
European Journal of Operational Research 185 (2008) 1155–1173

www.elsevier.com/locate/ejor
Ant colony optimization for continuous domains

Krzysztof Socha *, Marco Dorigo

IRIDIA, Université Libre de Bruxelles, CP 194/6, Ave. Franklin D. Roosevelt 50, 1050 Brussels, Belgium1

Received 1 August 2005; accepted 1 June 2006
Available online 3 November 2006
Abstract

In this paper we present an extension of ant colony optimization (ACO) to continuous domains. We show how ACO,
which was initially developed to be a metaheuristic for combinatorial optimization, can be adapted to continuous optimi-
zation without any major conceptual change to its structure. We present the general idea, implementation, and results
obtained. We compare the results with those reported in the literature for other continuous optimization methods: other
ant-related approaches and other metaheuristics initially developed for combinatorial optimization and later adapted to
handle the continuous case. We discuss how our extended ACO compares to those algorithms, and we present some
analysis of its efficiency and robustness.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ant colony optimization; Continuous optimization; Metaheuristics
1. Introduction

Optimization algorithms inspired by the ants’
foraging behavior (Dorigo, 1992) have been initially
proposed for solving combinatorial optimization
problems (COPs). Examples of COPs include sched-
uling, vehicle routing, timetabling, and so on. Many
of these problems, especially those of practical rele-
vance, are NP-hard. In other words, it is strongly
believed that it is not possible to find efficient (i.e.,
polynomial time) algorithms to solve them opti-
mally. Usually these problems are tackled with heu-
ristic methods (i.e., not exact methods) that permit
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2006.06.046

* Corresponding author.
E-mail addresses: ksocha@ulb.ac.be (K. Socha), mdorigo@

ulb.ac.be (M. Dorigo).
1 http://iridia.ulb.ac.be
to find approximate solutions (i.e., solutions that
are good, but not provably optimal) in a reasonable
amount of time.

Combinatorial optimization—as the name sug-
gests—deals with finding optimal combinations or
permutations of available problem components.
Hence, it is required that the problem is partitioned
into a finite set of components, and the combinato-
rial optimization algorithm attempts to find their
optimal combination or permutation. Many real-
world optimization problems may be represented
as COPs in a straightforward way. There exists how-
ever an important class of problems for which this is
not the case: the class of optimization problems that
require choosing values for continuous variables.
Such problems may be tackled with a combinatorial
optimization algorithm only once the continuous
ranges of allowed values are converted into finite
.

mailto:ksocha@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:mdorigo@ulb.ac.be
http://iridia.ulb.ac.be

1156 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
sets. This is not always convenient, especially if the
initial possible range is wide, and the resolution
required is very high. In these cases, algorithms that
can natively handle continuous variables usually
perform better. This paper presents a way to
effectively apply Ant Colony Optimization
(ACO)—an algorithm originally developed to tackle
COPs—to continuous optimization problems.

Since the emergence of ACO as a combinatorial
optimization tool, attempts have been made to use
it for tackling continuous problems. However,
applying the ACO metaheuristic to continuous
domains was not straightforward, and the methods
proposed often took inspiration from ACO, but did
not follow it exactly.

Contrary to those earlier approaches, this paper
presents a way to extend ACO to continuous
domains without the need to make any major
conceptual change to its structure. To improve the
clarity of the paper, we denote this ACO extended
to continuous domains by ACOR. We aim at
presenting the core idea of applying ACOR to con-
tinuous domains as well as an implementation that
performs well on standard benchmark test problems.

Continuous optimization is hardly a new
research field. There exist numerous algorithms—
including metaheuristics—that were developed for
tackling this type of problems. In order to have a
proper perspective on the performance of ACOR,
we compare it not only to other ant-related
methods, but also to other metaheuristics used for
continuous optimization.

It is worth mentioning that ACOR, due to its
closeness to the original formulation of ACO,
provides an additional advantage—the possibility
of tackling mixed discrete–continuous optimization
problems. In other words, with ACOR it should
now be possible to consider problems where some
variables are discrete and others are continuous.
This possibility is however not explored in this
paper—it is the subject of ongoing research. Here,
we focus on tackling purely continuous optimiza-
tion problems.

The reminder of the paper is organized as follows.
Section 2 briefly overviews ACO. Section 3 presents
ACOR, our extension of ACO to tackle continuous
optimization problems. Section 4 provides a discus-
sion of the proposed approach with regard to other
methods for continuous optimization. Section 5 pre-
sents the experimental setup and results obtained,
and compares them to the results found in the liter-
ature. Finally, Section 6 presents the conclusions
and future work plans. Additionally, Appendix A
discusses an important issue concerning variable
correlation handling in ACOR.
2. Ant Colony Optimization

In the 1990’s, Ant Colony Optimization was
introduced as a novel nature-inspired method for
the solution of hard combinatorial optimization
problems (Dorigo, 1992; Dorigo et al., 1996, 1999;
Dorigo and Stützle, 2004). The inspiring source of
ACO is the foraging behavior of real ants. When
searching for food, ants initially explore the area
surrounding their nest in a random manner. As
soon as an ant finds a food source, it evaluates it
and carries some food back to the nest. During
the return trip, the ant deposits a pheromone trail
on the ground. The pheromone deposited, the
amount of which may depend on the quantity and
quality of the food, guides other ants to the food
source. As it has been shown (Goss et al., 1989),
indirect communication among ants via pheromone
trails enables them to find shortest paths between
their nest and food sources. This capability of real
ant colonies has inspired the definition of artificial
ant colonies that can find approximate solutions
to hard combinatorial optimization problems.

The central component of ACO algorithms is the
pheromone model, which is used to probabilistically
sample the search space. As shown in Blum (2004),
it can be derived from the model of the COP under
consideration. A model of a COP may be defined as
follows:

Definition 2.1. A model P = (S,X, f) of a COP
consists of:

• a search space S defined over a finite set of dis-
crete decision variables and a set X of constraints
among the variables;

• an objective function f : S! Rþ0 to be mini-
mized.

The search space S is defined as follows: Given is
a set of discrete variables Xi, i = 1, . . .,n, with values

vj
i 2 Di ¼ v1

i ; . . . ; vjDij
i

n o
. A variable instantiation,

that is, the assignment of a value vj
i to a variable Xi,

is denoted by X i vj
i . A solution s 2 S—i.e., a

complete assignment, in which each decision vari-
able has a value assigned—that satisfies all the
constraints in the set X, is a feasible solution of the
given COP. If the set X is empty, P is called an

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1157
unconstrained problem model, otherwise it is called
a constrained one. A solution s* 2 S is called a
global optimum if and only if: f(s*) 6 f(s) "s 2 S.
The set of all globally optimal solutions is denoted
by S* � S. Solving a COP requires finding at least
one s* 2 S*.

The model of a COP is used to derive the phero-
mone model used by ACO. First, an instantiated
decision variable X i ¼ vj

i (i.e, a variable Xi with a
value vj

i assigned from its domain Di), is called a solu-

tion component and denoted by cij. The set of all pos-
sible solution components is denoted by C. A
pheromone trail parameter Tij is then associated
with each component cij. The set of all pheromone
trail parameters is denoted by T. The value of a pher-
omone trail parameter Tij is denoted by sij (and
called pheromone value).2 This pheromone value is
then used and updated by the ACO algorithm during
the search. It allows modeling the probability distri-
bution of different components of the solution.

2.1. The ACO metaheuristic

The ACO metaheuristic is shown in Algorithm 1.
It consists of three algorithmic components that are
gathered in the ScheduleActivities construct. The
ScheduleActivities construct does not specify how
these three activities are scheduled and synchro-
nized, a decision that is left to the algorithm
designer. In the following, we explain these three
algorithmic blocks in more detail.

Algorithm 1
Ant Colony Optimization metaheuristic

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() {optional}

end ScheduleActivities
endwhile
AntBasedSolutionConstruction(): Artificial ants
construct solutions from sequences of solution
components taken from a finite set of n available
solution components C = {cij}. A solution construc-
tion starts with an empty partial solution sp = ;.
2 Note that pheromone values are in general a function of the
algorithm’s iteration t: sij = sij(t).
Then, at each construction step, the current partial
solution sp is extended by adding a feasible solution
component from the set N(sp) 2 Cnsp, which is
defined by the solution construction mechanism.
The process of constructing solutions can be
regarded as a path on the construction graph
GC = (V,E). The set of solution components C

may be associated either with the set V of vertices
of the graph GC, or with the set E of its edges.
The allowed paths in GC are implicitly defined by
the solution construction mechanism that defines
the set N(sp) with respect to a partial solution sp.

The choice of a solution component from N(sp) is
done probabilistically at each construction step. The
exact rules for probabilistic choice of solution com-
ponents vary across different variants of ACO. The
basic and the best known is that of Ant System (AS)
(Dorigo et al., 1996):

pðcijjspÞ ¼
sa

ij � gðcijÞbP
cil2NðspÞs

a
il � gðcilÞb

; 8cij 2 NðspÞ; ð1Þ

where sij is the pheromone value associated with
component cij, and g(Æ) is a weighting function that
assigns at each construction step a heuristic value
to each feasible solution component cij 2 N(sp).
The values that are given by the weighting function
are commonly called the heuristic information. Fur-
thermore, a and b are positive parameters, whose
values determine the relation between pheromone
information and heuristic information.

PheromoneUpdate(): The aim of pheromone
update is to increase the pheromone values associ-
ated with good or promising solutions, and decrease
those that are associated with bad ones. Usually,
this is achieved by increasing the pheromone levels
associated with chosen good solution sch by a cer-
tain value Ds, and by decreasing all the pheromone
values through pheromone evaporation:

sij
ð1� qÞsij þ qDs if sij 2 sch;

ð1� qÞsij otherwise;

�
ð2Þ

where q 2 (0,1] is the evaporation rate. Pheromone
evaporation is needed to avoid too rapid conver-
gence of the algorithm. It implements a useful form
of forgetting, favoring the exploration of new areas
in the search space.

In general, good solutions found earlier by the
ants are used to update the pheromone in order to
increase the probability of the search by subsequent
ants in the promising regions of the search space.
Different ACO algorithms, such as for example

1158 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
Ant Colony System (ACS) (Dorigo and Gambard-
ella, 1997) or MAX–MIN Ant System ðMMASÞ
(Stützle and Hoos, 2000) differ in the way they update
the pheromone. In principle, algorithms update pher-
omone using either the iteration-best solution—i.e.,
the best solution found in the last iteration, or the
best-so-far solution—i.e., the best solution found from
the start of the algorithm run (sometimes a combina-
tion of several solutions found by the ants is used).
The best-so-far solution update leads to a faster con-
vergence, while the iteration-best update allows for
more diversification of the search (Stützle and Dor-
igo, 1999).

DaemonActions(): Daemon actions can be used
to implement centralized actions which cannot be
performed by single ants. Examples include the
application of local search to the constructed solu-
tions, or the collection of global information that
can be used to decide whether it is useful or not to
deposit additional pheromone to bias the search
process from a non-local perspective.

2.2. ACO applications

After the initial proof-of-concept application to
the traveling salesman problem (TSP) (Dorigo,
1992; Dorigo et al., 1996), ACO was applied to
many other COPs. Examples include the applica-
tions to assignment problems (Costa and Hertz,
1997; Stützle and Hoos, 2000; Socha et al., 2003),
scheduling problems (Merkle et al., 2002; Gagné
et al., 2002; Blum and Sampels, 2004), and vehicle
routing problems (Gambardella et al., 1999; Rei-
mann et al., 2004).
3. ACO for continuous domain—ACOR

Similarly to a combinatorial optimization prob-
lem (COP), also a model for continuous optimiza-
tion problem (CnOP) may be formally defined:

Definition 3.1. A model Q = (S,X, f) of a CnOP
consists of:

• a search space S defined over a finite set of con-
tinuous decision variables and a set X of con-
straints among the variables;

• an objective function f : S! Rþ0 to be mini-
mized.

The search space S is defined as follows: Given is
a set of continuous variables Xi, i = 1, . . .,n, with
values vi 2 Di � R. A variable instantiation, that is,
the assignment of a value vi to a variable Xi, is
denoted by Xi vi. A solution s 2 S—i.e., a com-
plete assignment, in which each decision variable has
a value assigned—that satisfies all the constraints in
the set X, is a feasible solution of the given CnOP. If
the set X is empty, Q is called an unconstrained
problem model, otherwise is called a constrained
one. A solution s* 2 S is called a global optimum if
and only if: f(s*) 6 f(s) "s 2 S. The set of all
globally optimal solutions is denoted by S* � S.
Solving a CnOP requires finding at least one s* 2 S*.

The idea that is central to the way ACO works is
the incremental construction of solutions based on
the biased (by pheromone) probabilistic choice of
solution components. In ACO applied to combina-
torial optimization problems, the set of available
solution components is defined by the problem for-
mulation. At each construction step, ants make a
probabilistic choice of the solution component ci

from the set N(sp) of available components accord-
ing to Eq. (1). The probabilities associated with the
elements of the set N(sp) make up a discrete proba-

bility distribution (Fig. 1(a)) that an ant samples in
order to choose a component to be added to the cur-
rent partial solution sp.

The fundamental idea underlying ACOR is the
shift from using a discrete probability distribution
to using a continuous one, that is, a probability den-

sity function (PDF) (Fig. 1(b)). In ACOR, instead of
choosing a component cij 2 N(sp) according to Eq.
(1), an ant samples a PDF. In the following sections
we explain how this is accomplished. In Section 3.1,
we present briefly the idea of using a PDF, and in
Section 3.2 we outline the pheromone representa-
tion used in ACOR. Finally, in Section 3.3 we give
a detailed description of the ACOR algorithm itself.
Additionally, Appendix A presents some specific
aspects concerning variable correlation which are
explicitly handled by ACOR.
3.1. Probability density function (PDF)

Before going into in-depth description of the
ACOR algorithm, we must discuss certain character-
istics of PDFs, and select the one that we will use. In
principle, a probability density function may be any
function P(x) P 0 "x such that:Z 1

�1
P ðxÞdx ¼ 1: ð3Þ

Fig. 1. (a) Discrete probability distribution Pd(cijjsp) of a finite set {ci1, . . .,ci10} 2 N(sp) of available components. (b) Continuous
probability density function Pc(xj sp) with possible range x 2 [xmin,xmax]. The y-axis on both plots indicates the probability p. Note thatP10

j¼1pðcijjspÞ ¼
R xmax

xmin
pðxjspÞdx ¼ 1.

–4 –2 0 2 4

Gassian kernel
individual Gassian functions

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1159
For a given probability density function P(x), an
associated cumulative distribution function (CDF)
D(x) may be defined, which is often useful when
sampling the corresponding PDF. The CDF D(x)
associated with PDF P(x) is defined as follows:

DðxÞ ¼
Z x

�1
P ðtÞdt: ð4Þ

The general approach to sampling PDF P(x) is to
use the inverse of its CDF, D�1(x). When using
the inverse of the CDF, it is sufficient to have a
pseudo-random number generator that produces
uniformly distributed real numbers.3 However, it
is important to note that for an arbitrarily chosen
PDF P(x), it is not always straightforward to find
D�1(x).

One of the most popular functions that is used
as a PDF is the Gaussian function. It has some
clear advantages, such as a reasonably easy way
of sampling—e.g., the Box–Muller method (Box
and Muller, 1958)—but it also has some disadvan-
tages. A single Gaussian function is not able to
describe a situation where two disjoint areas of
the search space are promising, as it only has one
maximum. Due to this fact, we use a PDF based
on Gaussian functions, but slightly enhanced—a
Gaussian kernel PDF. Similar constructs have been
used before (Bosman and Thierens, 2002), but not
exactly in the same way. We define a Gaussian
kernel as a weighted sum of several one-dimen-
sional Gaussian functions gi

lðxÞ, and denote it as
Gi(x):
3 Such pseudo-random number generators are routinely avail-
able for most programming languages.
GiðxÞ ¼
Xk

l¼1

xlgi
lðxÞ ¼

Xk

l¼1

xl
1

ri
l

ffiffiffiffiffiffi
2p
p e

�
ðx�li

l
Þ2

2ri
l
2

: ð5Þ

Since we use as many Gaussian kernel PDFs as the
number of dimensions of the problem, i = 1, . . .,n

identifies a single such PDF. The Gaussian kernel
Gi(x) is parameterized with three vectors of param-
eters: x is the vector of weights associated with the
individual Gaussian functions, li is the vector of
means, and ri is the vector of standard deviations.
The cardinality of all these vectors is equal to the
number of Gaussian functions constituting the
Gaussian kernel. For convenience, we will use
the parameter k to describe it, hence jxj = jlij
= jrij = k.

Such a PDF allows a reasonably easy sampling,
and yet provides a much increased flexibility in the
possible shape, in comparison to a single Gaussian
function. An example of how such a Gaussian ker-
nel PDF may look like is presented in Fig. 2.
x

Fig. 2. Example of five Gaussian functions and their superpo-
sition–the resulting Gaussian kernel (illustration limited to the
range x 2 [�5,5]).

Fig. 3. The archive of solutions kept by ACOR. The solutions are
ordered in the archive according to their quality—i.e., for a
minimization problem: f(s1) 6 f(s2) 6 � � � 6 f(sl) 6 � � � 6 f(sk).
Each solution has an associated weight x proportion to the
solution quality. Therefore, x1 P x2 P � � �P xl P � � �P xk.
The PDF Gi is constructed using only the ith coordinates of all
k solutions from the archive.

1160 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
3.2. Pheromone representation in ACOR

In ACO for combinatorial optimization, phero-
mone information is stored as a table. At each iter-
ation, when choosing a component to be added to
the current partial solution (according to Eq. (1)),
an ant uses some of the values from that table as
a discrete probability distribution (Fig. 1(a)). In
the case of continuous optimization, the choice an
ant makes is not restricted to a finite set
(Fig. 1(b)). Hence, it is impossible to represent the
pheromone in the form of a table. A different
approach has to be adopted.

We use an idea similar to that proposed by
Guntsch and Middendorf in Population-Based

ACO (PB-ACO) (Guntsch and Middendorf, 2002).
In PB-ACO the pheromone table is updated based
on the components of good solutions found—just
like in regular ACO. However, in regular ACO,
the actual solutions found by the ants are discarded
once the pheromone table has been updated. In con-
trast, PB-ACO keeps track of a certain number of
the solutions used to update the pheromone table.
Instead of using pheromone evaporation, the
pheromone associated with the oldest solutions is
eventually removed by performing a negative
update on the pheromone table—thus canceling its
influence.

In ACOR we also keep track of a number of solu-
tions in a solution archive T. For each solution sl to
an n-dimensional problem, ACOR stores in T the
values of its n variables and the value of the objec-
tive function f(sl). The ith variable of lth solution
is hereby denoted by si

l. The structure of the solu-
tion archive T is presented in Fig. 3.

While in case of PB-ACO the components of the
solutions are used directly to modify the pheromone
table, in the continuous case we use them to dynam-
ically generate probability density functions. In
order to accomplish this, a method for generating
a PDF based on a set of memorized solutions is
defined. As indicated in Section 3.1 (Eq. (5)), the
Gaussian kernel PDF Gi is parametrized by three
vectors x, li, and ri (each of cardinality k). The
solutions in the archive are used to calculate the val-
ues of these parameters, and hence shape the Gauss-
ian kernel PDF used to guide the ants in their search
process.

The number of solutions memorized in the archive
is set to k and this parameter determines therefore the
complexity of the PDF: There are k separate Gauss-
ian functions making up the Gaussian kernel PDF.
For each dimension i = 1, . . .,n of the problem, there
is a different Gaussian kernel PDF Gi defined (see
Fig. 3). For each such Gi, the values of the ith variable
of all the solutions in the archive become the elements
of the vector li:

li ¼ li
1; . . . ; li

k

� �
¼ si

1; . . . ; si
k

� �
: ð6Þ

The vector of weights x is created in the following
way. Each solution that is added to the archive T

is evaluated and ranked (ties are broken randomly).
The solutions in the archive are sorted according to
their rank—i.e., solution sl has rank l. The weight xl

of the solution sl is calculated according to the fol-
lowing formula:

xl ¼
1

qk
ffiffiffiffiffiffi
2p
p e

� ðl�1Þ2

2q2k2 ; ð7Þ

which essentially defines the weight to be a value of
the Gaussian function with argument l, mean 1.0,
and standard deviation qk, where q is a parameter
of the algorithm. When q is small, the best-ranked
solutions are strongly preferred, and when it is
large, the probability becomes more uniform. The
influence of this parameter on ACOR is similar to
adjusting the balance between the iteration-best

and the best-so-far pheromone updates used in
ACO. A more detailed analysis of the influence of
the parameter q is presented in Section 5.3.

In order to find the final shape of each Gaussian
kernel PDF Gi, the vector ri of the standard

4 This is due to the explicit handling of correlation among
variables as explained in Appendix A. In order to be able to
rotate the coordinate system properly, the number of points
available has to be at least equal to the number of dimensions.

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1161
deviations must still be defined. The detailed
description of how this is accomplished is presented
in the following section as part of the description of
the solution construction process.

3.3. The ACOR metaheuristic framework

In this section, we outline the ACOR version of
the three major algorithmic components of the
ACO metaheuristic as presented in Algorithm 1.

AntBasedSolutionConstruction(): Given decision
variables Xi, i = 1, . . .,n, an ant constructs a solution
by performing n construction steps. At construction
step i an ant chooses a value for variable Xi. As
mentioned earlier, the Gaussian kernel PDF is com-
posed of a number of regular Gaussian functions.
The number of functions used is equal to the size
k of the solution archive T. At construction step i,
only the information about the ith dimension (i.e.,
decision variable Xi) is used. In this way, at each
step i the resulting Gaussian kernel PDF Gi is a dif-
ferent one.

Following Eq. (5), in order to define the PDF Gi,
the values of vectors li, ri, and x must be defined.
While the creation of li and x has been discussed
in Section 3.2, the computation of the standard
deviation vector ri is the most complex issue. Before
presenting how this is done in detail, we explain the
practical implementation of Eq. (5).

In practice, the sampling process is accomplished
as follows. First, the elements of the weight vector x

are computed following Eq. (7). Then, the sampling
is done in two phases. Phase one consists of choos-
ing one of the Gaussian functions that compose the
Gaussian kernel. The probability pl of choosing the
lth Gaussian function is given by:

pl ¼
xlPk
r¼1xr

: ð8Þ

Phase two consists of sampling the chosen Gaussian
function (i.e., at step i—function gi

l). This may be
done using a random number generator that is able
to generate random numbers according to a param-
etrized normal distribution, or by using a uniform
random generator in conjunction with, for instance,
the Box–Muller method (Box and Muller, 1958).
This two-phase sampling is equivalent to sam-
pling the Gaussian kernel PDF Gi as defined in
Eq. (5).

It is clear that at step i, the standard deviation
needs only to be known for the single Gaussian
function gi

lðxÞ chosen in phase one. Hence, we do
not calculate the whole vector of standard devia-
tions ri, but only the ri

l that is needed.
The choice of the lth Gaussian function is done

only once per ant, per iteration. This means that
an ant uses the Gaussian functions associated with
the single chosen solution sl, that is, functions
gi

l; i ¼ 1; . . . ; n, for constructing the whole solution
in a given iteration. This allows exploiting the corre-
lation between the variables, which is explained in
detail in Appendix A. Of course, the actual Gauss-
ian function sampled differs at each construction
step, as for step i, li

l ¼ si
l, and ri

l is calculated
dynamically, as follows.

In order to establish the value of the standard
deviation ri

l at construction step i, we calculate the
average distance from the chosen solution sl to other
solutions in the archive, and we multiply it by the
parameter n:

ri
l ¼ n

Xk

e¼1

jsi
e � si

lj
k � 1

: ð9Þ

The parameter n > 0, which is the same for all the
dimensions, has an effect similar to that of the
pheromone evaporation rate in ACO. The higher
the value of n, the lower the convergence speed of
the algorithm. While the rate of pheromone evapo-
ration in ACO influences the long term memory—
i.e., worse solutions are forgotten faster—n in
ACOR influences the way the long term memory is
used—i.e., the search is less biased towards the
points of the search space that have been already
explored (and which are kept in the archive).

As we said, this whole process is repeated for
each dimension i = 1, . . .,n, and each time the aver-
age distance ri

l is calculated only with the use of the
single dimension i. This ensures that the algorithm is
able to adapt to linear transformations of the con-
sidered problem (e.g., moving from a sphere model
to an ellipsoid, or rotating an ellipsoid).

PheromoneUpdate(): As mentioned earlier, in
case of ACOR, the pheromone information is stored
as a solution archive. This implies that the phero-
mone update procedure has to perform some form
of update on this archive.

The size k of the archive T is a parameter of the
algorithm. However, k may not be smaller than the
number of dimensions of the problem being solved.4

1162 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
At the start of the algorithm, the solution archive T

is initialized generating k solutions by uniform ran-
dom sampling.

Pheromone update is accomplished by adding the
set of newly generated solutions to the solution
archive T and then removing the same number of
worst solutions, so that the total size of the archive
does not change. This process ensures that only the
best solutions are kept in the archive, so that they
effectively guide the ants in the search process.

DaemonActions(): As part of this algorithmic
block, the best solution found is updated, so that
it may be returned once the termination condition
is met. We do not apply any local search heuristics,
though this could be easily done to improve the
algorithm performance.

4. Positioning of ACOR

ACOR is part of a rather large family of algo-
rithms for continuous optimization. For this kind
of problems, a number of methods have been pro-
posed in the literature. They include some ant-
related methods (Bilchev and Parmee, 1995; Mon-
marché et al., 2000; Dréo and Siarry, 2002), as well
as a more generic swarm inspired method such as
Particle Swarm Optimization (Kennedy and Eber-
hart, 1995). There are also many others: many
metaheuristics have been originally developed for
combinatorial optimization and later adapted to
the continuous case. Examples include the Contin-
uous Genetic Algorithm (CGA) (Chelouah and
Siarry, 2000), Enhanced Simulated Annealing
(ESA) (Siarry et al., 1997), or Enhanced Continu-
ous Tabu Search (ECTS) (Chelouah and Siarry,
1999).

Additionally, there are also other methods that—
similarly to ACO—explicitly use some notion of
probability distribution estimation. Many of these
algorithms have spawned from the general class of
Evolutionary Algorithms (EAs). Examples include
Evolutionary Strategies (ES) (Schwefel, 1981; Oster-
meier et al., 1994; Hansen and Ostermeier, 2001),
Iterated Density Estimation Algorithm (IDEA)
(Bosman and Thierens, 2002), Mixed Bayesian
Optimization Algorithm (MBOA) (Očenášek and
Schwarz, 2002), or Population-Based Incremental
Learning (PBIL) (Baluja and Caruana, 1995; Yuan
and Gallagher, 2003). Some of them, similarly to
ACO, have been initially used for combinatorial
optimization, and only later adapted to handle con-
tinuous domains.
In addition to all the algorithms mentioned so
far, there are also many gradient based algorithms
for continuous optimization. They are fast, but they
have some prerequisites. They are able to quickly
find a local minimum, but they require the opti-
mized function to be continuous and differentiable.
Examples of such algorithms include the Newton
method (Ralston and Rabinowitz, 1978), or the
backpropagation algorithm (Rumelhart et al.,
1986) routinely used for training artificial neural
networks. The usefulness of gradient based algo-
rithms is limited due to the prerequisites mentioned
above. ACOR, as well as all other algorithms for
continuous optimization mentioned earlier, do not
have such limitations, which makes them much
more general.

4.1. ACOR and other swarm-based algorithms

The main type of swarm-based algorithms that
we will refer to in this section are the ant-related
algorithms. A single swarm-based algorithm that
is not ant-related will be presented towards the
end of this section.

As mentioned in Section 1, there have been previ-
ous attempts to apply ant-based optimization algo-
rithms to the continuous domain. Some attempts
were more successful than others, but none of them
was an extension of ACO to the continuous domain.
Rather, they were new algorithms that also drew
their initial inspiration from the behavior of ants.
In the following paragraphs, we shortly present
these algorithms and indicate how they differ from
ACOR.

One of the first attempts to apply an ant-related
algorithm to the continuous optimization problems
was Continuous ACO (CACO) (Bilchev and Par-
mee, 1995). In CACO the ants start from a point,
called a nest, situated somewhere in the search
space. The good solutions found are stored as a
set of vectors, which originate in the nest. The ants
at each iteration of the algorithm choose probabilis-
tically one of the vectors. They then continue the
search from the end-point of the chosen vector by
making some random moves from there. The vec-
tors are updated with the best results found.
Although the authors of CACO claim that they
draw inspiration from the original ACO formula-
tion, there are important differences. They introduce
the notion of nest, which does not exist in the ACO
metaheuristic. Also, CACO does not perform an
incremental construction of solutions, which is one

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1163
of the main characteristics of the ACO metaheuris-
tic. CACO does not qualify therefore to be an exten-
sion of ACO.

Another ant-related approach to continuous
optimization is the API algorithm (Monmarché
et al., 2000). API does not claim to be based on
the ACO metaheuristic. The ants perform their
search independently, but starting from the same
nest (the nest is moved periodically). The ants use
only tandem running, a type of recruitment strategy.
It is the only known algorithm among the ant-
related algorithms published so far that allows to
tackle both discrete and continuous optimization
problems.

The third ant-based approach to continuous
optimization is Continuous Interacting Ant Colony
(CIAC) (Dréo and Siarry, 2002). CIAC uses two
types of communication between ants: stigmergic
information (spots of pheromone deposited in the
search space) and direct communication between
ants. The ants move through the search space being
attracted by pheromone laid in spots, and guided by
some direct communication between individuals.
Although also CIAC claims to draw its original
inspiration from ACO, the differences are many:
there is direct communication between ants and no
incremental construction of solutions. As CACO,
also CIAC does not qualify as an extension of ACO.

Finally, as mentioned at the beginning of this sec-
tion, there is a well-known swarm-based algorithm
for continuous optimization that is not ant-related.
It is called Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995). PSO works with a
population of particles. These particles move in
the search space with a certain velocity. The value
and the direction of the velocity vector change
according to the attractors in the search space. Each
particle reacts to two such attractors. One is the best
value found by the particle, and the other one is the
best value found globally. PSO has been shown
experimentally to perform well on many continuous
optimization problems.

4.2. ACOR and evolutionary algorithms

ACO for combinatorial optimization is similar to
Evolutionary Algorithms (EAs) in many respects.
Both ACO and EAs explicitly use some notion of
probability distribution in order to find promising
areas in the search space. This similarity is main-
tained when comparing ACOR with EAs developed
or adapted to continuous domains.
Kern et al. (2004) present an extensive compari-
son of several evolutionary algorithms dedicated
to continuous optimization—from very simple ones
to those that are quite advanced. We will now
shortly present them.

The set of algorithms compared by Kern et al.
contains three versions of Evolutionary Strategies
(ES), and two other algorithms—the Mixed-Bayes-
ian Optimization Algorithm (MBOA), and the Iter-
ated Density Estimation Algorithm (IDEA). The
simplest algorithm used in this comparison is
(1 + 1) ES (Kern et al., 2004). It is a simple ES with
one parent generating one offspring per iteration.
Only the individual representing the higher quality
solution is kept. The next ES included in the com-
parison is Evolutionary Strategy with Cumulative
Step Size Adaptation (CSA-ES) (Ostermeier et al.,
1994; Kern et al., 2004). It adapts the global step
size by using the path traversed by the parent pop-
ulation over a number of generations. The third
ES considered is CMA-ES—ES with Covariance
Matrix Adaptation (Hansen and Ostermeier, 2001;
Kern et al., 2004). It is an extended version of
CSA-ES, with de-randomized adaptation of the
covariance matrix.

The first of the two algorithms that are not ES is
IDEA, proposed by Bosman and Thierens (2002). It
formalizes EDAs (Estimation of Distribution Algo-
rithms) in continuous domains. To estimate the dis-
tribution of the parent population, IDEA exploits
the fact that every multivariate joint probability dis-
tribution can be written as a conditional factoriza-

tion: P ðxi; . . . ; xnÞ ¼
Qn

i¼1P ðxijxiþ1; xiþ2; . . . ; xnÞ. The
probabilistic model of the parent population is
rebuilt in every generation.

The last algorithm considered in this comparison
is MBOA (Očenášek and Schwarz, 2002). It is a
Bayesian network with local structures in the form
of decision trees that captures the mutual dependen-
cies among the parent individuals. The first EDA
employing the Bayesian network model with deci-
sion trees was the hierarchical Bayesian Optimiza-
tion Algorithm (hBOA) (Pelikan et al., 2000).
MBOA is an extension of hBOA from binary to
continuous domains. In fact, MBOA is able to deal
with discrete and continuous variables simulta-
neously, just like ACOR.

Each of these algorithms is different, but they all
use some way of learning and modeling explicitly
probability distributions. There are two ways these
algorithms use the probability distributions. All
versions of the ES incrementally update their

5 Automatic parameter tuning procedures such as F-Race
(Birattari et al., 2002; Birattari, 2005) can help in this respect.

1164 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
probability distributions at each iteration. In con-
trast, IDEA and MBOA each time entirely rebuild
them. ACOR acts in this respect yet differently.
Similarly to ACO for combinatorial optimization,
in ACOR ants use at each construction step a differ-
ent, dynamically created probability distribution.
This distribution depends on the previous construc-
tion steps and may be different for each ant. Hence,
the ACOR approach is closer to what IDEA and
MBOA do, but it is even more fine-grained—several
dynamically created probability distributions are
used during one iteration.

All of the probability-learning algorithms com-
pared by Kern et al. use some form of Gaussian
function for modeling the probability distributions.
(1 + 1)ES and CSA-ES use isotropic Gaussian distri-
butions. IDEA uses one (or more—a mixture, if clus-
tering is enabled) arbitrary Gaussian distribution.
MBOA uses a concept somewhat similar to the one
used by ACOR—Gaussian kernel distribution, but
defined on partitions of the search space. ACOR in
turn uses a set of single-dimension Gaussian kernel
distributions. Each such distribution is used for a
different construction step during one iteration.
The main characteristic of ACOR is that it uses a dif-
ferent distribution for each of the dimensions. Each
such Gaussian kernel PDF consists of several super-
imposed single-dimension Gaussian functions.

5. Experimental setup and results

In this section, we present the experimental setup
for evaluating the performance of ACOR and the
results obtained. In order to have an overview of
the performance of ACOR in comparison to other
methods for continuous optimization, we use the
typical benchmark test functions that have been
used in the literature for presenting the performance
of different methods and algorithms.

Obviously, it is impractical to compare ACOR to
every method that has been used for continuous
optimization in the past. Hence, we decided to limit
our comparison to other metaheuristics used for this
purpose. We then decided to divide those metaheu-
ristics into three groups, based on their similarity to
ACOR:

• Probability-learning methods—methods which
explicitly model and sample probability distri-
butions.

• Ant-related methods—methods that claim to
draw inspiration from the behavior of ants.
• Other metaheuristics originally developed for
combinatorial optimization and later adapted to
continuous domains.

We have used a slightly different experimental
methodology for each comparison in order to make
the results obtained by ACOR as comparable as pos-
sible to those obtained with the other methods.

It is important to emphasize that—unlike combi-
natorial optimization—the comparison of algo-
rithms for continuous optimization is usually not

done based on CPU time. In case of combinatorial
optimization, usually each algorithm is given the
same amount of CPU time and the results obtained
within that time are compared. This makes the com-
parison of different algorithms complicated, as the
CPU time depends significantly on the program-
ming language used, the compiler, the skills of the
programmer, and finally also on the machine(s)
used for running the experiments. Hence, in case
of combinatorial optimization it is strongly recom-
mended to re-implement all the algorithms used in
the comparison in order to make it fair. This still
does not guarantee an entirely fair comparison, as
it is difficult to ensure that the same amount of effort
is put into optimization of the code of all the imple-
mented algorithms.5

In contrast, the great majority of the papers on
continuous optimization algorithms use as criterion
of comparison the number of function evaluations

needed to achieve a certain solution quality (Kern
et al., 2004; Bilchev and Parmee, 1995; Monmarché
et al., 2000; Dréo and Siarry, 2004). Such an
approach gives several key advantages: it solves
the problem of the algorithms being implemented
using different programming languages; it is insensi-
tive to the code-optimization skills of the program-
mer (or to the compiler used); and it allows
comparing easily the results obtained on different
machines. The drawback of this approach is that
it does not take into consideration the time-com-
plexity of the algorithms compared. However, in
view of the other numerous disadvantages of using
the CPU time as a criterion, it is an acceptable
methodology, and we adopt it in this paper.

The use of the number of function evaluations as
a criterion allows us to run the experiments only
with ACOR and compare the results obtained to

Table 1
Summary of the test functions used for comparing ACOR with other probability learning methods

Function Formula

Plane (PL)~x 2 ½0:5; 1:5�n; n ¼ 10 fPLð~xÞ ¼ x1

Diagonal plane (DP)~x 2 ½0:5; 1:5�n; n ¼ 10 fDPð~xÞ ¼ 1
n

Pn
i¼1xi

Sphere (SP)~x 2 ½�3; 7�n; n ¼ 10 fSPð~xÞ ¼
Pn

i¼1x2
i

Ellipsoid (EL)~x 2 ½�3; 7�n; n ¼ 10 fELð~xÞ ¼
Pn

i¼1 100
i�1
n�1xi

� �2

Cigar (CG)~x 2 ½�3; 7�n; n ¼ 10 fCGð~xÞ ¼ x2
1 þ 104Pn

i¼2x2
i

Tablet (TB)~x 2 ½�3; 7�n; n ¼ 10 fTBð~xÞ ¼ 104x2
1 þ

Pn
i¼2x2

i

Rosenbrock (Rn)~x 2 ½�5; 5�n; n ¼ 10 fRnð~xÞ ¼
Pn�1

i¼1 100ðx2
i � xiþ1Þ2 þ ðxi � 1Þ2

We used n = 10 dimensions for all the test functions listed here.

6 In the case of real-world problems, the optimal solutions are
often not known, and hence the initialization intervals have to be
chosen based on some other estimates or even at random.

7 In case of the evolutionary algorithms, there is the notion of
population size. In case of ACOR, the corresponding parameter is
the archive size.

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1165
those found in the literature. Additionally, in order
to ensure a fair comparison, we replicate carefully
the experimental setup (in particular: initializa-
tion interval, parameter tuning methodology, and
termination condition) used by the competing
algorithms.

5.1. ACOR compared to the probability-learning

methods

There are many metaheuristics that explicitly
model and sample probability distributions. In this
comparison we use the algorithms tested by Kern
et al. (2004), which have been already described in
Section 4.2.

The test functions used for comparison range
from very simple to quite complex, and were chosen
by Kern et al. for their particular characteristics. In
particular, they test the algorithms’ robustness when
applied to linear transformations of the considered
problem. For a fair comparison of ACOR’s perfor-
mance, we have used the same test functions. They
are listed in Table 1. Plane and Diagonal Plane func-
tions are maximization problems (the goal is to
reach �max = 1010), the remaining are minimization
problems (required accuracy is �min = 10�10). In
addition to the functions listed in Table 1, the com-
parison also uses randomly rotated versions of the
Ellipsoid, Cigar, and Tablet functions. In all the
experiments we used 10-dimensional versions of
the functions. The performance was judged based
on the number of function evaluations needed to
reach the stopping condition. The stopping condi-
tion used was the required accuracy: f > �max for
maximization problems, and jf � f *j < �min for min-
imization problems, where f is the value of the best
solution found by ACOR, and f * is the (known a

priori) optimal solution for the given test problem.
When tackling continuous optimization test

problems (i.e., those for which the optimal solution
is known a priori), one has to do the initialization
with caution.6 In fact, it has been shown in the liter-
ature that if the initialization is done close to the
optimum, or it is symmetric around the optimum,
it may introduce an undesired bias (Fogel and
Bayer, 1995). It has also been demonstrated that
the results obtained by some algorithms differ signif-
icantly, when the symmetric and asymmetric initial-
ization are used (Eiben and Bäck, 1997; Chellapilla
and Fogel, 1999).

Due to these issues, special care must be taken in
order to use (when possible) initializations that do
not introduce bias. Such an approach is often called
skewed initialization (Eiben and Bäck, 1997; Deb
et al., 2002). Also, any comparison of the continu-
ous optimization algorithms should explicitly take
into account the initialization used by each of the
algorithms. In all our test runs we use initialization
intervals identical to those used by the methods we
compare to.

In order to compare the performance of ACOR to
that of the algorithms presented in Kern et al.
(2004), we have adopted the same methodology
for conducting the experiments. We have done 20
independent runs on each of the test problems. Con-
cerning parameters tuning, Kern et al. used the
parameters as suggested by the authors, with the
exception of the size of the population7 used.
The latter was chosen separately for each

Table 2
Summary of the parameters used by ACOR

Parameter Symbol Value

No. of ants used in an iteration m 2
Speed of convergence n 0.85
Locality of the search process q 10�4

Archive size k 50

The solution archive size varied depending on the test function, as
done by Kern et al. (2004).

1166 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
algorithm-problem pair—the smallest population
from the set p 2 [10, 20,50,100,200,400,800,1600,
3200] was chosen, which still allowed to achieve
the required accuracy in all the runs. The summary
of the parameters we used for ACOR is presented in
Table 2. The archive size k = 50 was used for all the
test problems.

Table 3 presents the results obtained by ACOR

compared to those obtained by the algorithms
tested by Kern et al. For each test problem, the
relative median performance for all the algorithms
is reported, 1.0 being the best algorithm (lowest
median number of function evaluations). Numbers
for the other algorithms indicate how many times

larger was their median number of function evalua-
tions in relation to the best one on a given test func-
tion. For the best algorithm also the actual median
number of function evaluations is supplied in
parentheses.

The performance of ACOR is quite good. It
achieves the best result in four out of 10 test prob-
lems. Also, when it is not the best, it is only slightly
worse than the best algorithm (CMA-ES). Unlike
some of the competing algorithms, ACOR is per-
forming well in case of both maximization (Plane
and Diagonal Plane) and minimization problems.
It is able to adjust well to problems that are scaled
differently in different directions (such as Ellipsoid,
Cigar, and Tablet functions), and the rotation of
the test function does not have any impact on the
performance. In this respect only CMA-ES per-
forms similarly well.

Due to unavailability of full result sets and miss-
ing results of some algorithms for some test func-
tions, it is impossible to do any serious statistical
significance analysis. In order to enable future
researchers to perform more statistically sound
comparisons, the full set of results obtained with
ACOR is available online.8
8 http://iridia.ulb.ac.be/ ~ ksocha/aco_r.html.
5.2. ACOR compared to other ant-related approaches

and other metaheuristics

As we have mentioned earlier, there were other
ant-related methods proposed for continuous opti-
mization in the past. The very first one—called Con-
tinuous ACO (CACO)—was proposed by Bilchev
and Parmee (1995), and also used later (Wodrich
and Bilchev, 1997; Mathur et al., 2000). Others
include the API algorithm by Monmarché et al.
(2000), and Continuous Interacting Ant Colony
(CIAC), proposed by Dréo and Siarry (2002,
2004). These algorithms have been already
described in Section 4.1. They were tested by their
authors on some classical test functions and com-
pared with other metaheuristics that had been pri-
marily developed for combinatorial optimization
and later adapted to the continuous domain. The
continuous versions of these metaheuristics include
in particular Continuous Genetic Algorithm
(CGA) (Chelouah and Siarry, 2000), Enhanced
Continuous Tabu Search (ECTS) (Chelouah and
Siarry, 1999), Enhanced Simulated Annealing
(ESA) (Siarry et al., 1997), and Differential Evolu-
tion (DE) (Storn and Price, 1995).

In these comparisons, the parameters chosen by
the authors of the competing algorithms were essen-
tially picked by a simple trial and error procedure.
Hence, we have also refrained from doing an exten-
sive parameter tuning. Instead, we used almost iden-
tical parameters to those used earlier for comparing
ACOR with probability-learning methods. The only
exception was parameter q, which required a slightly
larger value in order to increase the robustness of
ACOR on the multi-modal functions used in this
set of experiments. The value q = 0.1 was used.
More analysis of the influence of parameter q on
the performance of ACOR is provided in Section
5.3.

To compare ACOR with all these algorithms, we
have run ACOR on a number of test functions used
by the other algorithms, and we followed the origi-
nal experimental setup in terms of the initialization
interval and required accuracy. The list of test func-
tions on which we run ACOR, along with the num-
ber of dimensions used and the initialization
interval, is presented in Tables 4 and 5. A more
detailed description of the test functions used may
be found in the literature (Björkman and Holm-
ström, 1999; Chelouah and Siarry, 2000; Dréo and
Siarry, 2004). Following the experimental setup
described in the literature, we performed 100 inde-

http://iridia.ulb.ac.be/~ksocha/aco_r.html
http://iridia.ulb.ac.be/~ksocha/aco_r.html
http://iridia.ulb.ac.be/~ksocha/aco_r.html

Table 3
Results obtained by ACOR compared to those obtained by other probability-learning algorithms—based on Kern et al., 2004

Test Function ACOR (1 + 1)ES CSA-ES CMA-ES IDEA MBOA

Plane 1.0 (175) 4.5 7.2 6.3 1 4970
Diagonal plane 1.0 (170) 4.9 7.4 6.4 1 241
Sphere 1.1 1.0 (1370) 1.6 1.3 5.0 48
Ellipsoid 2.6 66 110 1.0 (4450) 1.6 14
Cigar 1.4 610 800 1.0 (3840) 4.6 12
Tablet 1.0 (2567) 46 65 1.7 2.9 24
Rot. Ellipsoid 2.8 64 110 1.0 (4490) 13 *1800
Rot. Cigar 1.4 600 800 1.0 (3840) 38 *2100
Rot. Tablet 1.0 (2508) 44 63 1.7 12 *1600
Rosenbrock *1.1 *51 180 1.0 (7190) *210 *1100

Reported is the relative median number of function evaluations. The actual median number of function evaluations is given in parentheses
only for the best performing algorithm on a given problem. Results marked with * indicate that the required accuracy was not reached in
every run.

Table 4
First part of the test functions used for comparing ACOR to other ant-related algorithms and other metaheuristics adapted for continuous
optimization

Function Formula

Branin RCOS (RC)~x 2 ½�5; 15�n; n ¼ 2 fRCð~xÞ ¼ x2 � 5
4p2 x2

1 þ 5
p x1 � 6

� 	2 þ 10 1� 1
8p

� 	
cos xi þ 10

B2 ~x 2 ½�100; 100�n; n ¼ 2 fB2
ð~xÞ ¼ x2

1 þ 2x2
2 � 3

10 cosð3px1Þ � 2
5 cosð4px2Þ þ 7

10

Easom (ES)~x 2 ½�100; 100�n; n ¼ 2 fESð~xÞ ¼ � cosðx1Þ cosðx2Þe�ððx1�pÞ2þðx2�pÞ2Þ

Goldstein and Price (GP)~x 2 ½�2; 2�n; n ¼ 2 fGPð~xÞ ¼ ð1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 13x2
1 � 14x2 þ 6x1x2 þ 3x2

2ÞÞ�
ð30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2

1 � 48x2 � 36x1x2 þ 27x2
2ÞÞ

Martin and Gaddy (MG)~x 2 ½�20; 20�n; n ¼ 2 fMGð~xÞ ¼ ðx1 � x2Þ2 þ x1þx2�10
3

� 	2

Rosenbrock (Rn)~x 2 ½�5; 10�n; n ¼ 2; 5 fRn ð~xÞ ¼
Pn�1

i¼1 100ðx2
i � xiþ1Þ2 þ ðxi � 1Þ2

Zakharov (Zn)~x 2 ½�5; 10�n; n ¼ 2; 5 fZn ð~xÞ ¼
Pn

j¼1x2
j

� �
þ

Pn
j¼1

jxj

2

� �2
þ

Pn
j¼1

jxj

2

� �4

De Jong (DJ)~x 2 ½�5:12; 5:12�n; n ¼ 3 fDJð~xÞ ¼ x2
1 þ x2

2 þ x2
3

Griewangk (GRn)~x 2 ½�5:12; 5:12�n; n ¼ 10 fGRn ð~xÞ ¼ 1
10þ

Pn
i¼1

x2
i

4000�
Qn

i¼1 cos xiffi
i
p
� �

þ 1
� �� ��1

Sphere model (SM)~x 2 ½�5:12; 5:12�n; n ¼ 6 fSMð~xÞ ¼
Pn

i¼1x2
i

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1167
pendent runs, and we used the following stopping
criterion (as used by the other algorithms in this
comparison):

jf � f �j < �1f þ �2; ð10Þ

where f is the value of the best solution found by
ACOR, f * is the (known a priori) optimal value
for the given test problem, and �1 and �2 are respec-
tively the relative and absolute errors. For all the
test runs of ACOR, we used �1 = �2 = 10�4, follow-
ing the values reported in the literature.

Tables 6 and 7 present the results obtained by
ACOR, and respectively other ant-related algo-
rithms and other metaheuristics. Some of the test
functions used in this section are multi-modal—they
have many local optima, where algorithms may get
stuck. Hence, the results presented not only give an
overview of the mean performance (i.e., number of
function evaluations), but also give the success
rate—percentage of successful runs, when the algo-
rithm found the global optimum.

When compared with other ant-related methods
(Table 6), ACOR is a clear winner—all other algo-
rithms in this category require many more function
evaluations in order to reach the required accuracy.
ACOR is simply a much more effective approach. As
mentioned earlier, serious statistical analysis of the
results is not possible due to unavailability of the
full data result sets for the other algorithms.

When ACOR is compared to other metaheuristics
adapted for continuous domains, such as CGA,
ECTS, or ESA (Table 7), it is not so clear anymore
which of the algorithms is best. Almost each of the
algorithms presented is best-performing for at least
some of the test problems (with the exception of
ESA). While ACOR is the winner for Easom, both

Table 5
Second part of the test functions used for comparing ACOR to other ant-related algorithms and other metaheuristics adapted for
continuous optimization

Function Formula

Hartmann (H3,4)~x 2 ½0; 1�n; n ¼ 4 fH3;4
ð~xÞ ¼ �

P4
i¼1cie

�
P3

j¼1
aijðxj�pijÞ

2

aij ¼

3:0 10:0 30:0
0:1 10:0 35:0
3:0 10:0 30:0
0:1 10:0 35:0

8>><
>>:

9>>=
>>;

, ci ¼

1:0
1:2
3:0
3:2

8>><
>>:

9>>=
>>;

,

pij ¼

0:3689 0:1170 0:2673
0:4699 0:4387 0:7470
0:1091 0:8732 0:5547
0:0381 0:5743 0:8828

8>><
>>:

9>>=
>>;

Hartmann (H6,4)~x 2 ½0; 1�n; n ¼ 6 fH6;4
ð~xÞ ¼ �

P4
i¼1cie

�
P6

j¼1
aijðxj�pijÞ2

aij ¼

10:00 3:00 17:0 3:50 1:50 8:00
0:05 10:00 17:0 0:10 8:00 14:00
3:00 3:50 1:70 10:00 17:00 8:00
17:00 8:00 0:05 10:00 0:10 14:00

8>><
>>:

9>>=
>>;

, ci ¼

1:0
1:2
3:0
3:2

8>><
>>:

9>>=
>>;

,

pij ¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886
0:2329 0:4135 0:8307 0:3736 0:1004 0:9991
0:2348 0:1451 0:3522 0:2883 0:3047 0:6650
0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

8>><
>>:

9>>=
>>;

Shekel (S4,k,k = 5,7,10)~x 2 ½0; 10�n; n ¼ 4 fS4;k ð~xÞ ¼ �
Pk

i¼1ðð~x� ~aiÞTð~x� ~aiÞ þ ciÞ�1

aij ¼

4:0 4:0 4:0 4:0
1:0 1:0 1:0 1:0
8:0 8:0 8:0 8:0
6:0 6:0 6:0 6:0
3:0 7:0 3:0 7:0
2:0 9:0 2:0 9:0
5:0 5:0 3:0 3:0
8:0 1:0 8:0 1:0
6:0 2:0 6:0 2:0
7:0 3:6 7:0 3:6

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, ci ¼

0:1
0:2
0:2
0:4
0:4
0:6
0:3
0:7
0:5
0:5

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

Table 6
Results obtained by ACOR compared to those obtained by other ant-related algorithms

Test function ACOR CACO API CIAC

Rosenbrock (R2) 1.0 (820) 8.3 12 14
Sphere 1.0 (781) 28 13 64
Griewangk (GR10) 1.0 [61%] (1390) 36 – 36 [52%]
Goldstein and Price 1.0 (384) 14 – 61 [56%]
Martin and Gaddy 1.0 (345) 5 – 34 [20%]
B2 1.0(544) – – 22
Rosenbrock (R5) 1.0 [97%] (2487) – – 16 [90%]
Shekel (S4,5) 1.0 [57%] (787) – – 50 [5%]

Reported is the relative mean number of function evaluations. The actual mean number of function evaluations is given in parentheses
only for the best performing algorithm on a given problem. Numbers in square brackets indicate the percentage of successful runs (i.e.,
when the algorithm did not get stuck in a local optimum). When the percentage is not given—all the runs were successful. Note that for
some algorithms, the results on some test functions were not available.

1168 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
Hartmann, Griewangk, and one Zakharov problem,
CGA is the leader for B2 and all three Shekel prob-
lems. In turn ECTS is the best one on Branin
RCOS, Goldstein and Price, one Zakharov, and
both Rosenbrock problems. ESA is the only one
that is not best on any of the problems, and results

Table 7
Results obtained by ACOR compared to those obtained by other metaheuristics adapted to continuous domains

Test function ACOR CGA ECTS ESA DE

Branin RCOS 3.5 2.5 1.0 (245) – –
B2 1.3 1.0 (430) – – –
Easom 1.0 [98%] (772) 1.9 – – –
Goldstein and Price 1.7 1.8 1.0 (231) 3.4 –
Rosenbrock (R2) 1.7 2.0 1.0 (480) 1.7 1.3
Zakharov (Z2) 1.5 3.2 1.0 (195) 81 –
De Jong 1.0 1.9 – – 1.0 (392)
Hartmann (H3,4) 1.0 (342) 1.7 1.6 2.0 –
Shekel (S4,5) 1.3 [57%] 1.0 [76%] (610) 1.4 [75%] 1.9 [54%] –
Shekel (S4,7) 1.1 [79%] 1.0 [83%] (680) 1.3 [80%] 1.8 [54%] –
Shekel (S4,10) 1.1 [81%] 1.0 [83%] (650) 1.4 [80%] 1.8 [50%] –
Rosenbrock (R5) 1.2 [97%] 1.9 1.0 (2142) 2.5 –
Zakharov (Z5) 1.0 (727) 1.9 3.1 96 –
Hartmann (H6,4) 1.0 (722) 1.3 2.1 3.7 –
Griewangk (Gr10) 1.0 [61%] (1390) – – – 9.2

Reported is the relative mean number of function evaluations. The actual mean number of function evaluations is given in parentheses
only for the best performing algorithm on a given problem. Numbers in square brackets indicate the percentage of successful runs. When
the percentage is not given—all the runs were successful. Note that for some algorithms, the results on some test functions were not
available.

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1169
of DE—although promising—are available for only
very few problems.

The differences in performance between the meta-
heuristics are however rather small—they rarely
exceed the factor of 2.0. It may be hence concluded
that while each of these algorithms is different, they
all perform similarly well, including ACOR pro-
posed in this paper. For particular real-world appli-
cations some of them may be better suited than
others. However, the differences are not large, and
it is not trivial to say when any of these algorithms
should be preferred over the others. Again, as men-
tioned earlier, serious statistical analysis of the
results is not possible due to unavailability of the
full result data sets for the other algorithms.

5.3. Diversification versus intensification

When tackling multi-modal test functions, it is
important that the algorithm is able to avoid being
stuck in one of the local optima. An algorithm must
use some strategy to diversify the search in such a
way that it does not get stuck in a local optimum,
and yet it is able to converge once the global opti-
mum has been found.

These in fact are two contradictory goals. On one
hand, an algorithm is expected to converge as fast as
possible, while on the other hand, it is expected not

to converge entirely to a local optimum. The funda-
mental problem is that an algorithm does not know
if a given promising region contains a local or a glo-
bal optimum. Hence, an algorithm has to make an

intelligent guess, whether to focus on diversification
(higher robustness), or intensification (higher con-
vergence speed—higher efficiency).

Algorithms proposed for continuous optimiza-
tion deal with this problem in various ways. Some
just ignore it (like the simple (1 + 1)ES), but this
usually does not give good results. Others explicitly
divide the operation of the algorithm into the diver-

sification and intensification phases—e.g., CGA,
ECTS, or CIAC. Finally, some algorithms use one
or more parameters in order to define the balance
between diversification and intensification. Such an
approach is used for instance by CSA-ES, CMA-
ES, IDEA, and ACOR.

Usually, parameters such as learning rate and
population size are those that most influence the
robustness of the algorithm. In the case of ACOR,
they also play some role—i.e., the slower the learn-
ing rate and the larger the solution archive size, the
more robust is the algorithm, but the slower is the
convergence speed. In ACOR, there is also another
parameter specifically designed to control the diver-
sification of the search process—parameter q.

When q approaches 0, it means that only the
Gaussian function associated with the best solution

found so far is used for generating further solutions
by the ants. Following Eqs. (7) and (8), for a given
parameter q and size of the solution archive k, the

Shekel (S4,7)

fa
ilu

re
 r

at
e

0.
0

0.
4

0.
8

1e–04 0.1 0.3 0.5 0.9

10
00

20
00

30
00

40
00

q

fu
nc

tio
n

ev
al

ua
tio

ns

Griewangk (Gr10)

0.
0

0.
4

0.
8

1e–04 0.1 0.3 0.5 0.9

20
00

60
00

10
00

0
q

Fig. 4. Relationship between the robustness of the ACOR algorithm and its efficiency. For each of the two test functions, and for each
value of the parameter q tested, the failure rate (upper part) and the distribution of the number of function evaluations needed to reach the
required accuracy (lower part) are given. The size of the solution archive was fixed at k = 100, and m = 2 ants were used in all runs.

1170 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
probability pqk of choosing one of the q Æ k highest
ranking solutions as the base for the PDF is:
pqk � 0.68 (and respectively p2qk � 0.95). This is
due to the characteristic of the normal distribution:
around 68% of the samples fall inside the interval
(�r,r) around the mean and respectively 95% in
the interval (�2r, 2r). For instance, for q = 0.1
and k = 50 (as used in experiments in Section 5.2),
one of the 5 highest ranking solutions will be used
with probability 0.68, and one of the 10 highest
ranking solutions with probability 0.95.

When using larger q, the algorithm samples the
search space based on a larger number of reason-
ably good solutions, rather than only on the best
one found so far. The search is hence more diversi-
fied and the algorithm performs more robustly.
Unfortunately, as already said, higher robustness
usually means lower efficiency—slower convergence
speed. This is illustrated in Fig. 4, which shows the
failure rate (upper part) and the distribution of
number of function evaluations for different values
of the parameter q (lower part), for two typical
multi-modal test functions—Shekel (S4,7) and
Griewangk (GR10). The distribution of the number
of function evaluations is given only for the success-
ful runs. It is presented in the form of box-plots—
the box is drawn between the first and the third
quartile of the distribution, with median and outli-
ers indicated.
6. Conclusions

We have presented in this paper a straightfor-
ward way of extending Ant Colony Optimization
to continuous domains. We have discussed the idea
and shown its implementation. ACOR is a direct
extension of ACO, and it is the first ant-based algo-
rithm for continuous optimization which fits in the
ACO framework.

We have discussed how ACOR is situated within
the (rather large) family of heuristic algorithms for
continuous optimization. We have tested the perfor-
mance of ACOR against a substantial number of
other algorithms and approaches. The results
obtained show that ACOR may be considered a
competitive approach. Additionally, the perfor-
mance of ACOR may be adapted according to the
needs to either show more robustness or higher
efficiency.

ACOR, when compared to other probability-
learning methods, proved to be the best on four
out of 10 test problems. On the others, the quality
of the solutions found was not significantly worse
than the state-of-the-art. Also, ACOR is a clear win-
ner when compared to other ant-related algorithms
for continuous optimization that were proposed in
the past. When compared to these methods,
ACOR was better by almost two orders of magni-
tude. Finally, when compared to other metaheuris-

Fig. A.1. Example of the Ellipsoid function not rotated (left) and rotated by 45� (right). It is illustrated by 10000 points—of which only
the best 1000 are visible (the darker the point the higher the rank). The original coordinate system has been marked in bold, and the
optimal one is also indicated on the right plot. Also, the examples of the Gaussian kernel PDFs as generated using the default coordinate
system, are given on the right and above.

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1171
tics adapted to continuous optimization, ACOR was
the winner in one-third of the test problems and per-
formed not much worse on the others.

The way ACO is extended to ACOR allows it not
only to handle the pure continuous problems, but
also makes it possible to tackle mixed-variable opti-
mization problems. Such ability can be matched by
only few other approaches. Research into the per-
formance of ACOR as a mixed-variable optimizer
is ongoing, and will be the subject of future
publications.
Acknowledgements

Marco Dorigo acknowledges support from the
Belgian FNRS, of which he is a Research Director.
This work was supported by the ‘‘ANTS’’ project,
an ‘‘Action de Recherche Concertée’’ funded by
the Scientific Research Directorate of the French
Community of Belgium.
Appendix A. Variable correlation handling

ACO algorithms in general do not exploit corre-
lation information between different decision vari-
ables (or components). In ACOR, due to the
specific way the pheromone is represented (i.e., as
the solution archive), it is in fact possible to take
into account the correlation between the decision
variables. Consider Fig. A.1, where the same Ellip-
soid test function9 is presented—not rotated (left),
9 See Table 1 for the definition of the Ellipsoid function.
and then randomly rotated (right). The test function
is presented as the ACOR algorithm sees it—as a set
of points representing different solutions found by
the ants and stored in the solution archive. The dar-
ker the point, the higher the quality of the solution
(and the higher its rank). While on the left plot the
variables are not correlated (i.e., for good solutions,
the value of one coordinate does not depend on the
value of the other coordinate), on the right plot they
are highly correlated.

The default coordinate system that corresponds
to the set of the original decision variables xi,
i = 1, 2, is marked in bold. It is clear that the axes
of that coordinate system align well with the scaling
of the test function in the left plot. The example
Gaussian kernel PDFs for both of the dimensions
are indicated on the right and above the plot.
Clearly a new solution generated using them would
fall somewhere in the promising region. In contrast,
in the case of the rotated Ellipsoid function pre-
sented on the right plot, the PDFs created with
the default coordinate system cover roughly the
whole search space (here D = [�2,2]2). If sampling
was done based on the original coordinate system,
the points sampled would most likely be far from
being good. The optimal coordinate system that
should be used by the ants in this case is also indi-
cated on the right plot. If ants used that coordinate
system instead of the original one, the sampling
would be as efficient as in the case of the non-
rotated Ellipsoid function.

Our ACOR algorithm dynamically adapts the
coordinate system used by each ant in order to
minimize the correlation between different decision

1172 K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173
variables. The adaptation of the coordinate system
is actually accomplished by expressing the set of
decision variables X with temporary variables Zi,
i = 1, . . .,n that are linear combinations of Xi,
i = 1, . . .,n. The following paragraphs shortly pres-
ent how this is done.

An obvious choice for adapting the coordinate
system to the distribution of the solutions in the
archive is the well-known technique of principal
components analysis (PCA). For details we refer
an interested reader to (Hastie et al., 2001). PCA
performs a statistical analysis of the solutions in
the archive in order to distinguish the principal
components. However, due to the fact that PCA is
deterministic, for most non-trivial problems PCA
is not robust enough and often leads to stagnation.

The mechanism that we designed instead is
relatively simple. Each ant at each step of the
construction process chooses a direction in the search
space. The direction is chosen by randomly selecting
a solution su that is reasonably far away from the
solution sl chosen earlier as the mean of the PDF.
Then, the vector ~slsu becomes the chosen direction.
The probability of choosing solution su at step i

(having chosen earlier solution sl as the mean of the
PDF) is the following:

piðsujslÞ ¼
diðsu; slÞ4Pk
r¼1diðsr; slÞ4

; ðA:1Þ

where the function di(Æ, Æ) returns the Euclidean dis-
tance in the (n � i + 1)-dimensional search sub-
space10 between two members of the solution
archive T. Once this vector is chosen, the new
orthogonal basis for the ant’s coordinate system is
created using the Gram–Schmidt process (Golub
and van Loan, 1989). It takes as input all the
(already orthogonal) directions chosen in earlier
ant’s steps and the newly chosen vector. The
remaining missing vectors (for the remaining dimen-
sions) are chosen randomly. Then, all the current
coordinates of all the solutions in the archive are
rotated and recalculated according to this new
orthogonal base resulting in the set of new tempo-
rary variables Zi, i = 1, . . .,n.

At the end of the solution construction process,
the chosen values of the temporary variables Zi,
i = 1, . . .,n are converted back into the original
coordinate system, giving rise to a set of values for
the original decision variables Xi, i = 1, . . .,n.
10 At step i, only dimensions i through n are used.
References

Baluja, S., Caruana, R., 1995. Removing the genetics from the
standard genetic algorithm. In: Prieditis, A., Russel, S. (Eds.),
Twelth International Conference on Machine Learning. Mor-
gan Kaufmann Publishers, San Francisco, CA, pp. 38–46.

Bilchev, G., Parmee, I.C., 1995. The ant colony metaphor for
searching continuous design spaces. In: Fogarty, T.C. (Ed.),
Proceedings of the AISB Workshop on Evolutionary Com-
putation, vol. 993 of LNCS. Springer-Verlag, Berlin, Ger-
many, pp. 25–39.

Birattari, M., 2005. The Problem of Tuning Metaheuristics as
Seen from a Machine Learning Perspective. Ph.D. thesis, vol.
292 of Dissertationen zur Künstlichen Intelligenz. Akadem-
ische Verlagsgesellschaft Aka GmbH, Berlin, Germany.

Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K., 2002. A
Racing Algorithm for Configuring Metaheuristics. In: Lang-
don, W.B. et al. (Eds.), Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufman,
San Francisco, CA, pp. 11–18.

Björkman, M., Holmström, K., 1999. Global optimization using
the DIRECT algorithm in Matlab. Advanced Modeling and
Optimization 1 (2), 17–37.

Blum, C., 2004. Theoretical and Practical Aspects of Ant Colony
Optimization. Ph.D. thesis, vol. 282 of Dissertationen zur
Künstlichen Intelligenz. Akademische Verlagsgesellschaft
Aka GmbH, Berlin, Germany.

Blum, C., Sampels, M., 2004. An ant colony optimization
algorithm for shop scheduling problems. Journal of Mathe-
matical Modelling and Algorithms 3 (3), 285–308.

Bosman, P.A.N., Thierens, D., 2002. Continuous iterated density
estimation evolutionary algorithms within the IDEA frame-
work. In: Pelikan, M., Mühlenbein, H., Rodriguez, A.O.
(Eds.), Proceedings of OBUPM Workshop at GECCO-2000.
Morgan-Kaufmann Publishers, San Francisco, CA, pp. 197–
200.

Box, G.E.P., Muller, M.E., 1958. A note on the generation of
random normal deviates. Annals of Mathematical Statistics
29 (2), 610–611.

Chellapilla, K., Fogel, D.B., 1999. Fitness distribution in
evolutionary computation: Analysis of local extrema in the
continuous domain. In: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC-1999). IEEE Press, Piscat-
away, NJ, pp. 1885–1892.

Chelouah, R., Siarry, P., 1999. Enhanced continuous tabu search.
In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (Eds.),
Meta-Heuristics Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic Publishers,
Boston, MA, pp. 49–61 (Chapter 4).

Chelouah, R., Siarry, P., 2000. A continuous genetic algorithm
designed for the global optimization of multimodal functions.
Journal of Heuristics 6, 191–213.

Costa, D., Hertz, A., 1997. Ants can colour graphs. Journal of
the Operational Research Society 48, 295–305.

Deb, K., Anand, A., Joshi, D., 2002. A computationally efficient
evolutionary algorithm for real-parameter optimization. Evo-
lutionary Computation 10 (4), 371–395.

Dorigo, M., 1992. Optimization, Learning and Natural Algo-
rithms (in Italian). Ph.D. thesis, Dipartimento di Elettronica,
Politecnico di Milano, Italy.

Dorigo, M., Gambardella, L.M., 1997. Ant Colony System: A
cooperative learning approach to the traveling salesman

K. Socha, M. Dorigo / European Journal of Operational Research 185 (2008) 1155–1173 1173
problem. IEEE Transactions on Evolutionary Computation 1
(1), 53–66.

Dorigo, M., Stützle, T., 2004. Ant Colony Optimization. MIT
Press, Cambridge, MA.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant System:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics – Part B 26
(1), 29–41.

Dorigo, M., Di Caro, G., Gambardella, L.M., 1999. Ant
algorithms for discrete optimization. Artificial Life 5 (2),
137–172.

Dréo, J., Siarry, P., 2002. A new ant colony algorithm using the
heterarchical concept aimed at optimization of multiminima
continuous functions. In: Dorigo, M., Di Caro, G., Sampels,
M. (Eds.), Proceedings of the Third International Workshop
on Ant Algorithms (ANTS’2002), vol. 2463 of LNCS.
Springer-Verlag, Berlin, Germany, pp. 216–221.

Dréo, J., Siarry, P., 2004. Continuous interacting ant colony
algorithm based on dense hierarchy. Future Generation
Computer Systems 20 (5), 841–856.

Eiben, A.E., Bäck, T., 1997. Empirical investigation of multipar-
ent recombination operators in evolution strategies. Evolu-
tionary Computation 3 (5), 347–365.

Fogel, D.B., Bayer, H.G., 1995. A note on the empirical
evaluation of intermediate recombination. Evolutionary
Computation 4 (3), 491–495.

Gagné, C., Price, W.L., Gravel, M., 2002. Comparing an ACO
algorithm with other heuristics for the single machine
scheduling problem with sequence-dependent setup times.
Journal of the Operational Research Society 53, 895–906.

Gambardella, L.M., Taillard, E., Agazzi, G., 1999. MACS-
VRPTW: A multiple ant colony system for vehicle routing
problems with time windows. In: Corne, D., Dorigo, M.,
Glover, F. (Eds.), New Ideas in Optimization. McGraw-Hill,
UK, pp. 63–76.

Golub, G., van Loan, C., 1989. Matrix Computations, second ed.
The Johns Hopkins University Press, Baltimore, MD.

Goss, S., Aron, S., Deneubourg, J.-L., Pasteels, J., 1989. Self-
organized shortcuts in the Argentine ant. Naturwissenschaf-
ten 76, 579–581.

Guntsch, M., Middendorf, M., 2002. A population based
approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E.,
Middendorf, M., Raidl, G. (Eds.), Applications of Evolu-
tionary Computing, Proceedings of EvoWorkshops 2002:
EvoCOP, EvoIASP, EvoSTim, vol. 2279 of LNCS. Springer-
Verlag, Berlin, Germany, pp. 71–80.

Hansen, N., Ostermeier, A., 2001. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation
2 (9), 159–195.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of
Statistical Learning. Springer-Verlag, Berlin, Germany.

Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization.
Proceedings of IEEE International Conference on Neural
Networks, vol. 4. IEEE Press, Piscataway, NJ, pp. 1942–1948.

Kern, S., Müller, S.D., Hansen, N., Büche, D., Očenášek, J.,
Koumoutsakos, P., 2004. Learning probability distributions
in continuous evolutionary algorithms – A comparative
review. Natural Computing 3 (1), 77–112.

Mathur, M., Karale, S.B., Priye, S., Jyaraman, V.K., Kulkarni,
B.D., 2000. Ant colony approach to continuous function
optimization. Industrial and Engineering Chemistry Research
39, 3814–3822.
Merkle, D., Middendorf, M., Schmeck, H., 2002. Ant colony
optimization for resource-constrained project scheduling.
IEEE Transactions on Evolutionary Computation 6 (4),
333–346.

Monmarché, N., Venturini, G., Slimane, M., 2000. On how
Pachycondyla apicalis ants suggest a new search algorithm.
Future Generation Computer Systems 16, 937–946.

Očenášek, J., Schwarz, J., 2002. Estimation distribution algo-
rithm for mixed continuous-discrete optimization problems.
In: Proceedings of the 2nd Euro-International Symposium on
Computational Intelligence. IOS Press, Amsterdam, Nether-
lands, pp. 227–232.

Ostermeier, A., Gawelczyk, A., Hansen, N., 1994. Step-size
adaptation based on non-local use of selection information.
In: Davidor, Y., Schwefel, H.-P., Männer, R. (Eds.), Parallel
Problem Solving from Nature – PPSN III, vol. 866 of LNCS.
Springer-Verlag, Berlin, Germany, pp. 189–198.

Pelikan, M., Goldberg, D., Sastry, K., 2000. Bayesian optimiza-
tion algorithm, decision graphs, and Occam’s razor. Technical
Report IlliGAL Report No. 2000020, Illinois Genetic Algo-
rithms Laboratory, University of Illinois at Urbana-Cham-
paign, Urbana, IL, 2000.

Ralston, A., Rabinowitz, P., 1978. A First Course in Numerical
Analysis, second ed. McGraw-Hill, New York, NY.

Reimann, M., Doerner, K., Hartl, R., 2004. D-ants: Savings
based ants divide and conquer the vehicle routing problems.
Computers and Operations Research 31 (4), 563–591.

Rumelhart, D., Hinton, G., Williams, R., 1986. Learning
representations by backpropagation errors. Nature 536,
323–533.

Schwefel, H.-P., 1981. Numerical Optimization of Computer
Models. John Wiley and Sons, New York, NY.

Siarry, P., Berthiau, G., Durbin, F., Haussy, J., 1997. Enhanced
simulated annealing for globally minimizing functions of
many continuous variables. ACM Transactions on Mathe-
matical Software 23 (2), 209–228.

Socha, K., Sampels, M., Manfrin, M., 2003. Ant algorithms
for the university course timetabling problem with regard to
the state-of-the-art. In: Raidl, G. et al. (Eds.), Proceedings
of EvoCOP 2003 – 3rd European Workshop on Evolution-
ary Computation in Combinatorial Optimization, volume
2611 of LNCS. Springer-Verlag, Berlin, Germany, pp. 334–
345.

Storn, R., Price, K., 1995. Differential Evolution - A simple and
efficient adaptive scheme for global optimization over con-
tinuous spaces, Technical Report TR-95-012, International
Computer Science Institute, Berkeley, CA.

Stützle, T., Dorigo, M., 1999. ACO algorithms for the traveling
salesman problem. In: Miettinen, K., Mäkelä, M.M., Nei-
ttaanmäki, P., Périaux, J. (Eds.), Evolutionary Algorithms in
Engineering and Computer Science. John Wiley and Sons,
Chichester, UK, pp. 163–183.

Stützle, T., Hoos, H.H., 2000.MAX–MIN Ant System. Future
Generation Computer Systems 16 (8), 889–914.

Wodrich, M., Bilchev, G., 1997. Cooperative distributed search:
The ant’s way. Control and Cybernetics 26 (3), 413–446.

Yuan, B., Gallagher, M., 2003. Playing in continuous spaces:
Some analysis and extension of population-based incremental
learning. In: Sarker, R. et al. (Eds.), Proceedings of Congress
of Evolutionary Computation (CEC). IEEE Press, Piscata-
way, NJ, pp. 443–450.

	Ant colony optimization for continuous domains
	Introduction
	Ant Colony Optimization
	The ACO metaheuristic
	ACO applications

	ACO for continuous domain-{{\rm ACO}}_{{\open{R}}}
	Probability density function (PDF)
	Pheromone representation in {{\rm ACO}}_{{\open{R}}}
	The {{\rm ACO}}_{{\open{R}}} metaheuristic framework

	Positioning of {{\rm ACO}}_{{\open{R}}}
	{{ACO}}_{{\open{R}}} and other swarm-based algorithms
	{{ ACO}}_{{\open{R}}} and evolutionary algorithms

	Experimental setup and results
	{{ACO}}_{{\open{R}}} compared to the probability-learning methods
	{{ACO}}_{{\open{R}}} compared to other ant-related approaches and other metaheuristics
	Diversification versus intensification

	Conclusions
	Acknowledgements
	Variable correlation handling
	References

