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Abstract. In a social scenario, establishing whether a collaboration is
required to achieve a certain goal is a complex problem that requires
decision making capabilities and coordination among the members of
the group. Depending on the environmental contingencies, solitary ac-
tions may result more efficient than collective ones and vice versa. In
robotics, it may be difficult to estimate the utility of engaging in col-
laboration versus remaining solitary, especially if the robots have only
limited knowledge about the environment. In this paper, we use artificial
evolution to synthesise neural controllers that let a homogeneous group
of robots decide when to switch from solitary to collective actions based
on the information gathered through time. However, being in a social
scenario, the decision taken by a robot can influence—and is influenced
itself—by the status of the other robots that are taking their own de-
cisions at the same time. We show that the simultaneous presence of
robots trying to decide whether to engage in a collective action or not
can lead to cooperation in the decision making process itself.

1 Introduction

Decision making is a complex problem for a collective robotic system, due to the
necessity to reach a global consensus among the robots, which contrasts with
the system’s inherent decentralisation. Current approaches resort to biological
inspiration [1,2,3] or to context-specific solutions [4,5]. The problem of deciding
whether to switch between solitary and collective behaviours is much less studied.
Such a problem is of fundamental importance for a particular robotic system:
the swarm-bot, a swarm robotic artefact composed of a number of autonomous
mobile robots—referred to as s-bots—which have the ability to connect to each
other forming a physical structure, as shown in Fig. 1 (for more details, see [6]).
Forming a swarm-bot by self-assembly is a collective action that can lead to great
advantages: for example, the swarm-bot can overcome an obstacle impassable for
solitary s-bots [7] or collectively transport a heavy item [8]. On the other hand,
for tasks such as searching for a goal location or tracing an optimal path to a
goal, a swarm of unconnected s-bots may be more efficient [9].

When should a group of s-bots assemble in a swarm-bot? This problem—
referred to as functional self-assembly [10]—has been studied to date with-
out particular focus on the decision making process that should lead to the
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switch from individual to collective behaviours. The decision to self-assemble
was based either on a priori assumptions or on clearly distinguishable environ-
mental cues [8,7,10], which may reduce the adaptiveness of a solution and the
efficiency of the system as a whole. We believe that a truly adaptive system
should prove capable of autonomously extracting all the information it requires
to solve a problem. In other words, the s-bots should be capable of recognis-
ing the necessity to self-assemble based only on the environmental contingencies
they experience. Given the limited sensory range of each s-bot, the information
relevant to autonomously decide whether to switch from a solitary to a collec-
tive behaviour is not ready-to-use, but should be constructed by the robots while
they interact and accumulate experience about the environment in which they
are placed. Moreover, being in a collective scenario, the actions of each s-bot
can influence—and are influenced themselves—by the status of the other s-bots,
which try to make their own decisions at the same time. This opens the way to
cooperative solutions that can exploit not only the dynamical interactions among
individuals, but also the way in which these interactions change over time. In this
paper, we show how the adaptiveness of the robots’ behaviour can be increased
by an evolutionary process that favours through selection those solutions that
improve the “fitness” of the robotic group. Here, we do not focus on assembly
but we limit our study to the processes that should lead to the formation of a
swarm-bot. We demonstrate how non-trivial individual and collective decision
making processes can be efficiently obtained.

The work presented in this paper is based on previous studies about time-
dependent decision making mechanisms [11,12]: robots had to categorise the
environment in which they were placed, either by explicit signalling or by per-
forming different actions in different environments. When a social scenario was
considered, communication resulted in increased robustness of the categorisa-
tion [12]. In this paper, we advance by studying a collective behaviour—i.e.,
aggregation—as a consequence of the decision making process: robots are placed
in two different environments and, according to the environmental contingencies
they experience, they should perform the appropriate individual or collective
action. From the observer—i.e., distal—point of view, this is yet another cate-
gorisation problem in which the robotic group faces a binary choice between two

(a) (b) (c)

Fig. 1. (a,b) Different views of an s-bot. (c) A swarm-bot in a indoor environment.
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environment types. However, from the robot—i.e., proximal—point of view, the
binary choice is to be performed between two different behavioural states: a soli-
tary behaviour and a collective one. In the definition of the evaluation function,
we emphasise the importance of evaluating the robots for their ability to switch
between behavioural states (see Section 2.3). The obtained results show that a
number of different strategies can be evolved to solve the given problem. Among
these, we show that those solutions that exploit communication perform bet-
ter, systematically achieving a consensus in the group and reducing the decision
errors.

2 The Task

The path towards the evolution of neural controllers for functional self-assembly
in a physical swarm-bot passes through the definition of the following experimen-
tal scenario. A group of s-bots is placed in an arena that is surrounded by some
obstacles that s-bots cannot overcome individually. The arena may have a way
out, that is, a passage through which a solitary s-bot can exit (see Figure 2a).
However, an s-bot does not have the perceptual abilities to detect the way out
from every location in the arena. Therefore, s-bots should first search for the
way out and, if they do not find any as in Figure 2b, they should aggregate
and self-assemble in order to collectively overcome the obstacles that surrounds
the arena. As mentioned above, we consider in this paper only the first part of
this scenario concerning the decision to switch from the individual behaviour of
searching for the way out to the collective behaviour of aggregating in one place.
The second part of the scenario concerning self-assembly is on-going work.

2.1 The S-bot

An s-bot is a small mobile autonomous robot with self-assembling capabilities,
shown in Fig. 1a and b [6]. The main body is a cylindrical turret with a diameter
of about 12 cm. The turret holds the gripper used for assembling with other s-
bots and can be actively rotated with respect to the chassis. The traction system
is composed of both tracks and wheels, and provides a differential drive motion.3

Each s-bot is provided with many sensory systems, useful for the perception of
the surrounding environment or for proprioception. In this paper, we make use
of the four proximity sensors placed under the chassis—referred to as ground
sensors—that can be used for perceiving the ground’s grey level. Each robot is
also equipped with an omni-directional camera and red LEDs distributed around
the s-bots’ turret. The circular image recorded by the camera is filtered in order
to return the distance of the closest s-bot in each of four 90◦ sectors, up to a
maximum distance of about 50 cm. In order to communicate with each other, s-
bots are provided with a very simple sound signalling system, which can produce
3 The experiments presented here are performed in simulation only. However, we al-

ready presented elsewhere the portability of similar controllers to the physical sys-
tem [12].
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a continuous tone with fixed frequency and intensity. When a tone is emitted,
it is perceived by every robot in the arena, including the signalling s-bot. The
tone is perceived in a binary way, that is, either there is someone signalling in
the arena or there is no one.

2.2 Experimental Setup

Three s-bots are initially placed up to 25 cm from the centre of a boundless
arena. The arena contains a circular band in shades of grey (inner radius: 1.0 m;
outer radius: 1.2 m—see Fig. 2a,b). The outer border of the circular band is
painted in black and simulates the presence of a trough/obstacle that the s-bots
cannot overcome individually: the simulation is stopped whenever individual s-
bots pass over the black border, and the trial is considered unsuccessful. The grey
level of the circular band can be perceived by the s-bots only locally through
the ground sensors, and it is meant to warn s-bots about the presence of the
simulated trough/obstacle: the darker the ground colour, the closer the danger.
The s-bots can be placed in two different environments: in environment A, the
circular band is discontinuous—i.e., there is a way out through which the s-bots
can exit (see the trajectories in Fig. 2a). In environment B, the way out is not
present and therefore s-bots should aggregate after having searched for it (see
the trajectories in Fig. 2b). The amplitude of the way out is randomly selected
in each trial within the interval [π/4, π/2].

Homogeneous groups of s-bots are controlled by artificial neural networks,
whose parameters are set by an evolutionary algorithm. A single genotype is
used to create a group of individuals with an identical control structure. Each
s-bot is controlled by a continuous time recurrent neural network (CTRNN,
see [13]) with a multi-layer topology, as shown in Fig. 2c. The neural network
is composed of 9 input neurons (NI,i) which are simple relay units, 3 output
neurons (NO,i) with a sigmoid transfer function, and 5 continuous time hidden

(a) (b) (c)

Fig. 2. (a,b) The experimental arena contains a circular band in shades of grey, which

may or may not have the way out. Dark lines represent the trajectory of three s-bots,

and the starting position on the trajectories is indicated by empty circles. (c) The three-

layer architecture of the neural controller. The hidden layer is composed of continuous

time neurons with fully recurrent connections.
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neuron (NH,i). Four inputs take values from the camera, four from the ground
sensors and one from sound perception, while two outputs control the wheels and
one controls the sound signal. The weights of the synaptic connections between
neurons, the bias terms and the decay constants of the hidden neurons are genet-
ically encoded parameters, optimised through a simple generational evolutionary
algorithm [14]. The population contains 100 genotypes that are evolved for 5000
generations. Each genotype is a vector of 98 real values (85 synaptic connections,
5 decay constants and 8 bias terms). Subsequent generations are produced by a
combination of selection with elitism and mutation. Recombination is not used.
At every generation, the best 20 genotypes are selected for reproduction, and
each generates 4 offspring. The genotype of the selected parents is copied in the
subsequent generation; the genotype of the 4 offspring is mutated with a 50%
probability of adding a random Gaussian offset to each real-valued gene.4

2.3 The Evaluation Function

During evolution, a genotype is mapped into a control structure that is cloned
and downloaded onto all the s-bots taking part in the experiment. The fitness
of a genotype is the average performance of a group of three s-bots evaluated
over ten trials—five performed in environment A and five in environment B.4

Each trial lasts 65 seconds and differs from the others in the initialisation of the
random number generator, which influences mainly the s-bots starting positions
and orientations, and the amplitude of the way out, if present. As mentioned
above, robots should make a binary choice between two behavioural states: (i)
searching for the way out and moving away from the arena centre—hereafter
called solitary state S—or (ii) aggregating with the other s-bots—hereafter called
collective state C. The performance of the group is computed as the average
individual performance of the three s-bots. The individual performance rewards
the movements of an s-bot according to its current behavioural state. When
in state S, the s-bot should continue to move away from the centre, and it is
considered successful if it reaches the distance DO(S) = 2.4 m from the centre.
When an s-bot switches to state C, it should aggregate with the other robots
by reducing its distance from the centre of mass of the group. It is considered
successful if it stays below the distance DO(C) = 0.25 m from the centre of
mass of the group. In both cases, we conventionally say that a successful s-bot
“achieves the desired distance DO”. Note that a trial is terminated whenever
an s-bot passes over the black border of the circular band—and in this case its
performance is 0—or if s-bots collide when in state S. It is worth mentioning
that when computing the individual performance, the behavioural state of an
s-bot cannot be directly observed, because it is not explicitly encoded in the
controller or elsewhere. However, knowing the environment type and looking at
the movements of the robot, it is possible to estimate in which state an s-bot
should be at any given time: when an s-bot is placed in environment A, it should
search for the way out and exit through it, therefore it should be in state S.

4 For more details, see the supplementary material available in [15].
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When an s-bot is placed in environment B, it should initially search for the way
out, being in state S, and at some point it should give up and aggregate, therefore
switching to state C. Given that it is not possible to exactly recognise when an s-
bot switches to state C, we compute the individual performance by considering an
s-bot in state C as soon as it encounters the circular band for the first time. On the
basis of such estimation of the behavioural state, it is possible to systematically
evaluate the s-bot ’s performance. Note that the evaluation function does not
explicitly reward either cooperation or communication. It rather rewards those
agents that perform the correct movements in each behavioural state, without
any reference to the mechanism necessary to switch from one state to the other.

3 Results

We performed 20 replications of the experiment, most of which were successful.
For each evolutionary run, we selected a single controller from the last gen-
eration. To do so, we evaluated the 20 best individuals—the elite of the last
generation—for 200 trials in both environments, and we selected the genotype
with the highest average performance. As a result, we obtained 20 controllers—
hereafter referred to as C1, . . . , C20—that were further evaluated for 2000 trials,
half in environment A and half in environment B. The obtained results are sum-
marised in Table 1: in both environments, we computed the average performance
and its standard deviation (avg ± std), the rates of success %S (all s-bots achieve
the desired distance DO), failure %F (no s-bot achieves the desired distance DO),
partial success/failure %M (not all s-bots are successful or fail) and error %E
(s-bots collide or cross the black edge of the circular band). In each trial, we also
computed the coverage, which is defined as the percentage of the circular band
that each robot covers in average during a trial: a value smaller than 1 indicates
that the single s-bot does not search the whole circular band for the way out,
while a value bigger than 1 indicates that the single s-bot performs more than
one tour (see Fig. 3). The coverage—together with the success rate—is useful to
quantitatively assess the quality of the evolved strategies.

Successful controllers produce good search behaviours when s-bots are in
state S:5 s-bots avoid collisions and move away from the centre of the arena.
Once on the circular band, s-bots start looping in search of the way out, which
is eventually found and traversed when s-bots are placed in environment A. On
the contrary, if s-bots are placed in environment B, the absence of the way out
is recognised by the s-bots through the integration over time of their perceptual
flow, which includes the signals that the s-bots may emit (for more insights about
decision making processes based on temporal cues, see [11,12]). As a consequence,
a behavioural transition from state S to state C can be observed. The modalities
with which the transition is performed significantly vary across the different
solutions synthesised during different evolutionary runs. However, looking at the
behaviour produced by the evolved controllers, we recognised some similarities
that let us classify the controllers in 4 classes.
5 Detailed descriptions and movies are available as supplementary material in [15].
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Table 1. Post-evaluation results. See text for details.

environment A environment B
avg ± std %S %M %F %E avg ± std %S %M %F %E

U

c4 0.82 ± 0.14 92.0 6.5 1.0 0.5 0.37 ± 0.11 19.4 18.9 61.7 0.0
c6 0.85 ± 0.06 98.6 1.2 0.0 0.2 0.31 ± 0.08 0.9 30.6 68.4 0.1
c14 0.83 ± 0.15 91.3 6.2 0.0 2.5 0.46 ± 0.15 2.5 65.1 24.0 8.4
c17 0.66 ± 0.07 74.3 25.4 0.1 0.2 0.39 ± 0.08 4.9 78.8 16.3 0.0

B

c1 0.86 ± 0.11 97.7 0.8 0.0 1.5 0.69 ± 0.07 95.9 2.8 1.3 0.0
c5 0.85 ± 0.13 92.1 5.7 0.0 2.2 0.57 ± 0.14 66.8 16.9 16.1 0.2
c8 0.83 ± 0.15 90.3 7.6 0.4 1.7 0.57 ± 0.12 34.3 55.2 9.2 1.3
c10 0.88 ± 0.07 99.0 0.6 0.0 0.4 0.66 ± 0.07 94.1 2.1 3.7 0.1
c16 0.85 ± 0.14 94.4 4.1 0.0 1.5 0.74 ± 0.13 94.1 2.3 1.4 2.2

M

c3 0.83 ± 0.15 85.8 11.7 0.0 2.5 0.63 ± 0.09 87.6 8.1 3.4 0.9
c7 0.79 ± 0.20 89.3 5.5 0.0 5.2 0.62 ± 0.25 49.5 34.2 10.5 5.8
c11 0.86 ± 0.07 98.9 0.6 0.0 0.5 0.61 ± 0.07 87.6 9.5 2.7 0.2
c13 0.85 ± 0.09 94.3 5.2 0.0 0.5 0.62 ± 0.07 93.0 5.3 0.8 0.9
c19 0.81 ± 0.15 94.8 2.3 0.6 2.3 0.67 ± 0.12 91.7 3.8 1.9 2.6
c20 0.87 ± 0.06 99.6 0.0 0.0 0.4 0.59 ± 0.07 79.3 11.3 9.3 0.1

C

c2 0.86 ± 0.10 98.6 0.1 0.0 1.3 0.82 ± 0.12 97.1 0.4 0.9 1.6
c9 0.87 ± 0.08 99.2 0.0 0.0 0.8 0.78 ± 0.12 88.1 8.3 3.1 0.5
c12 0.87 ± 0.05 99.6 0.3 0.0 0.1 0.74 ± 0.11 87.8 6.4 5.4 0.4
c15 0.86 ± 0.08 99.3 0.0 0.0 0.7 0.78 ± 0.13 96.6 0.4 0.6 2.4
c18 0.84 ± 0.18 95.8 0.0 0.0 4.2 0.83 ± 0.17 95.3 0.3 1.0 3.4

Class U = {C4, C6, C14, C17} encompasses the “unsuccessful” controllers,
that is, those controllers that solve the task only in part. These controllers
generally produce appropriate search behaviours when s-bots are in state S,
as confirmed by the good performance and the high success rate in environ-
ment A (see Table 1). However, when s-bots are placed in environment B they
fail in systematically aggregating, scoring a low performance and a poor suc-
cess rate. The second class B = {C1, C5, C8, C10, C16} consists of controllers
that produce a strategy named “bouncing” after the aggregation behaviour of
the s-bots in state C: s-bots search for each other by continuously bouncing off
the circular band, so that they sooner or later meet and remain close. Com-
munication is not exploited,6 and consequently each s-bot individually switches
from state S to state C, without any reference to the state of the other robots.
The bouncing behaviour is resilient to possible individual failures in environ-
ment A: by bouncing off the circular band, s-bots can continue searching for
the way out, even if less efficiently. This corresponds to high success rates in
environment A despite the fact that the s-bots perform in average less than
one tour over the circular band, as indicated by the corresponding coverage
(see Fig. 3). The third class M = {C3, C7, C11, C13, C19, C20} encompasses con-
trollers that produce a strategy named “meeting”, due to the fact that s-bots
aggregate by encountering at a meeting point, which is normally close to the

6 Only C16 exploits signalling to trigger a synchronous switch to state C [15].
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Fig. 3. The coverage of the evolved controllers. Boxes represent the inter-quartile range

of the data, while the horizontal lines inside the boxes mark the median values. The

whiskers extend to the most extreme data points within 1.5 times the inter-quartile

range from the box. The empty circles mark the outliers.

centre of the arena. Except for C7 and C19, controllers of this class do not
make use of communication. The main difference with class B controllers re-
sides in the aggregation behaviour, which lets robots leave the band and move
in circles close to the centre of the arena, waiting for the other s-bots to reach
a similar position. This behaviour is not robust with respect to possible de-
cision errors in environment A. As a consequence, evolution shaped the con-
trollers of this class to be characterised by a high coverage (see Fig. 3): s-bots
perform more than one loop over the circular band before switching to state
C, which corresponds to robust individual decisions and a high success rate
in environment A. The last class C = {C2, C9, C12, C15, C18} is named “co-
operative” because it encompasses controllers that produce communicative be-
haviours exploited for cooperation in the decision making. In fact, s-bots are
able to share the information they collect over time through their signalling
behaviour. The s-bots initially emit a sound signal, and they stop only after
looping on the circular band for some time. If any robot finds the way out, sig-
nalling continues, inducing all other s-bots to remain in state S and to keep
searching for the way out. This leads to a high success rate in environment A,
and no complete failures are observed (see Table 1). When the way out is not
present, all robots eventually stop signalling, allowing the transition to state C
and triggering the aggregation behaviour. By sharing the information through
communication, s-bots can collectively search the circular band, splitting the
task among them: as shown by the coverage data in Fig. 3, each s-bot covers
from a quarter to half circle when placed in environment B. This allows to con-
sistently reduce the search time, achieving high performance and high success
rates. Communication is fundamental here, because it provides robustness to
the decision making process and it makes the system more efficient by reducing
the time necessary to take the decisions to switch from solitary to collective
behaviours.

In order to quantitatively compare the performance of the behaviours pro-
duced by the evolved controllers, we used the performance data recorded over
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2000 trials to perform a series of pairwise Wilcoxon tests among all possible
controller couples, which allowed to produce the following ranking:

C4 ≺ C6 ≺ C17 ≺ C14 ≺ C3 ≺ C8 ≺ {C13, C11} ≺ C19 ≺ C1 ≺
≺ C20 ≺ C10 ≺ C5 ≺ C7 ≺ {C16, C12} ≺ C15 ≺ C9 ≺ C2 ≺ C18,

where Ci ≺ Cj indicates that Cj is statistically better than Ci with 99% confi-
dence. Controllers that have no statistical difference are reported in curly brack-
ets. All class U controllers have a low rank, as one would expect. Instead, it
is worth noting that class C controllers perform statistically better than the
others. Moreover, other controllers making use of communication but with a dif-
ferent strategy (namely C7-Meeting and C16-Bouncing) occupy a good position
in the rank. We can conclude that communication can improve the efficiency
and the robustness of the decision making process. Robots exploiting only local
interactions are prone to decision errors or to behaviours that are less efficient.
Therefore, by cooperating through communication, s-bots increase their abil-
ity to make correct and unanimous decisions, consequently achieving a better
performance.

4 Conclusions

We have studied the decision making mechanisms that can let a group of robots
switch from solitary to collective behaviours. We have faced the problem through
an evolutionary approach in order to limit the a priori assumptions and search
broadly the space of the possible solutions. The results we obtained demonstrate
that suitable decision making mechanisms can be evolved. Moreover, by provid-
ing the robots with a simple communication channel, the evolved cooperative
strategies display higher efficiency and enhanced robustness of the system. The
use of communication generally results in a faster and more robust decision mak-
ing process. Communication increases the otherwise limited information avail-
able to each robot, not only about the quality of the physical environment but
also and above all about the social environment and about the internal states of
other robots that, by definition, are not directly accessible.

A systematic analysis of the evolutionary pressures that shaped the above
mechanisms is out of the scope of this paper, and is left for future work. Fur-
ther testing with real robots is also planned for the future. Finally, we plan to
integrate the decision making processes studied here with on-going work on self-
assembly, in order to produce the first example of functional self-assembly of real
swarm-bots based on completely evolved controllers.
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