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The k-Unanimity Rule for Self-Organized
Decision-Making in Swarms of Robots
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Abstract—In this paper, we propose a collective decision-
making method for swarms of robots. The method enables a
robot swarm to select, from a set of possible actions, the one
that has the fastest mean execution time. By means of positive
feedback the method achieves consensus on the fastest action. The
novelty of our method is that it allows robots to collectively find
consensus on the fastest action without measuring explicitly the
execution times of all available actions. We study two analytical
models of the decision-making method in order to understand
the dynamics of the consensus formation process. Moreover, we
verify the applicability of the method in a real swarm robotics
scenario. To this end, we conduct three sets of experiments that
show that a robotic swarm can collectively select the shortest of
two paths. Finally, we use a Monte Carlo simulation model to
study and predict the influence of different parameters on the
method.

Index Terms—Intelligent robots, intelligent systems, multi-
robot systems.

I. INTRODUCTION

SWARM robotics deals with large groups of relatively
simple robots that perform tasks that go beyond their indi-

vidual capabilities [1]–[3]. The interactions among the robots
in a swarm robotics system are based on simple behavioral
rules that exploit only local information. The lack of global
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knowledge and of a central controller imposes challenging
problems for the design of such a system. When engineering
decision-making methods for swarm robotics systems, the dis-
tributed nature of these swarms must be taken into account:
methods must be efficient, robust with respect to robot failures,
and scale well with respect to the swarm size.

One important research question is how robot swarms can
make collective decisions—a need that arises in many applica-
tions of swarm robotics systems. For example, robot swarms
might need to select the best location containing objects
to be retrieved [4], to decide whether a certain subtask is
finished [5], or to select the shortest between a set of paths
from a source to a destination [6]. Different from individ-
ual decision-making problems such as the multiarmed bandit
problem [7], [8], collective decision-making in swarms typi-
cally requires some form of consensus among the individuals
of the swarm. Existing methods typically rely on measuring
the quality of the available options, followed by some form of
explicit negotiation or consensus-finding (e.g., [5], [9], [10]).

In this paper, we introduce a collective decision-making
method for swarms of robots that is based on positive feed-
back. The method enables a swarm of robots to select, from
a set of possible actions, the one that has the fastest mean
execution time. In the proposed method, every robot has its
own opinion about which is the fastest action. During the
course of the decision-making process, robots observe the
opinions of other robots and can, based on these observa-
tions, decide to change their own opinion. Positive feedback
eventually leads to consensus on one single opinion that is
shared within the whole swarm. Due to a bias induced by the
difference in the execution times, with high probability the
consensus is reached on the opinion representing the fastest
action. The proposed method works in a self-organized and
decentralized way. Moreover, the method does not require
robots to explicitly measure action execution times—a fact
that differentiates our method from existing ones. The method
is based solely on the local observation of the opinions of
other robots. Therefore, the method can be applied in swarms
of very simple robots that lack sophisticated communication
capabilities.

The contributions of this paper are the following. In
Section II, we discuss related works and differentiate the
method we propose from existing methods. In Section III,
we present the decision-making method that we propose
for swarms of robots. We study two analytical models of
the proposed method to understand the dynamics of the
consensus formation process in Section IV. We verify the
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applicability of the method in a real-world application sce-
nario where a robotic swarm has to collectively select the
shorter of two paths. Additionally, we use a Monte Carlo
simulation model to study the influence of the different
parameters on the decision-making method. The experi-
mental setup is presented in Section V and the obtained
results are given in Section VI. We conclude this paper
in Section VII.

II. RELATED WORK

Collective decision-making has been studied intensively in
the field of swarm robotics. In particular, several strategies
have been investigated for collective path finding and short-
est path finding. Most strategies use artificial pheromones,
which have been implemented in various ways, for example
by means of heat [11], oxid gas [12], alcohol [13], [14], or
phosphorescent glowing paint [15]. Other authors use digi-
tal video projectors to project the pheromone trails on the
ground [16]–[18]. Several studies rely on artifacts that are
distributed in the environment. Such artifacts might be, for
example, sensor nodes [19], [20], RFID chips [21]–[23], or
other robots [6], [19], [24]–[26].

Beside shortest path finding, several other related problems
that require decentralized decision-making have been stud-
ied in swarm robotics research. Wessnitzer and Melhuish [9]
investigate how a swarm of robots can decide which of two
targets to hunt collectively. One of the proposed methods uses
a majority voting between the individuals of the swarm to
find consensus on a target. However, the target that is finally
selected is random since no further measures like distance
or target velocity are taken into account. Garnier et al. [17]
present a site-selection mechanism inspired by the aggregation
behavior of cockroaches [27], [28].

Parker and Zhang [5] presented a framework for collective
decision-making that shares similarities with [10]. They pro-
posed a method to decide about the best out of a number of
possible options. The authors take inspiration from the nest
selection behavior of bees. However, in contrast to this paper,
the method requires that the robots are able to estimate the
quality of each individual option. The same authors propose a
method that allows a swarm to decide whether a current task
has been completed [5]. To this end, similar to his work, every
robot is endowed with its own opinion about the completion
status and memorizes a certain number of observed opinions
of other robots. The memory is used to locally estimate the
fraction of the swarm that has a certain opinion. If this estima-
tion exceeds a predetermined threshold for at least one robot,
this single robot initiates the commitment to the new opin-
ion for the whole swarm. This behavior is different from this
paper, where the opinion of the whole swarm emerges out of
the local opinions of the swarm members.

Montes de Oca et al. [29] use positive feedback on the bias
induced by differing action execution times to decide on the
fastest action. The force that drives the agents to consensus
on the fastest action is given by the so-called majority rule.
In the proposed method, in contrast to the method presented
here, robots do not decide based on observed opinions stored

in a memory. Instead, they form ad hoc teams of three or
more robots and apply the majority rule on the opinions held
by the members within the teams. The authors investigate the
method in an agent-based simulation. Moreover, they demon-
strate the application of their method in a robot group transport
application using physics-based simulations. It is in our plan
to compare the k-unanimity rule with the majority and other
rules in a formal way, in a similar fashion as in [30].

The decision-making method based on the k-unanimity rule
that we present in this paper is an improvement over the
majority rule-based method of [29]. As such, it has several
advantages over the original method. First, no teams have
to be formed. The necessity to form ad hoc teams restricts
the majority rule-based method to those applications in which
teams of robots are required. Second, in the k-unanimity rule-
based method the accuracy of the decision can be adjusted. As
shown, a higher accuracy can be achieved by using a larger
memory at the cost of longer convergence times. Third, in
this paper only one other opinion has to be observed between
two consecutive executions of actions. This is advantageous
from the implementation point of view, as it is not necessary
that the robots are able to distinguish each other. Fourth, in
contrast to the majority rule-based method, the k-unanimity
rule-based method also works well in relatively small
swarms.

A theoretical investigation of the majority rule-based
method is presented in [31]. Similar to the analytical model
developed here, this paper takes into account the random fluc-
tuations that occur in finite swarms. Generally, stochasticity
(e.g., due to sensor noise) is an inherent property of swarm
robotics systems. It is a promising research direction to study
how to include stochasticity in analytical models for swarm
robotics systems. This can help to derive, based on stochas-
tic differential equations, macroscopic models for the spatial
distribution of swarms of robots [32], [33].

In [34], we conduct a preliminary analysis of a simple model
of opinion dynamics which is similar to the k-unanimity rule:
instead of keeping a memory of k observations, the agents
weigh exponentially their past observations through a unique
memory variable. In comparison to the this paper, we only
conducted a Monte Carlo simulation that merely showed that
the method can be used to perform selection of the shortest
action in presence of differential latency.

Decision-making has also been formally studied within
the machine learning community. The multiarmed bandit
problem [7], [8], [35] is a related problem faced by an individ-
ual who needs to select one option among many alternative
options. Each option is associated with a stochastic reward;
the individual’s objective is to maximize the sum of rewards
earned through a sequence of decisions. Although related to
the problem we tackle here, there are important differences
between the multiarmed bandit problem and the collective
decision-making problem considered in this paper: 1) our
problem is of a collective nature and 2) we assume that each
individual does not have access to a reward, that is, individu-
als cannot measure execution times and thus cannot perform
direct comparison between the performance of the alternative
options.
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Fig. 1. Example observation and opinion switching from the point of view of Robot II. Robot I has opinion A and Robot II and Robot III have opinion B.
Action B takes longer to be executed than action A on average. Due to the fixed time length of the observation state, Robot I is in observation state more
often than Robot III. Robot II switches to opinion A after observing A k = 2 times in a row.

III. DECISION-MAKING METHOD BASED

ON THE k-UNANIMITY RULE

In this paper, we consider swarms of robots that are capa-
ble of executing different actions, designated by bold roman
letters such as A, B, C, D, . . . . Each action takes a stochastic
amount of time to be executed. Initially, the robots execute the
different actions in equal shares. However, the overall goal of
the swarm is to break this symmetry toward the fastest action.
This means that, at the end of the decision-making process,
all robots should execute the same action and that this action
should be the action that has the fastest average execution
time. Without loss of generality, in the reminder of this paper
action A is the fastest action.

Every robot executes the action it believes to be the
fastest action. This belief is called the opinion of the robot.
Opinions are denoted with the same letters as the correspond-
ing actions, that is, opinion A corresponds to action A, opinion
B corresponds to action B, and so on.

Robots can observe the opinion of other robots when they
meet. Every robot stores its most recent k observed opinions
in its memory. Once the memory is full, if a robot observes a
new opinion, it removes the oldest opinion from it’s memory
and replaces it with the new one, in a first-in first-out fashion.
Note that, we use the term memory as an abstraction; it does
not imply any details regarding its technical implementation.

In between two action executions, robots can change their
opinion according to the so-called k-unanimity rule, defined
as follows:

A robot changes its opinion to X if and only if all k
observations stored in its memory are of opinion X.

The k-unanimity rule induces positive feedback on the opinion
that is held by the majority of the robots. Applied repeatedly
over time, the k-unanimity rule drives the swarm to consensus,
that is, to a state in which all robots hold the same opinion. The
k-unanimity rule is a generalization of the voter model, which
can be obtained by setting k = 1. The voter model is, in itself,
a very general model of collective decision-making [36], [37].
Both in our model and in the voter model, consensus must
be reached eventually, because the consensus states are the
only absorbing states of the system (see Section IV). That is,
once consensus is reached, robots can no longer change their

opinion and we say that the swarm completed the decision-
making process.

Throughout this paper, we assume that opinions are ini-
tially equally distributed among robots, that is, all opinions
are held by an equal number of robots. Under this assumption,
if all opinions could be observed with with the same proba-
bility (i.e., because there is no symmetry-breaking difference
in mean execution times), there is no majority opinion that
would be amplified by the k-unanimity rule. Instead, changes
in the opinion of the robots would be random. Eventually,
due to these random opinion switches, the symmetry between
opinions will be broken in favor of a random opinion and
the k-unanimity rule will likely amplify this opinion until
consensus is reached.

However, our goal is not to achieve consensus on a random
opinion but on the opinion that is associated with the fastest
action. We therefore introduce a mechanism to break the sym-
metry between the opinions in favor of the opinion associated
with the fastest action. The symmetry breaking mechanism
is based on the introduction of a so-called observation state.
The observation state restricts the observation possibilities of
the robots. In particular, robots are allowed to observe and
to be observed only when they are in the observation state.
Robots enter the observation state only once per execution of
an action. Moreover, the duration of the observation state is the
same for all robots regardless of their opinion. Due to the fixed
length of the observation state, robots that execute the fastest
action are in observation state more often: Robots that execute
the fastest action spend a larger fraction of their time in the
observation state compared to the other robots (see Fig. 1).
Therefore, the probability of the other robots observing the
opinion held by the robots that execute the fastest action is
higher than the probability to observe another opinion. In
(initially) unbiased swarms this breaks the symmetry between
the opinions in favor of the fastest action. Consequently, with
higher probability, the system will evolve consensus on this
action.

Note that the proposed decision-making method does not
guarantee that the fastest action is always found. Swarms
might still reach consensus on a slower action. This is
due to the inherent randomness of encounters and the
resulting opinion switches. In particular, at the start of the



1178 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 5, MAY 2016

decision-making process, it can happen that, by chance, the
number of robots with a certain opinion becomes larger than
the number of robots with opinion associated with the fastest
action. This can result in a higher probability to observe a dif-
ferent opinion than opinion A. Consequently, chances are that
in this case the swarm finds consensus on an opinion different
from opinion A.

IV. ANALYTICAL MODEL

In the following, we analytically study the dynamics of the
decision-making process induced by the k-unanimity rule.
The investigated theoretical models are useful to understand
the dynamics of the decision-making method and to predict
its behavior for idealized conditions, that is, in the absence of
noise induced by imprecision of sensors or robot failures.

Consider a swarm of N robots that use a memory of size k.
Every robot holds one of O = {A, B, C, . . . } possible opinions.
We denote the number of robots with opinion m ∈ O by nm.
Let xm = nm/N be the fraction of these robots. The average
execution time of action m is λm. Without loss of generality we
assume that the average execution time of action A is λA = 1.
The average execution time of any other action m is equal or
longer, that is, λm ≥ 1 for m �= A.

Robots repeatedly execute the action that corresponds to
their current opinion. Therefore, within a time unit, on average
nm/λm robots with opinion m finish their actions. Therefore,
the probability that a robot that finishes an action has opinion
m is given by

pm = nm/λm
∑

i∈O
ni
λi

= xm/λm
∑

i∈O
xi
λi

. (1)

Three assumptions are made here. First, in our analytical
model we do not model the observation state explicitly.
Instead, robots apply the k-unanimity rule directly after the
execution of an action and immediately start a new action.
Second, we assume that the observation memory is filled with
k opinions sampled accordingly to the current rates at which
robots finish their actions. This means that each of the k mem-
orized opinions is opinion m with probability pm. Clearly, this
corresponds to a well-mixed state where the probability to
observe any robot in observation state is equal and observing
the opinion of a certain robot does not depend on its opin-
ion. Third, we neglect the fact that the stored opinions in a
robot’s memory might have been observed at different times
(between several action executions). This assumption is a rea-
sonable simplification, as in the real system opinions stored in
the observation memory must have been observed in the near
past and represent therefore a snapshot of the current rates at
which the robots finish their actions.

At the level of the whole swarm, a robot’s application of
the k-unanimity rule can have three different outcomes: the
number of robots with opinion m increases by one, decreases
by one, or stays as it is. The number of robots with opinion
m increases if a robot with opinion r �= m changes its opinion
to m. This happens if the robot observes opinion m k times
in a row. The probability for this event is pm

k. It follows that
the probability that any robot with opinion r changes to m is

given by pr(pm
k). Hence

w+
m =

∑

r∈O, r �=m

prpm
k = (1 − pm)pm

k (2)

is the probability that an application of the k-Unanimity rule
increases the number of robots with opinion m. Similarly,
the probability that the number of robots with opinion m is
decreased is

w−
m =

∑

r∈O, r �=m

pmpr
k. (3)

The probability that the number of robots with opinion m
does not change upon an application of the k-unanimity rule
is w∗

m = 1 − w+
m − w−

m .
In the next two sections, we study the dynamics of consen-

sus formation by means of two different theoretical models.
First, we propose a continuum model that assumes an infinite
number of robots. This model only allows to investigate how
the average fractions of robots that prefer the different opin-
ions evolve over time, but can be easily extended to systems
with more than two opinions. Second, we propose a model
that assumes a fixed swarm size and that takes the effects
caused by fluctuations due to the random decisions of robots
in finite swarms into account. This model is superior to the
first one as it also allows to predict the probability for con-
sensus on the shortest action and the time needed. However, it
is much harder to solve especially in systems with more than
two opinions.

A. Continuum Model

Recall that, within a time unit
∑

i∈O ni/λi robots finish their
actions and apply the k-unanimity rule. This corresponds to
a fraction

∑
i∈O xi/λi of the swarm. We can thus model the

evolution of the expected fraction of robots with opinion m as

ẋm = (
w+

m − w−
m

)∑

i∈O

xi

λi
. (4)

First consider swarms of robots that have to decide between
only two actions O = {A, B}. Fig. 2 visualizes (4) for this
case. The graph shows ẋA, the expected change of the fraction
xA of robots with opinion A within a time unit, depending
on the current value of xA. The zeros of ẋA, that is, the
stationary solutions of (4), are the (stable) consensus states
[xA = 0] and [xA = 1] and the (unstable) equilibrium point
[xA = λA/(λA + λB)]. The latter of these three points is of
particular interest as it separates the flow to the two consen-
sus states. We denote this point as critical fraction xc. The
model predicts that if xA is greater than xc, then xA will
steadily increase until consensus on A is reached (ẋA > 0 for
xA > xc). Analogously, for xA < xc consensus on B will be
found. Hence, the k-unanimity rule induces positive feedback
and amplifies an existing bias. Note that the critical fraction
xc marks the state in which the probability to observe both
opinions A and B is pA = pB = 1/2. In other words, at the
critical fraction both actions are executed at the same rates
and therefore there is no bias toward one opinion.

Beside the critical fraction xc, the point xA = xB = 1/2 is
of particular interest. This point corresponds to the initial state
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Fig. 2. Rate of change ẋA of the fraction of robots with opinion A depending
on the current system state in a swarm with two opinions. The vertical solid
line marks unbiased swarms (xA = xB = 0.5). The dashed line marks the
critical fraction xc = 0.4 for λB = 1.5.

Fig. 3. Example trajectories of the continuum model (4) with three opinions.

of the swarm where both opinions are present in equal pro-
portions. We call a swarm in this state unbiased. The vertical
solid line in Fig. 2 marks this point.

If action B takes longer than action A (λB > 1) the criti-
cal fraction xc is shifted toward values smaller that 0.5. For
example, for λB = 1.5 the critical fraction is xc = 0.4 (ver-
tical dashed line in Fig. 2). However, it still holds that for
any x > xc consensus is found on A. Consequently, the model
predicts that unbiased swarms (i.e., xA = xB = 1/2) always
find consensus on A, the fastest action.

When the memory size k increases, the rate of change
ẋ decreases and swarms need more time to find consensus
(see Fig. 2). This is because for higher k it is harder to observe
the same opinion k times in a row. This is particularly the case
near the critical fraction. Note that the model presented in the
next section shows that increasing the memory size k not only
slows down the decision process, but also increases the proba-
bility to find the fastest action. This property cannot be shown
with the continuum model.

Fig. 3 visualizes the state space of a system with three opin-
ions O = {A, B, C}, memory size k = 2 and execution times
λA = 1, λB = 2, and λC = 4. The state of the swarm is
now defined by the triple (xA, xB, xC) denoting the fractions

of robots with the three opinions. The black trajectory shown
in Fig. 3 illustrates the evolution of an unbiased swarm, that
is, a swarm that starts with equal fractions of robots for the
three opinions (1/3, 1/3, 1/3). As it can be seen, the model
predicts that an unbiased swarm will converge to the state
(1, 0, 0) (consensus on the fastest opinion A). In analogy to
the critical fraction that determines the fate of a swarm with
two opinions, in systems with three opinions so-called sepa-
ratrices divide the phase space into three areas that determine
the outcome of the decision process.

B. Master Equation Approach

The continuum model we developed in the previous sec-
tion shows how the fractions of robots with different opin-
ions evolve on average. For a tuple of initial fractions
(xA, xB, xC, . . .), the continuum model predicts exactly one of
the consensus states as final outcome. In real swarms, however,
as long as an opinion is held by at least one robot, consensus
on this opinion is still reachable.

In the following, we propose a second analytical model that
also takes into account the effects caused by fluctuations due
to the random decisions of robots in finite swarms. With this
model, we can approximate the probability to reach consensus
on a certain opinion. We chose to model only swarms with two
opinions O = {A, B} as, although in principle possible, it is an
extremely difficult endeavor to solve master equations when
more than two options are present.

Let En be the probability to eventually reach consensus
on A, if currently 0 ≤ n ≤ N robots have opinion A. The
N + 1 probabilities En can be estimated as follows. If n
robots have opinion A (n < N), due to the application of the
k-unanimity rule the number of robots with opinion A might
increase to n + 1. The probability of this event is w+

A and
after this event, the probability for consensus on A is En+1.
Therefore, w+

A En+1 is the probability that the next applica-
tion of the k-unanimity rule increases the number of robots
with opinion A from n to n + 1 and that consensus on A will
be found eventually. Considering also the two remaining out-
comes of the application of the k-unanimity rule we obtain a
so-called master equation

En = w+
A En+1 + w−

A En−1 + w∗
AEn. (5)

Solving this master equation would mean to derive a non-
recursive, closed form for En. However, it is much easier to
approximate its solution using a continuous function E(x). This
function is defined for x ∈ [0, 1] and at the points x = n/N
(n ∈ [0, . . . , N]) its value is E(x) = En. Rewriting the master
equation in terms of E(x) and applying a second order Taylor
expansion leads to

E(x) = w+
A E

(
n + 1

N

)

+ w−
A E

(
n − 1

N

)

+ w∗
AE

( n

N

)

= w+
A E(x + 1/N) + w−

A E(x − 1/N) + w∗
AE(x)

= w+
A

[

E(x) + 1

N

∂E(x)

∂x
+ 1

2

1

N2

∂2E(x)

∂x2

]

+ w−
A

[

E(x) − 1

N

∂E(x)

∂x
+ 1

2

1

N2

∂2E(x)

∂x2

]

+ w∗
AE(x).

(6)
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Because the sum w+
A + w−

A + w∗ equals 1, the term E(x) can
be eliminated in (6) and we derive the second order differential
equation

0 = [
w+

A − w−
A

] 1

N

∂E(x)

∂x
+ [

w+
A + w−

A

]1

2

1

N2

∂2E(x)

∂x2

= 2N

[
pk−1

A − (1 − pA)k−1

pk−1
A + (1 − pA)k−1

]
∂E(x)

∂x
+ ∂2E(x)

∂x2
. (7)

Clearly, if all robots have opinion B then the probability to
reach consensus on A is zero (E0 = 0). On the other hand, if
all robots have opinion A then the probability to find consensus
on A is one (EN = 1). These are the boundary conditions
E(0) = 0 and E(1) = 1 for our approximation.

We can also model the expected time Tn until convergence.
This is the time that a swarm of N robots in which n robots
have opinion A needs to reach consensus. Within a time unit
n + (N − n)/λB robots finish their actions. We can determine
the expected time between two robots finishing their action
(between two applications of the k-unanimity rule) as

δt(x) = 1

n + (N − n)/λB
= pA

xN
. (8)

The master equation for the time until consensus is then
given by

Tn = δt(x) + w+
A Tn+1 + w−

A Tn−1 + w∗Tn. (9)

Inserting (8) into (9) and applying the same steps as used to
derive (7) leads to

0 = 2NpA

x
[
pA(1 − pA)k + (1 − pA)pk

A

]

+ 2N

[
pk−1

A − (1 − pA)k−1

pk−1
A + (1 − pA)k−1

]
∂T(x)

∂x
+ ∂2T(x)

∂x2
. (10)

Clearly, if one of the two consensus states is reached the time
to convergence is zero. Therefore, the boundary conditions for
the approximation of Tn are T(0) = 0 and T(1) = 0.

Fig. 4 shows solutions for E(x) and T(x) for λB = 1.0 and
λB = 1.5 and different memory sizes k and swarm sizes N.
Again the critical fraction xc and the fraction x = 1/2 that
relates to unbiased swarms are of particular interest.

Recall that for equal action execution times (λB = 1) the
critical fraction is xc = 0.5. The continuum model predicts that
for x > xc consensus is found on A (see the previous section).
However, this only holds on average. As long as consensus
is not reached there is always a nonzero probability for both
consensus states. As can be seen in Fig. 4(a), even if robots
with opinion A are in the majority, there is still a certain prob-
ability to reach consensus on B. For example, if in a swarm of
ten robots six robots prefer A (that is, x = 0.6), the probabil-
ity that consensus is reached on B is still 1 − E(0.6) ≈ 0.28.
However, for larger swarms the probability to reach consensus
on the minority opinion becomes smaller (1 − E(0.6) drops to
0.09 for N = 50). For N → ∞ the function E(x) converges to
a step function and small deviations toward one opinion are
amplified and result in consensus on this opinion with high
probability.

(a)

(b)

(c)

Fig. 4. Influence of the initial fraction x of robots that start with opinion A.
(a) Approximation of E(x), the probability to find consensus on opinion A,
for equal action execution times (λB = 1). (b) E(x) if action B takes longer
than action A (λB = 1.5). (c) Expected time to consensus for λB = 1.5.

Recall that the continuum model correctly predicts that the
rate of change ẋ decreases with increasing k. That is, the prob-
ability to change opinion after an action execution decreases.
The master equation model shows that if a robot changes its
opinion, then for larger values of k the probability to switch
to the majority opinion is higher. That is, increasing k results
in stronger positive feedback. For example, if k is increased
from 2 to 4, the probability for consensus on A for ten robots
and x = 0.6 increases from 0.72 to 0.83.

In the case of asymmetric execution times, that is, if
action B takes longer than action A [λB = 1.5, Fig. 4(b)],
the critical fraction is smaller than 0.5 (E(xc) = 0.5 for
xc = 0.4). Consequently, as already predicted by the con-
tinuum model, swarms that start unbiased (x = 0.5) find
consensus on action A with higher probability. The steepness
of E(x) near xc is determined by the swarm size N as well
as by the memory size k. More precisely, larger swarms as
well as a larger memory size k lead to a higher probability of
consensus on A.

As stated before, we assume that opinions are equally dis-
tributed among robots at the beginning of an experiment.
However, in case opinions are randomly distributed among
robots, the probability to find consensus on the fastest action
might decrease, that is, robots might favor the longer action.
Our model can be used to estimate this effect: for swarms with
two opinions, the starting distribution of randomly generated
opinions would be binomial. By convoluting this distribu-
tion with the estimation for the exit probability E(x) one
can estimate the exit probability for a swarm starting with
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Fig. 5. Influence of memory size k. Shown is the time to convergence versus
the probability to converge to action A for unbiased swarms.

randomly chosen opinions. For example, as Fig. 4(b) shows,
the probability for an unbiased swarm of ten robots to find
consensus on A is 0.723. If those ten robots start with a
random opinion, this value would decrease to 0.695.

Fig. 4(c) depicts the expected time T(x) to find consensus
for the same situation as shown in Fig. 4(b). Near the critical
fraction the probability to observe the two actions is nearly the
same (w+

A ≈ w−
A ). Therefore, the drift toward the consensus

states is small and the expected time to convergence is high.
However, the maximum time to consensus is not found exactly
at the critical fraction, but slightly shifted toward higher val-
ues of x. A similar shift was observed in [31], but it remains
unexplained.

For the normal case of unbiased starting swarms (x = 0.5),
Fig. 5 depicts the time T(0.5) to convergence versus the proba-
bility E(0.5) to converge to action A for different swarm sizes
N ∈ {4, 10, 50} and different memory sizes k ∈ {2, . . . , 8}. As
it can be seen, the model predicts a trade-off between the
probability to converge on the action with the fastest execu-
tion time and the time the swarm needs to reach the decision:
Increasing the memory size k increases the probability to find
consensus on A at the cost of a longer decision time. Clearly,
since w+

A /(w+
A + w−

A ) → 1 for k → ∞, the probability E(0.5)

converges to 1 for any λB > 1. However, as it can be seen
in Fig. 5, increasing the accuracy by increasing k quickly
becomes very costly in terms of convergence time because the
probability that a robot changes its opinion (w+

A + w−
A ) also

decreases exponentially with increasing k. The results shown
in Fig. 5 demonstrate that choosing the right memory size k for
a given application is not trivial and depends on the required
precision and the available time.

The probability for consensus on action A depends not only
on the number of robots and on the size of the memory, but
also on the difference in action execution times. Obviously,
if the action execution times are equal (λA = λB), the prob-
ability to find consensus on A is 0.5. On the other hand, the
larger the difference between the action execution times, the
higher is the probability that the swarm converges to opin-
ion A. A visualization of these results can be found in the
supplementary material [38].

V. EXPERIMENTAL SETUP

The setup of our real robot experiment resembles the well-
known double bridge experiment used to show that ants are
able to find the shortest path between their nest and a food
source [39]. This setup was chosen mainly for demonstration
purposes and does not restrict by any means the applica-
bility of our method. Following the taxonomy of [40], our
experiment can be classified as a single nest, single source,
homogeneous foraging task. The robots’ task is to repeatedly
collect objects from the source zone and transport them to
the nest zone (see Fig. 6). The robots transport virtual objects
and the source zone contains an unlimited number of objects.
Hence, the robots’ task is to constantly travel between the nest
and the source zones. The overall goal of the robot swarm is
to collect as many objects as possible. The best performance
can be reached when the swarm uses solely the shortest of
the two paths. Note that using exclusively the shortest path is
advantageous only if no strong physical interference between
the robots occurs (e.g., in situations where robots do not have
to constantly avoid each other because of a high robot density
in the arena). Large swarms might gain better performance by
using both paths simultaneously, as this reduces the interfer-
ence on the single paths. However, as we used a small swarm
in our experiments, the effect of interference can be neglected.

The experimental arena has a size of 4.5 m x 3.5 m (see Fig. 6).
Three different zones are marked with colored patches on the
ground. These patches let the robots determine in which zone
they are. The nest zone is located in the left of the arena
and the source zone is located in the right of the arena. The
two zones are connected by two paths of different length.
The short path is called “A” and the long path is called “B.”
The observation zone is located next to the nest zone. Lights
near the nest zone help the robots navigate within the arena.
Moreover, two landmarks are placed at the two bifurcations of
the double bridge. The landmarks help robots to navigate at
the bifurcations; they are implemented using blue LEDs.

For this paper, we use ten marXbots [41]. The marXbot is
a modular robot that was developed within the FET project
Swarmanoid [42]. It has a circular chassis with a diameter of
17 cm, a height of 29 cm, and a weight of 1.8 kg. We use the
marXbot’s 24 IR proximity sensors to implement the obsta-
cle avoidance behavior, their 24 light sensors to implement the
light following behavior, their four IR ground sensors to distin-
guish between the different zones in the experimental arena,
their RGB beacons to show the robots’ current opinion and
their onmi-directional camera to enable the robots to observe
opinions of other robots.

A. Robot Behavior

The robots have no global map of the environment. They
navigate only using a light source located next to the nest zone
as a reference. To get to the source zone, the robots move away
from the light, that is, they perform anti-phototaxis, until they
detect the source zone ground patch. When robots reach the
source zone, they return to the nest zone by moving into the
direction of the light, that is, by performing phototaxis.

The relation between our experimental setup and the pro-
posed decision-making method is the following. The two
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Fig. 6. Experimental setup: schematic (left) and real installation with a size of 4.5 m x 3.5 m (right). The robots constantly travel between nest zone and
source zone by navigating with respect to the lights (anti-phototaxis for going to the source zone and phototaxis for going to the nest zone). Depending on
their opinion they decide on which side to pass the landmarks. Robots with opinion A take path A while robots with opinion B take path B. In the observation
zone robots observe each other’s opinions.

Fig. 7. Illustration of the observation and decision process shown on the example of a single robot. (a) Robot with opinion A (encircled) enters the observation
zone. (b) Robot observes another robot with opinion B (the robot shows this to the experimenter by flashing its LED ring) and stores the observation in its
memory. (c) Robot leaves the observation zone and the application of the k-unanimity rule changes its opinion to B.

opinions A and B represent the two actions “travel path A”
and “travel path B,” respectively. At the bifurcations between
the two paths, designated by the aforementioned landmarks,
robots navigate toward the path that corresponds to their
opinion. More specifically, robots that have opinion A and
are moving toward the source zone try to pass the land-
mark at the left hand side whereas robots going back to the
nest zone try to pass the landmark at the right hand side.
For robots with opinion B, this behavior is mirrored accord-
ingly. Robots are in observation state only if they are in the
observation zone.

The robots use their RGB beacon to show their opinions.
Robots that have opinion A light up their RGB beacon in
green and robots that have opinion B light up their RGB
beacon in purple. Fig. 7 illustrates different stages of the
observation and decision process from the point of view of
a single robot. The encircled robot in Fig. 7(a) has opinion
A (green beacon—right robot). It is moving toward the nest
zone and is entering the observation zone. Two other robots
are currently in the observation zone. One has opinion A
(green beacon—top robot) and one has opinion B (purple
beacon—left robot). These two robots have already visited the
nest zone and are going to leave the observation zone moving
toward the source zone.

In the observation zone, robots try to observe another robot’s
opinion, that is, they use their omnidirectional camera to detect
another robot’s RGB beacon. If a robot recognizes multiple
RGB beacons it chooses one randomly. The robot in our exam-
ple observes opinion B from the left robot [indicated by an

arrow in Fig. 7(b)]. In principle, more elaborate mechanisms
can be implemented on the specific robotic platform we use.
For instance, robots might observe each other’s opinions by
locally communicating them using an on-board range-and-
bearing sensing and actuation system, which would also allow
to communicate robot IDs. However, we choose not to use
this solution as this would constrain the method to a specific
robotic platform, which is not our intention.

The decision process is based on the k-unanimity rule intro-
duced in Section III: if a robot with opinion A (resp. B)
observes opinion B (resp. A) k times in a row, it changes
its own opinion. This change is delayed until the robot leaves
the observation zone. Thus, as long as a robots is located in
the observation zone, it keeps and propagates the opinion that
is associated with its last executed action. The robot in the
example observed opinion B k times in a row and changes to
B when it leaves the observation zone [Fig. 7(c)].

Note that, if a robot leaves the observation zone without
observing any opinion, it memorizes its own opinion, that is,
it observes itself. Through simulation studies we found this
rule to be superior compared to observing nothing (i.e., not
modifying the memory). However, if the swarm is small or
the average time in the observation state is very short, the
probability that a robot observes another one can become
very small. In this case, the self-observation rule can lead
to long convergence times, because robots mostly observe
themselves. If the convergence time is important, it might be
more practical to drop the self-observation rule in favor of
faster convergence times.
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TABLE I
PARAMETERS FOR THE REAL ROBOT EXPERIMENTS

Moreover, note that a robot observes exactly one opinion
after each action execution. In principle, a robot in the obser-
vation zone could memorize the opinions of all observable
robots. This might result in a faster convergence of the system.
However, to observe more than one opinion, a robot must be
able to recognize if a certain robot has already been observed,
or to distinguish between two or more robots present in an
image. Neither of these options can be realized without the use
of more sophisticated hardware and/or software implementa-
tions, and we chose not to do so because our main point is
not to solve a real engineering problem, but to show that the
proposed decision-making mechanisms works in a very simple
and hardware and software-limited proof of concept scenario.

B. Experiments With Real Robots

The swarm of ten robots is initially divided into two groups
of five robots each. Group one starts with opinion A and group
two starts with opinion B. The robots start moving to the
source zone in pairs of two robots, one from each group. The
time interval between the consecutive starts of two pairs is
approximately 15 s. This ensures a homogeneous distribution
of robots in the arena and avoids the formation of clusters of
robots at the beginning of the experiments.

We conduct three different experiments, each consisting of
15 independent runs (see Table I). In Experiment I, the robots
use a memory of size k = 2 and move at their base speed.
Experiment II has the same setup as Experiment I, but we
increase the difference between the execution times of the two
actions by letting robots that select path B move at half of their
base speed, thereby simulating a longer path. In Experiment III,
all robots move with the same speed as in Experiment I, but
we increased the size of the memory to k = 4.

To determine the values for λB as given in Table I, in the
real robot experiments the travel times of the robots were
measured. Fig. 8 visualizes the distributions of the collected
travel times (the collected data consists of 3027 travel times
for path A, 1096 travel times for path B and 418 travel times
for path B in Experiment II—where robots move with half
base speed). λB was then derived by normalizing the average
execution time for using path B with respect to the average
execution time of using path A.

C. Experiments With the Simulation Model

In addition to the real robot experiments, we use a
Monte Carlo simulation model to investigate how the
decision-making mechanism performs in a wider variety
of parameter setups than those that can be studied using
the real robots. The simulation model is a simple event-
based multiagent model. No representation of the physical

Fig. 8. Distributions of the travel times for path A, path B, and path B
in experiment II, recorded in the real robot experiments and used for the
simulation model.

environment nor physical interactions between robots are
implemented in the simulation model. Instead, robots are rep-
resented as simple agents that either execute one of the two
possible actions or are in observation state for a fixed time
interval.

The execution times of the two actions in the simulation
model are sampled from real travel times collected in the real
robot experiments (as explained in Section V-B).

In the simulation model, the time robots stay in the obser-
vation state is set to 20 s for all robots. Similar to the real
robot experiments, in simulation the robots start consecutively
in pairs of robots of different opinions. The time between the
start of two pairs is set to 15 s as in the real robot experiments.
The default value for the memory size is k = 2.

D. Performance Metric

In order to quantify how well the swarm performs in finding
the fastest action for a given parameter combination, we mea-
sure the fraction of experimental runs that end in consensus
on action A (the fastest action). We call this the accuracy of
the decision-making method.

In the simulation experiments we also test swarms that start
biased, that is, swarms that start with unequal fractions of
robots favoring the different opinions. For a given parameter
setup, we are interested in the probability that the simulated
swarm converges to A. For swarms that start unbiased this
probability directly relates to the accuracy of our method. In
order to estimate the probability to converge to opinion A, we
conduct 10 000 independent simulation runs per parameter set
and calculate the fraction of runs that converge to action A.
The 95% confidence interval for 10 000 trials is < ± 0.01.
In other words, the results we present for the probability to
converge to action A should be considered with an error of
1% in mind.

VI. RESULTS AND DISCUSSION

In the following, we present the results of our real robot
experiments and compare them to the results of the simula-
tion model. We show that the simulation model resembles the
real robot experiments closely. However, we also point out
differences and discuss their causes. Moreover, we present
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Fig. 9. Example of a typical run of a real robot experiment. (a) At the beginning of the experiment, robots are equally distributed between the two paths.
(b) Robots start in pairs to avoid the formation of robot clusters. (c)–(e) Robots successively switch to the shortest path A. (f) Swarm has converged to the
shortest path A. Time is indicated in minutes:seconds.

(a) (b)

Fig. 10. Summary of the experimental results with ten robots. Experiment I: λB ≈ 1.3 and memory k = 2 resulted in 10 out of 15 successful runs and runs
took 15 min on average. Experiment II: increasing the execution time for B to λB ≈ 2.3 led to 13 successful runs but also doubles the time needed to converge.
Experiment III: increasing memory size to k = 4 resulted in 12 runs that converged to A and in a strongly increased convergence time. (a) Probability to find
consensus on shortest path. (b) Time until convergence to shortest path.

simulation experiments that were conducted to investigate
system parameters that exceed the possibilities of real robot
experiments.

A. Comparison of Real-World and Simulation Experiments

Fig. 9 shows different stages of a typical run of
Experiment I.1 Initially the robots start in two queues of five
robots each, placed on the two paths [Fig. 9(a)]. The robots
start to move to the source zone in pairs [Fig. 9(b)]. Robots
with opinion B switch to opinion A [Fig. 9(c)–(e)]. Eventually,
the swarm converges to the shortest path [Fig. 9(f)]. The
depicted experimental run took 16 min.

Fig. 10 shows the results of all real robot experiments and
compares them to the results of the simulation experiments.
In Experiment I (memory size k = 2) 10 out of 15 runs suc-
cessfully converged to the short path A (accuracy 0.67). This
is in accordance with the simulation model where an accuracy

1See also the supplementary material for a video recording of an experi-
mental run [38].

of 0.68 is reached, and with the analytical model that would
predict an accuracy of 0.66 (see Fig. S2 in supplementary
material [38]).

The time the system needs to converge to the shortest path
is also predicted well by the simulation model [see Fig. 10(b)].
Single experiments last from 9 min minimum up to 24 min
maximum. On average it takes approximately 15 min to find
the shortest path.

The goal of Experiment II is to investigate the influence of
the ratio between the action execution times on the accuracy
of the method. The analytical model predicts that increasing
the difference between the action execution times increases the
bias in the observed opinions and therefore increases the accu-
racy of the method. The results of real robot Experiment II
are in accordance with this prediction [see Fig. 10(a)]: 13
out of 15 runs successfully converged to the shortest path
(accuracy 0.86). The simulation of Experiment II leads to a
high accuracy of 0.96.

The difference in accuracy and convergence time between
simulation and real robot experiments for Experiment II
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Fig. 11. Distribution of robots over time collected over 50 000 simulations
of Experiment I. The shade of gray indicates the probability to find a certain
number of robots with opinion A at a given time in the system. The two lines
correspond to data collected in two real robot experiments.

[see Fig. 10(b)] is due to a small bias toward opinion B in the
experimental setup. Robots that take path B slow down imme-
diately after they leave the observation zone. This causes them
to remain within the range of the omnidirectional camera of
the robots in the observation zone for a longer time than robots
that take path A. This bias introduced by this behavior is not
present in the simulation model as physical interactions are not
taken into account. Hence, in the real robot implementation of
Experiment II it is slightly more likely to observe a robot with
opinion B compared to the simulation model. Consequently,
the accuracy is lower and the time the method needs to con-
verge is longer. Clearly, altering the setup of Experiment II by
increasing the speed of robots on path A instead of slowing
down robots on path B would lead to the same bias toward
A because robots with opinion A will leave the observation
distance of the robots in the decision zone faster.

In Experiment III, we increase the memory size k
from 2 to 4. As predicted by the theoretical model, this leads
to an increased accuracy at the cost of an increased conver-
gence time [see Fig. 10(a)]: 12 out of 15 runs converged to
the shortest path (accuracy 0.8).

Fig. 11 depicts the evolution of the number of robots on
path A over time. The shade of gray indicates the probability
to find a certain number of robots with opinion A at a given
time in the system predicted by the simulation model. The
two lines show data collected in two different runs of the real
robot experiments.

The arrows in Fig. 11 mark an observation in the real robot
experiments that can rarely happen in simulation. From 7 to 13
min the number of robots with opinion A remains constant
although only two robots with opinion B are left. The reason
is that these two robots moved closely together in the arena as
a pair. When the pair entered the observation zone, with a high
probability the two robots observed each other and therefore
did not change opinion. However, eventually the pair dissolved
and the system converged.

The real robot experiments showed that the decision-making
method can also cope with the presence of errors. We found
two main sources of such errors in our real robot experiments.

(a)

(b)

(c)

(d)

Fig. 12. Probability that the swarm finds the shortest path as a function of
the initial bias for different swarm sizes. (a) Equal action execution times.
(b) Experiment I. (c) Experiment II. (d) Experiment III.

First, robots sometimes happen to take the wrong path with
respect to their opinion because other robots cover the sight to
the landmarks at the bifurcations. Second, small traffic jams
and noise in the ground sensors can lead to a high variance in
the task execution times. Moreover, the well-mixed assump-
tion might be violated due to correlations between robots,
for example, robots travelling in small clusters. However, the
method always converged and with high probability consensus
was found on the shortest path.

B. Extended Analysis Using the Simulation Model

1) Swarm Size and Initial Bias: To further study the influ-
ence of the swarm size we simulate experiments I, II, and III
with different swarm sizes (4, 10, 50, and 1000 robots).
Moreover, we investigate the influence of the initial bias,
that is, of the fraction of robots that start with opinion A.
In accordance with Section IV, we denote the initial bias with
x and the fraction corresponding to a random experimental
outcome (the critical fraction) with xc.

As can be seen in Fig. 12(a), for equal task execution
times (λB = 1), as predicted by the analytical model, swarms
tend to reach consensus on the opinion that was initially
favored by the majority of robots. Also in accordance with
the analytical model, the simulation shows that the critical
bias xc in Experiment I is smaller than 0.5 [Fig. 12(b)].
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(a) (b)

Fig. 13. Time to convergence as a function of the initial bias for different
swarm sizes. (a) λB = 1. (b) λB ≈ 2.3.

More precisely, since in Experiment I the mean execution
time ratio is λB ≈ 1.3 the critical bias is now given by
xc ≈ 1/(1 + 1.3) = 0.43. Consequently, swarms that start
unbiased (x = 0.5) have higher probability to find consen-
sus on action A, the fastest action. The larger the swarm the
more likely this outcome. For instance, large swarms of 1000
robots found consensus on the fastest action in all conducted
experiments.

In Experiment II, the longer execution time of action
B results in a strong shift of the critical bias [Fig. 12(c)]. In
Experiment III, the larger memory results in a stronger posi-
tive feedback [Fig. 12(d)]. Consequently, in both experiments,
the probability for unbiased swarms to find consensus on the
fastest action A is higher than in Experiment I.

Fig. 13 depicts the measured time to find consensus depend-
ing on the initial bias x. The maximal convergence times
can be found near the critical values, because here the drift
toward the consensus states induced by the k-unanimity rule
is low. However, it can also be seen that the time to conver-
gence grows only sublinearly with the number of robots. Thus,
increasing the swarm size will have a strong influence on the
decision accuracy but only a marginal influence on the time
the system needs to converge.

2) Time in Observation State: The observation zone in our
double-bridge experiment has a fixed size. Thus, the time
robots remain in the observation state is also fixed. However, in
a different application of the decision method the time robots
remain in the observation state might be adjustable. Therefore,
we investigate the influence of the duration of the observation
state in our simulation model (Fig. 14).

If a robot remains only a short time period in the observation
state, it is unlikely that it will observe another robot. Since
robots observe themselves if there are no other robots around,
the probability to switch opinion is small. Consequently, the
time needed to find consensus can be very long. Moreover,
the influence of random fluctuations increases and this lowers
the accuracy of the decision-making method. However, for
larger swarms the mentioned effects disappear, as more robots
will be in the observation state and therefore the probability
of not observing other robots will become smaller.

Fig. 14. Dependence of the time until convergence (darker color) and the
probability to find consensus on the fastest action (lighter color) on the time
the robots stay in the observation state.

Fig. 15. Consensus opinion for a swarm of N = 30 robots with m = 3
different opinions and execution time ratios λA = 1, λB = 2, λC = 4.

The results show that time in observation state should
exceed a certain value (0.2) to lead to a reasonable time until
convergence. However, the figure also shows that the longer
robots stay in observation state, the higher the probability for
consensus on the fastest action.

3) Memory Size k: Both analytical models predict that
increasing the memory size k increases the accuracy of the
decision-making method at the cost of longer convergence
times. The real robot Experiment III and the corresponding
simulations confirm this finding, too. To investigate the influ-
ence of the memory size further, we simulate swarms of size
N ∈ {4, 10, 50} that use memory sizes k ∈ {2, . . . , 8}. As
expected, the results show a trade-off between accuracy and
time needed to converge (see supplementary material [38]).
The shape of the curves are similar to the predictions of the
analytical model. However, for small swarm sizes, and in con-
trast to the analytical model, the simulation model predicts
very large convergence times. Furthermore, when using small
swarms, the observation zone is often empty. Accordingly, the
probability that a robot encounters other robots k times in a
row becomes very small for large k. For example, for swarms
of four robots that use a memory of size k = 8, it takes more
than two simulated days on average to converge to a decision.
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4) Number of Actions m: Fig. 15 visualizes the outcome
of the decision-making method for a swarm of N = 30
robots with m = 3 different actions and execution time ratios
λA = 1, λB = 2, λC = 4. As in Fig. 3, obtained with the
continuum model, the position of a point in the figure corre-
sponds to certain fractions of robots for the three opinions.
The color of the point gives the final outcome of the decision-
making process when the swarm is initialized according to
these fractions. The central point of the triangle corresponds
to an unbiased swarm, that is, a swarm where ten robots start
with opinion A, ten with B, and ten with C. As it can be seen,
also in the case of m = 3 opinions, unbiased swarms tend to
find consensus on the fastest action A with high probability.

VII. CONCLUSION

In this paper, we proposed a self-organized decision-making
method that allows swarm robotics systems to collectively find
the fastest action out of a set of possible actions. In the pre-
sented method, every robot is endowed with its own opinion
about which is the fastest action. The robots apply a sim-
ple local rule (the k-unanimity rule) to find consensus on one
opinion. With high probability this opinion corresponds to the
fastest action.

We used an analytical model to show that the k-Unanimity
rule amplifies an existing opinion bias. Moreover, we have
shown that if the opinions are associated with different exe-
cution times, swarms tend to select the action that has the
shortest mean execution time. The theoretical model predicts
a trade-off between the accuracy of the method and the time
it needs to converge.

We validated the decision-making method in a set of real
robot experiments. The goal of the robotic swarm was to find
the shortest path between two locations. The robots used only
local information and indirect communication. The experi-
ments have shown that the proposed method allows a real
swarm of robots to collectively select the shortest of two paths.
The swarm can accomplish this without the need to measure
traveling times. Moreover, the robots do not need sophisticated
communication capabilities. Instead, the robots only need to be
able to observe the opinion of other robots. As such, only the
indirect and anonymous communication of opinions is neces-
sary. The experiments with real robots showed that the method
also works in the presence of errors due to sensor noise or
robot failures.

This paper shows that the accuracy of the decision-making
method is determined by a number of different factors. First,
the accuracy increases with the swarm size. Large swarms
find the shorter action with higher accuracy while the time
they need to converge does not increase drastically over small
swarms. Second, the accuracy is higher the more the two
actions differ in execution time. Last, increasing the size of
the observation memory k also leads to higher accuracy of the
method. The value of k can be adjusted to regulate the accu-
racy of the decision-making at the cost of a longer convergence
time.

Regarding future research, we believe that there are several
promising directions. First, an experiment using real robots

in a setting with more than two actions would complement
the theoretical results brought forwards in this paper. Second,
using larger swarms of smaller robots could shed some light on
the question whether the proposed method is robust to changes
in the type of physical interference. Third, and maybe most
interesting, one could weaken the k-unanimity rule in favor of
a quorum-based rule.

REFERENCES
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