots possess limited battery life-
time. The exhaustion of battery power is as critical an hazard as exposure to
radiations. In fact, in low battery power conditions, various sensors tend to pro-
vide noisy or wrong readings, which in turn affect a robot’s performance. The
complete exhaustion of battery power is equivalent to the loss of a robot.

2.4 Parameters

The scenario can be formalized in a matrix of parametric activities with “tun-
able” complexity as illustrated in Table 1. Within ASCENS, the aim of such
complexity matrix was not to enumerate the entire set of possibilities we in-
tended to tackle—such set is too wide and general to be studied realistically.
Rather, complexity tuning enabled us to isolate the relevant aspects of a cer-
tain problem, and develop new algorithms in a manageable, step-by-step pro-
cess whereby further complexity was introduced gradually. In the following, we
present the main features of the complexity matrix.
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nest

victims

Fig. 2. The environment in which we studied collective exploration. Screenshot taken
with the ARGoS robot simulator.

Exploration. To rescue the victims, the robots must first find them. Explo-
ration serves this purpose. Exploration complexity depends on a number of fac-
tors related to the environment. Depending on the number of robots, a small
environment is easier to navigate than a large one. Navigation is also easier in an
obstacle-free environment than in a cluttered one. Typically, in a small, obstacle-
free environment the best exploration strategy is diffusion through random walk.
In a large, maze-like environment, more complex strategies are necessary. Anal-
ogously, navigation is simpler on a flat terrain than on a rough one. Another
important aspect is whether the robots can exploit a map of the environment or
not. The easiest situation is when a map is available beforehand. In this case,
the robots can use this information to locate themselves and the interesting
points in the environment, making navigation easier. Alternatively, a map could
be constructed during the experiment through SLAM (simultaneous localization
and mapping) techniques. The third and most challenging option is that the
robots do not possess nor construct a map, but navigate in a cooperative way.
An algorithm demonstrating the latter option is presented in Section 4.

Task Allocation. Task allocation is the activity of assigning robots to specific
tasks [17]. In this scenario, tasks can be manifold. For instance, some robots
could be explorers, other transporters. Transport, in turn, could require co-
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Table 1. Complexity matrix for the robotics case study scenario

Activity Parameter Alternatives

Exploration

Environment size Small/Large
Environment structure Obstacle-free/Cluttered
Terrain Flat/Rough
Map Available/Computable/Not available

Task allocation

Task-robot mapping STSR/STMR
Task dependency Independent/Sequential/Complex
Task assignment Instantaneous/Time-extended
Task dynamics Simple/Complex
Task distribution Simple/Complex

operation by many robots. In general, we can distinguish between single- and
multi-robot tasks, and between single- and multi-task robots. Single-robot tasks
can be executed by a robot individually, while multi-robot tasks require coop-
eration of a group of robots. Single-task robots can execute only one task at a
time, while multi-task robots can execute more than one in parallel. In our com-
plexity matrix, we consider only the following two cases: single-task-single-robot
(STSR), and single-task-multi-robot (STMR). An example of a task that can
be declined in these variants is transport. STSR transport is when an object is
light enough for a robot to move it. If the object requires many robots to move
it, transport is STMR. Furthermore, in a realistic scenario, tasks may possess
activation dynamics, i.e., each task must be executed in certain time periods [8].
We can model this by defining a function Ti(t) such that its value over time
t is 1 when task i ∈ [1, K] is active, and 0 otherwise. In general, Ti(t) takes
the form of a square wave function, i.e., a task undergoes periods of activation
and periods of de-activation. Task activation periods can be correlated to each
other, for instance when some tasks are dependent on other tasks (e.g., task i
must be executed before task j). Furthermore, assignment of tasks to robots can
be time-extended or instantaneous. In time-extended assignment, Ti(t) (or an
approximation of it) is assumed known and tasks are assigned to robots accord-
ing to a pre-calculated schedule. Instantaneous assignment refers to methods in
which Ti(t) is not known. Another important aspect in task allocation is the
distribution of tasks in the environment. Task distribution has consequences on
the efficiency of task discovery and execution by the robots. Task distribution is
linked to the organization of the environment, i.e., how cluttered or structured
the environment is. When dealing with robot swarms, in general a task must be
executed by a certain number of robots, called quota. In practical problems, quo-
tas are rarely precise. For example, moving a heavy object requires a minimum
number of robots to compensate for the object weight. Employing more robots
usually results in better performance (i.e., the object is transported faster or with
less effort by the robots’ motors). However, above a certain number of robots,
coordination becomes an issue that negatively impacts performance. Therefore,
typically quotas can be expressed as ranges [min,max].
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3 The Robotics Scenario and the EDLC

The Ensemble Development Life Cycle (EDCL) introduced in Chapter III.1 [22]
is composed of several phases. In this section, we report on the main findings
regarding each phase. A case study relating several phases can be found in [38].

3.1 Requirement Engineering

Property-Driven Design. As explained in Section 2.1, the dynamics of a robot
ensemble comprises two levels—the ensemble level and the individual level. The
requirements are typically expressed at the ensemble level, but the mechanisms
that realize the wanted behavior are executed at the individual level. A natural
approach to reconcile the two levels is to work in step-by-step fashion, gradually
refining the ensemble requirements by expressing them in more detailed forms
that, eventually, lead to a practical implementation. This idea is the core of the
work of Brambilla et al. [6], who demonstrated their approach on typical swarm
behaviors such as aggregation and foraging.

Engineering Self-organization and Emergence. In Chapter III.2 [27], Noël
and Zambonelli illustrate a number of methodological guidelines to engineer the
basic self-organization mechanisms that lead to coordinated ensemble behaviors.
The author demonstrate their approach through a variant of the scenario in
which the robots must spread in an unknown environment and find victims.

3.2 Modeling/Programming and Verificaton/Validation

SCEL Modeling. In Chapter I.1 [26], De Nicola et al. present a complete SCEL
model of a scenario variant in which robots must find and rescue victims. The
robots can take the role of explorers or rescuers. Explorers search for victims;
when a robot detects a victim, it becomes a rescuer. A rescuer, beside assisting
a victim, informs other robots of the victim’s position, thus attracting more
rescuers. The SCEL model considers also the possibility that the battery charge
reaches a low level, in which case the robots pause their activity and turn to the
battery charging state. The authors describe two models: one based on PSCEL
(a SCEL variant which includes policies), and one based on StocS (a stochastic
extension of the SCEL semantics).

jRESP Implementation. In Chapter I.1 [26], De Nicola et al. also describe
an implementation of the SCEL model in the jRESP framework, a Java run-
time environment that realizes the SCEL paradigm. The remarkable aspect of
this exercise is that the primitive concepts of jRESP closely resemble those of
SCEL. Thus, through jRESP, an abstract model of a distributed algorithm for
robotics can find a direct, practical implementation whose performance can be
studied and characterized. In fact, jRESP programs can be simulated and ana-
lyzed through a statistical model checker. De Nicola et al. report the results of
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such an analysis on the robotics scenario, studying the probability that a victim
is rescued within a given time using different numbers of robots.

Maude Implementation. Another contribution of Chapter I.1 [26] is an anal-
ysis of a specific aspect of the scenario modeled in SCEL through a tool called
MISSCEL (Maude Interpreter and Simulator for SCEL). MISSCEL is an im-
plementation of SCEL in the Maude framework, a software for model checking.
De Nicola et al. focus on collision avoidance, a basic behavior the robots per-
form while exploring the environment. In particular, they analyze the efficiency
of collision avoidance when the robots are informed (i.e., can use the proximity
sensors) and uninformed (i.e., they choose their direction at random).

Physics-Based Modeling and Implementation. A common technique to
study behaviors in robotics is employing physics-based simulation. The advan-
tage of this kind of simulation is the close resemblance of the simulated system
dynamics with respect to its real counterpart. Physics-based simulation typically
include every relevant aspect that affects the behavior of the robot ensemble—
body collisions, network communication errors, etc. For the work in ASCENS,
we employed the ARGoS multi-robot simulator [31], a state-of-the-art software
capable of accurately simulating experiments involving thousands of robots in a
fraction of real time. An example experiment developed with ARGoS is presented
in Section 4.

SMC-BIP Verification. In Chapter I.3 [9], Combaz et al. present an approach
to the verification of distributed robot behaviors based on the BIP statistical
model checker. The main advantage of BIP over other modeling techniques is
that BIP models can be transformed into executable programs automatically,
making it possible to link modeling and implementation seamlessly. The authors
model the scenario variant described in detail in Section 4, analyzing the effects
of several alternatives for each robot behavior on the overall system performance.

3.3 Awareness and Adaptation

The notion of awareness and adaptation in robot swarms can manifest them-
selves at the individual level and at the ensemble level. For the purposes of
ASCENS, our primary focus is modeling and achieving ensemble-level aware-
ness and adaptation. However, the two levels are deeply intertwined—a study of
ensemble awareness/adaptation cannot neglect the individual level. Individual
awareness and adaptation can be defined as the ability of the robot to estimate
its own state, as well as a relevant portion of the ensemble state, and react
effectively to state changes. By relevant portion, here we mean that the robot
must be capable of retrieving enough information about the ensemble state to
make decisions leading to correct ensemble behaviors. Ensemble awareness and
adaptation refer to the capability of the ensemble to behave as a coherent unit,
by distributing information correctly and acting in a coordinated fashion.
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Robot

Behavior

(a) A robot, its behavior, and the interac-
tion with the environment

Environment

Robot Robot

Behavior Behavior
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(b) Centralized coordination
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Robot Robot

Behavior Behavior

(c) Direct communication
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Robot Robot

Behavior Behavior

(d) Environment-mediated communication

Fig. 3. Coordination patterns for groups of robots. The solid lines indicate generic
interactions among entities. The dashed lines indicate coordination-aimed interactions
among entities.

The relationship between the individual and the ensemble levels is complex.
For instance, a high degree of individual awareness is not required to produce
complex ensemble behaviors which display high degrees of awareness [24]. Re-
search on social insects show that individuals following simple rules based on
short-range information about the environment are capable of highly complex
and efficient behaviors such as nest construction and food foraging. The algo-
rithm described in Section 4 is an example of an individual behavior based on
short-range information and little individual awareness that result in a complex
ensemble behavior.

Adaptation Patterns. In the robotics case study, each individual robot is
considered as a Service Component (SC). Each SC is associated to a program
that controls its actions, here referred to as behavior (see Figure 3a). Groups
of connected robots (physically or networked) form Service Component Ensem-
bles. To achieve adaptation in robot ensembles, we identify four general patterns.
These adaptation patterns can be expressed following the approach described in
Chapter III.1 [22] for the mapping between SCs and autonomic managers. In this
context, the robots are proactive service components, and the concept of robot
behavior coincides with that of internal autonomic manager. The adaptation
patterns can be classified into two general categories: (i) patterns that include
an element of centralization, and (ii) fully distributed patterns. In patterns that
include an element of centralization, such element is typically meant as dedicated
SCs that collect information from the robot SCE, make decisions, and instruct
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the robots accordingly (see Figure 3b). In the approach of Chapter III.1 [22] this
SC is an external autonomic manager. In fully distributed adaptation patterns,
the main coordination means is inter-robot communication. Communication can
occur in two ways: either directly (a robot explicitly sends a message to another
robot, Figure 3c), or indirectly (a robot reacts to the changes in the environment
made by other robots, Figure 3d). Indirect, or environment-mediated communi-
cation, is also known as stigmergy [18].

Black-Box and White-Box Adaptation. In Chapter II.1 [7], Bruni et al.
employ the robotics scenario depicted in Figure 2 as a testbed to validate a
unified approach to both black-box adaptation (i.e., adaptation behaviors as
they appear to an outside viewer) and white-box adaptation (i.e., adaptation
mechanisms that affect the internal behavior of the system).

Reasoning and Learning for Awareness and Adaptation. In Chapter II.4
[21], Hölzl et al. propose a modeling approach called Extended Behavor Trees
(XBTs). This approach targets hierarchical, concurrent behaviors that interleave
reasoning, learning, and actions. XBTs can be translated into SCEL, thus in-
tegrating the EDLC and enriching its scope. The approach is validated on a
variant of the proposed scenario.

4 Implementation and Demonstration

In this section, we present a fully distributed algorithm for collective exploration.
The algorithm works under the assumption that the robots are initially unaware
of the whereabouts of the victims and of the structure of the environment. The
concepts of awareness and adaptation play a fundamental role in this application.

In terms of awareness, as discussed in Section 3.3, the most important re-
quirement is that the ensemble as a whole is capable of representing the current
knowledge regarding the structure of the environment. The ultimate purpose of
exploration is to allow a second set of robots, the rescuers, to reach the victims
that need assistance.

To achieve this result, one could endow each robot with an algorithm for
simultaneous localization and mapping (SLAM) [37] and let the robots integrate
each others’ maps through communication. With this approach, the represen-
tation of the whole environment is a composition of the individual representa-
tions of each robot. While this approach is effective, it requires adequate sensing
and computation capabilities on the robots, which are mostly lacking on the
marXbot. Moreover, this approach does not target the intrinsically distributed
nature of the systems we studied throughout the project—in principle, a robot
could solve the exploration task alone, given sufficient time and resources.

In this section we focus on an alternative solution, in which the robots con-
struct a coherent collective representation of the environment without requiring
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(a) An explorer robot (b) Victims are simulated with robots

Fig. 4. The robots involved in the exploration scenario. Screenshot taken with the
ARGoS robot simulator.

SLAM capabilities. In terms of awareness, this algorithm demonstrates how little
(or even zero) individual awareness can result in effective and coherent ensemble
awareness.

4.1 Scenario Instantiation

The scenario consists of a structured environment of width W and depth D,
initially unknown to the robots. As reported in Figure 2, the structure of the
environment mimics that of a building floor. A team of R robots called explorers
(Figure 4a) is deployed in a special area called the nest within the environment.
The size of the nest is always assumed sufficient to house the entire explorer
ensemble.

We imagine that a number V of victims (Fig. 4b) are scattered throughout
the environment and must be found by the robots. The robots construct a rep-
resentation of the environment such that a second robot ensemble, the rescuers,
can promptly reach the victims.

4.2 Algorithm Structure

The core idea behind the algorithm is to employ the robots as landmarks. A
landmark robot occupies a specific location of the environment and maintains
communication with a number of immediate neighboring landmarks. Upon re-
ceipt of a request for direction to a specific victim by a wandering robot, two
situations can occur:

1. The landmark can see the victim directly: in this case, the landmark sends
the direction to the victim;

2. The landmark cannot see the victim: in this case, the landmark propagates
the request to its neighbors, and then picks the shortest suggested path.
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start

Wander
First

Out of Nest

Stable
Landmark

Exit Nest

Explore Temporary
Landmark

Victim
Landmark

Fig. 5. A finite state machine representation of the exploration algorithm. Double-
bordered nodes represent final behaviors, i.e., behaviors after which no further transi-
tion is possible.

The algorithm presented here concentrates on the creation of the network of
landmarks and is inspired to the approach of Nouyan et al. [29]. For an algo-
rithm that uses the landmark network to guide robots to their destination, see
Ducatelle et al. [14].

A diagrammatic representation of the algorithm is reported in Fig. 5, while
the main phases of a typical execution of this behavior are illustrated in Figure 6.
In the rest of this section, we will present the main behaviors along with a snippet
of their implementation in the Lua language.

Wander. The robots are initially deployed in the nest. Their first task is to
find the exit of this area, which leads to the environment to explore. This first
behavior makes the robot navigate randomly following an adapted version of the
diffusion algorithm of Howard et al. [23]. To facilitate the detection of the nest
exit, we color-coded the ground. The nest ground is gray, while the rest of the
environment is white. Through its ground sensors, a marXbot can monitor the
floor color, thus detecting when it exits the nest.
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function rescuer:wander()
-- State transition logic
if rescuer:should_exit () then

-- The robot should exit the nest because there is
-- a landmark nearby , or because other robots are
-- already exiting
rescuer:switch_to_exiting ()
return

end
-- If we get here , the robot is out of the nest , nobody
-- else is exiting , and no landmark is nearby
if rescuer:is_out_of_nest () then

-- The robot just exited the nest
-- It’s the first , so become a landmark
rescuer:set_state (RESCUER_STATE__FIRST_LANDMARK ,

rescuer. first_landmark )
return

end
-- State logic
-- Get vector to escape from obstacles
local repulsion = rescuer:repulsion_vector ()
if(repulsion .x * repulsion .x +

repulsion .y*repulsion .y > 0.001) then
rescuer:vector_to_wheel_velocity_noscale(repulsion )

else
robot.wheels.set_velocity (5,5)

end
end

First Out of Nest. A robot switches to this behavior when its ground sensors
detect white and no robot in range is in this behavior nor in any landmark-
related behaviors. When a robot is in this behavior, it keeps moving for a few
seconds to free space in front of the nest exit. Subsequently, the robot switches
to Stable Landmark. It is not strictly necessary to ensure that a single robot
is the ‘first out of nest’. The probability that more than one robot follow this
behavior is related to the ease with which a robot can find the exit of the nest
(e.g., the width of the exit, the initial position and the sensor range of the robot).

function rescuer:first_landmark ()
-- State transition logic
rescuer.counter = rescuer.counter + 1
-- If 15 seconds have expired , become landmark
if rescuer.counter > 150 then

-- Become a stable landmark
rescuer:set_state (RESCUER_STATE__STABLE_LANDMARK ,

rescuer.stable_landmark )
rescuer.landmark_data .mark = 1
-- Stop the robot
robot.wheels.set_velocity (0,0)
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-- Change LED color to green , for visual confirmation
robot.leds.set_all_colors (" green")
-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
robot.debug.message = robot.debug.message .. "(1)"
return

end
-- State logic
-- Just keep going straight
robot.wheels.set_velocity (5,5)

end

Stable Landmark. A stable landmark is a robot that occupies a specific lo-
cation of the environment and acts as a node in the communication network. A
stable landmark receives requests for direction, propagates them to neighbors,
and returns an answer to the robot which issued the request. For the purposes
of this algorithm, once a robot has become a stable landmark, it simply acts as
a beacon signalling its own position.

Exit Nest. The robots that are following the Wandering behavior close to
the nest exit detect when the first stable landmark appears. Upon detecting
this event, a robot switches to the Exit Nest behavior. In this behavior, the
robot propagates the information about the direction to the exit throughout its
neighbors. In this way, the robots that cannot detect the first landmark directly
are informed of its presence and switch to this behavior as well. To exit the nest,
a robot follows the direction to the landmark, if directly visible, or to the closest
robot that is aware of such direction. When a robot exits the nest, it switches
to the Explore behavior.

function rescuer:exit_nest ()
-- Buffer for the averaged sum of contributions of exiting
-- robots nearby
local exiting = { count = 0, accum = {x = 0, y = 0} }
-- Buffer for the direction to the closest landmark
local landmark = {

direct = false ,
dist = INF_DISTANCE ,
angle = 0 }

-- The current RAB message being processed
local msg
-- Go through RAB messages
for i=1,# robot.range_and_bearing do

msg = robot.range_and_bearing [i]
if (msg.data [2] >= RESCUER_STATE__TEMPORARY_LANDMARK) and

(msg.range < landmark .dist) then
-- Landmark detected , and it’s the closest so far
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landmark .dist = msg.range
landmark .angle = msg.horizontal_bearing
landmark .direct = true

elseif msg.data [2] == RESCUER_STATE__EXIT_NEST then
-- Exiting robot detected
exiting.count = exiting.count + 1
-- Calculate distance to landmark of this robot
local land_dist =

msg.data [4] + msg.data [3] * 256 + msg.range
if land_dist < landmark .dist then

-- Found the robot who knows the closest way to a
-- landmark
landmark .dist = land_dist
landmark .angle = msg.horizontal_bearing
landmark .direct = false

end
-- Calculate the contribution of this robot
local lj = rescuer:lennard_jones (

msg.range ,
RESCUER_EXITING_DISTANCE ,
RESCUER_EXITING_GAIN )

local contr = {
x = lj * math.cos(msg.horizontal_bearing ),
y = lj * math.sin(msg.horizontal_bearing )

}
exiting.accum.x = exiting.accum.x + contr.x
exiting.accum.y = exiting.accum.y + contr.y

end
end
-- State transition logic
-- If you can see the landmark directly and you ’re out
-- of the nest , explore
if landmark .direct and rescuer:is_out_of_nest () then

rescuer:switch_to_explore ()
return

end
-- State logic
-- Postprocess the data collected
-- Take the average of the exiting robot interaction
if(exiting.count > 1) then

exiting.accum.x = exiting.accum.x / exiting.count
exiting.accum.y = exiting.accum.y / exiting.count

end
-- Calculate the LJ interaction to the landmark
local landmark_contr = { x = 0, y = 0 }
if landmark .dist < INF_DISTANCE then

magnitude = 2
if landmark .dist < 1.5 * RAB_RANGE then

magnitude = rescuer:lennard_jones (
landmark .dist ,
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RESCUER_LANDMARK_DISTANCE ,
RESCUER_LANDMARK_GAIN )

end
landmark_contr .x = magnitude * math.cos(landmark .angle)
landmark_contr .y = magnitude * math.sin(landmark .angle)
-- Send around the closest direction to landmark known
robot.range_and_bearing .set_data (3, landmark.dist / 256)
robot.range_and_bearing .set_data (4, landmark.dist % 256)

else
robot.range_and_bearing .set_data (3, 256)
robot.range_and_bearing .set_data (4, 256)

end
-- Calculate the direction
local direction = {

x = exiting.accum.x + landmark_contr .x,
y = exiting.accum.y + landmark_contr .y

}
-- Actuate wheels
rescuer: vector_to_wheel_velocity_scale(direction )

end

Explore. A robot in this behavior performs random walk in the environment.
While wandering, the robot keeps track of the closest landmark detected. If the
distance to this landmark becomes too high (i.e., more than 80% of the maximum
range of the range-and-bearing system), the exploring robot stops and becomes
a Temporary Landmark.

function rescuer:explore ()
-- State transition logic
if rescuer:is_out_of_nest () then

-- Get the landmarks around
local landmarks = rescuer:landmarks_in_range ()
if landmarks then

-- Get the data of the closest landmark
local dist = RAB_RANGE
local marker
local is_victim_landmark = false
for i = 1, #landmarks do

if landmarks [i].range < dist then
dist = landmarks [i]. range
marker = landmarks [i]. data [3]
is_victim_landmark =

(landmarks [i]. data [2] ==
RESCUER_STATE__VICTIM_LANDMARK)

end
end
-- Are we getting too far from the closest?
if (not is_victim_landmark ) and

(dist > 0.8 * RAB_RANGE ) then
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-- The closest landmark is getting too far
-- Become a landmark !
rescuer:become_landmark (marker)
return

end
end

else
-- Explorer got back to the nest
-- Switch back to exiting state
rescuer:switch_to_exiting ()
return

end
-- State logic
-- Wander in the environment
local repulsion = rescuer:repulsion_vector ()
if(repulsion .x * repulsion .x +

repulsion .y * repulsion .y > 0.001) then
rescuer:vector_to_wheel_velocity_noscale(repulsion )

else
robot.wheels.set_velocity (5,5)

end
end

Temporary Landmark. When a robot switches to this behavior, it stops its
motion and waits for a few seconds while monitoring the environment for other
nearby landmarks. If a nearby landmark is located and is too close, the robot
switches back Explore. Otherwise, at the end of the monitoring period, the
robot switches to Stable Landmark or Victim Landmark, depending on
whether a victim is visible or not. The rationale for this behavior is to opti-
mize the diffusion of landmarks across the environment. The motion of explorers
around a temporary landmark might hide (for a short period) the presence of
other stable landmarks; the monitoring period is designed to allow the robot
to collect information and discover nearby landmarks despite the motion of the
explorers.

function rescuer:temporary_landmark ()
-- Increase counter
rescuer.counter = rescuer.counter + 1
-- Switch green LEDs depending on how far we are from
-- making a decision
if (rescuer.counter %

RESCUER_TEMPORARY_PROGRESS_PERIOD) == 0 then
robot.leds.set_single_color (

rescuer.counter / RESCUER_TEMPORARY_PROGRESS_PERIOD ,
"green")

end
-- Collect data
-- Go through the messages
if #robot.range_and_bearing > 0 then
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-- local msg
for i = 1, #robot.range_and_bearing do

local msg = robot.range_and_bearing [i]
if msg.data [1] == ROLE__VICTIM then

-- Detected a victim in range
rescuer.landmark_data .victim_nearby = true

elseif msg.data [2] >=
RESCUER_STATE__TEMPORARY_LANDMARK then

-- Detected a landmark in range
if rescuer.landmark_data . dist_to_closest_landmark >

msg.range then
rescuer.landmark_data .

dist_to_closest_landmark = msg.range
end
if msg.data [2] == RESCUER_STATE__VICTIM_LANDMARK then

rescuer.landmark_data . victim_landmark_nearby = true
end

end
end

end
-- If 10 seconds have expired , make a decision
if rescuer.counter > RESCUER_TEMPORARY_PERIOD then

if rescuer.landmark_data .victim_nearby and
(not rescuer.landmark_data . victim_landmark_nearby) then
-- There ’s a victim and no victim landmark
-- Become victim landmark
rescuer:set_state ( RESCUER_STATE__VICTIM_LANDMARK ,

rescuer.victim_landmark )
robot.debug.message =

robot.debug.message .. "(" ..
rescuer.landmark_data .mark .. ")"

-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
elseif (not rescuer.landmark_data .victim_nearby ) and

(rescuer.landmark_data . dist_to_closest_landmark >
0.3 * RAB_RANGE ) then

-- No victim around and no landmark is too close
-- Become a stable landmark
rescuer:set_state (RESCUER_STATE__STABLE_LANDMARK ,

rescuer.stable_landmark )
robot.debug.message =

robot.debug.message .. "(" ..
rescuer.landmark_data .mark .. ")"

-- Set the mark for the current landmark
robot.range_and_bearing .

set_data (3, rescuer.landmark_data .mark)
else

-- Either there ’s both a victim nearby and a victim
-- landmark , or there ’s no victim but a landmark is too
-- close. Either case , go back exploring
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(a) The first explorer exits the nest and
becomes a stable landmark.

(b) The other robots exit the nest.

(c) The explorers navigate the environ-
ment, occasionally becoming stable land-
marks.

(d) Explorers that are close to a victim
become victim landmarks.

Fig. 6. The essential phases of the exploration behavior. Screenshots taken with the
ARGoS robot simulator

rescuer:switch_to_explore ()
end

end
end

Victim Landmark. When a robot is eligible to become a stable landmark, it
checks for the presence of nearby victims. If at least a victim is detected, the robot
becomes a victim landmark. This behavior is similar to a stable landmark in that
a robot becomes part of the communication network, receiving and replying
requests from the rescuers. However, the role of a victim landmark is to act as
the leaf node of the network when the direction to a victim in range is requested.
For the purposes of this algorithm, once a robot has become a victim landmark,
it simply acts as a beacon signalling its own position.
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5 Conclusions

In this chapter, we presented the robotics scenario used throughout the ASCENS
project. The scenario imagines that a disaster happened in an area whose struc-
ture is unknown. Victims are assumed scattered at unknown locations. A robot
ensemble is deployed to the area and must save the victims.

We decoupled the scenario in a number of parametric phases, allowing the
ASCENS researchers to “tune” the complexity of the desired aspects at will.

The choice of this scenario stemmed from the need to expose ASCENS re-
searchers to real-world coordination problems for robot ensembles. These prob-
lems proved useful to foster several studies spanning modeling, design, require-
ment specification, verification, adaptation, and awareness.

We presented an implementation that demonstrates a possible, albeit simple,
solution for the scenario. This implementation has been used throughout the
project as a reference, allowing researchers to analyze its properties and improve
on its limitations.
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Models and approaches. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB
2006. LNCS, vol. 4433, pp. 71–102. Springer, Heidelberg (2007)
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