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Abstract In social insects, both self-organisation and
communication play a crucial role for the accomplish-
ment of many tasks at a collective level. Communica-
tion is performed with different modalities, which can be
roughly classified into three classes: indirect (stigmergic)
communication, direct interactions and direct commu-
nication. The use of stigmergic communication is pre-
dominant in social insects (e.g. the pheromone trails in
ants), where, however, direct interactions (e.g. antenna-
tion in ants) and direct communication (e.g. the waggle
dance in honey bees) can also be observed. Taking inspi-
ration from insect societies, we present an experimental
study of self-organising behaviours for a group of robots,
which exploit communication to coordinate their activ-
ities. In particular, the robots are placed in an arena
presenting holes and open borders, which they should
avoid while moving coordinately. Artificial evolution is
responsible for the synthesis in a simulated environment
of the robot’s neural controllers, which are subsequently
tested on physical robots. We study different communi-
cation strategies among the robots: no direct communi-
cation, handcrafted signalling and a completely evolved
approach. We show that the latter is the most efficient,
suggesting that artificial evolution can produce behav-
iours that are more adaptive than those obtained with
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conventional design methodologies. Moreover, we show
that the evolved controllers produce a self-organising
system that is robust enough to be tested on physical ro-
bots, notwithstanding the huge gap between simulation
and reality.
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1 Introduction

Ants are everywhere, but only occasionally noticed.
They run much of the terrestrial world as the pre-
mier soil turners, channelers of energy, domina-
trices of the insect fauna […] They employ the
most complex forms of chemical communication
of any animals and their organization provides an
illuminating contrast to that of human beings […]
(from Hölldobler and Wilson 1990, p 1).

This way, Hölldobler and Wilson introduce their jour-
ney into the ants’ world. They provide a passionate, yet
rigorous description of this fascinating and intriguing
animal society: a picture that serves as inspiration not
only for entomologists or socio-biologists, but also for
engineers and computer scientists. Indeed, the princi-
ples that lie behind the organisation of an ant colony
have been so far exploited in multiple domains, resulting
in the development of robust optimisation algorithms
(see, for example, Dorigo and Stützle 2004) and giving
birth to the swarm intelligence research domain (Beni
and Wang 1989; Bonabeau et al. 1999). Also robotics
could benefit from the biologically inspired approach,
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as demonstrated by the continuously growing interest
for swarm robotics (Dorigo and Şahin 2004).

In a swarm robotic context, it is useful to allow for
self-organisation while designing the different parts of
the robotic system. Self-organisation can be defined as
the emergence of order in a system as a result of the
numerous interactions among the system’s components.
Although these interactions take place on a purely local
basis, their effect on the whole system is the increase
of its inherent order. Self-organisation is often observed
in biology, and in particular in many animal societies,
not limited to social insects like ants, bees or termites
(Camazine et al. 2001). From an engineering perspec-
tive, there are multiple advantages in designing a self-
organising system. Among these, it is worth mentioning
that such a system is inherently robust to individual fail-
ures, as it is normally redundant in its constituent parts.
It can adapt to varying environmental conditions and
maintain its organisation notwithstanding certain exter-
nal perturbations.

Another important aspect to consider is communi-
cation, which is often required for coordination of col-
lective behaviours. Social insects make use of different
forms of communication, outlined in Sect. 2. In collec-
tive robotics research, the coordination of the activities
in a group of robots requires the definition of commu-
nication strategies and protocols among the individuals.
These strategies and protocols need not, however, be
particularly complex. In many cases, simple forms of
communication – or no explicit communication at all –
are enough to obtain the coordination of the activities
of the group (Kube and Zhang 1997). This is the case
for swarm robotics, which focuses on local and simple
communication paradigms that can gracefully scale up
with the number of agents involved.

However, designing a self-organising system and the
related communication protocols for a group of sim-
ulated and/or real robots is not a trivial task. From an
engineering perspective, the design problem is generally
decomposed into two different phases: (1) the behaviour
of the system should be described as the result of inter-
actions among individual behaviours and (2) the individ-
ual behaviours must be encoded into controllers. Both
phases are complex because they attempt to decom-
pose a process (the global behaviour or the individual
one) that is a result of dynamical interactions among its
sub-components (interactions among individuals or be-
tween individual actions and the environment). These
dynamical aspects are in general difficult to be pre-
dicted by the observer. In such a context, we believe
that Evolutionary Robotics (ER) is the methodology to
be exploited (Harvey et al. 1992, 2005; Nolfi and Flore-
ano 2000). ER bypasses the problem of decomposition

at both the levels of finding the mechanisms that lead
to the emergent global behaviour and of implementing
those mechanisms in a controller for the robots. In fact,
ER relies on the evaluation of the system as a whole,
i.e., on the emergence of the desired global behaviour
starting from the definition of the individual ones. More-
over, ER can exploit the richness of solutions offered by
the dynamic robot–environment interaction, which may
not be apparent a priori to the experimenter (Nolfi and
Floreano 2000; Dorigo et al. 2004).

In this paper, we show how ER techniques can be used
for solving a complex task, both with simulated and real
robots. In our work, we study a swarm robotic system
composed of a number of autonomous mobile robots,
referred to as s-bots, which have the ability to connect
one to the other forming a physical structure – referred
to as a swarm-bot – that can solve problems the single
s-bots are not able to cope with (see Fig. 1 and
Mondada et al. 2004, for details). The physical connec-
tions among s-bots result in physical interactions that can
be exploited for the self-organisation of the swarm-bot.
Additionally, s-bots are provided with a sound signal-
ling system that can be used for communication. The
task we study requires the s-bots to explore an arena
presenting holes in which the robots may fall. Individ-
ual s-bots cannot avoid holes due to their limited percep-
tual apparatus. On the contrary, a swarm-bot can exploit
the physical connections and the cooperation among its
components in order to safely navigate in the arena.

This paper brings forth a twofold contribution. On the
one hand, we examine different communication proto-
cols among the robots (i.e. no signalling, handcrafted
and evolved signalling), and we show that a completely

Fig. 1 A swarm-bot moving in an outdoor environment. The trac-
tion system of each s-bot is composed of both tracks and wheels.
On top of it, a rotating turret is mounted, which holds many
sensory systems and the rigid gripper for physical connections
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evolved approach achieves the best performance. This
result is in accordance with the above assumption, for
which evolution potentially produces a system that is
more efficient than those obtained with other conven-
tional design methodologies. Another important contri-
bution of this paper consists in the testing of the evolved
controllers on physical robots. We show that the evolved
controllers produce a self-organising system that is ro-
bust enough to be tested on real s-bots, notwithstanding
the huge gap between simulation and reality. To the best
of our knowledge, only very few works can be found in
the literature in which cooperative evolved behaviours
have been successfully tested on a group of physical
robots (see, for example, Quinn et al. 2003; Kamimura
et al. 2005). Considering the difficulty of the task we face
and the complex dynamics involved, we believe that we
obtained the most advanced evolved group behaviours
so far successfully tested on a physical robotic platform.

This paper is organised as follows. In Sect. 2, we briefly
overview the different communication forms that can be
found in social insects and draw a parallel with collective
robotics research. A taxonomy of different communica-
tion modalities is also introduced. In Sect. 3, we describe
the s-bot features and its simulation. In Sect. 4, we intro-
duce the task studied and detail the experimental setup
used for evolving hole avoidance behaviours. Section 5
shows the obtained results in simulation, while Sect. 6
describes the results obtained in transferring the evolved
controllers on the real s-bots. Finally, Sect. 7 concludes
the paper.

2 Communication in social insects and robots

Insect societies abound in examples of self-organising
behaviours (see Camazine et al. 2001). In most of these
examples, communication is present in some elemen-
tary form. Hölldobler and Wilson point to 12 functional
categories of communication in ants (see Hölldobler
and Wilson 1990, p 227). This wide use of communi-
cation with different modalities is justified by the fact
that communication serves as a regulatory mechanism
of the activities of the colony. In the following, we discuss
about the different communication modalities observed
in social insects.

2.1 A glance at insect societies

From the study of mass communication modalities arises
the concept of stigmergy: it describes an indirect com-
munication among individuals, which is mediated by the
environment. Stigmergy was first introduced by Grassé

(1959), while studying the nest building behaviour of ter-
mites of the genus Macrotermes. Grassé suggested that
the cooperation among termites in their building activi-
ties was the result of environmental stimuli provided by
the work already done, i.e. the nest itself. Other exam-
ples of stigmergic communication have been observed
in the foraging behaviour of many ant species, which lay
a trail of pheromone, thus modifying the environment
in a way that can inform other individuals of the colony
about the path to follow to reach a profitable foraging
area (Goss et al. 1989; Hölldobler and Wilson 1990).
Stigmergy is therefore a form of communication that is,
in some way, indirect and mediated by the environment.

Stigmergy is not the only way of communication that
can be observed in social insects. Direct interactions, i.e. a
form of communication that involves some physical con-
tact, account for various social phenomena (Hölldobler
and Wilson 1990). For example, in many species of ants
such as Ecophilla longinoda, recruitment of nest-mates
for the exploitation of a food source is performed by
touching the nest-mate with the antennas (antennation)
and by regurgitating a sample of the food source (thro-
phallaxis). Hölldobler and Wilson (1990) report another
invitation behaviour during colony emigrations in ants
of the species Camponotus sericeus. A recruiter ant in-
vites another individual to follow it to a new nesting site
by first grasping and pulling it by the mandibles. After-
wards, the recruiter turns around and moves toward
the new site, while the other ant follows maintaining
physical contact with its antennae. Mandible pulling and
the subsequent tandem running are striking examples of
coordination of movements that exploit direct interac-
tions among individuals. Similar behaviours have been
observed in other ant species, associated to recruitment
for both colony emigration and foraging.

Some forms of direct communication within insect
societies have been studied, a well-known example being
the waggle dance of honey bees. A bee is able to indicate
to the unemployed workers the direction and distance
from the hive of a patch of flowers, using a “dance”
that also gives information on the quality and the rich-
ness of the food source (Seeley 1995). Another form
of direct communication takes places through acousti-
cal signals. Many ant species use sound signals – called
stridulations – as recruiting, alarm or mating signals. In
the presence of a big prey, ants of the genus Aphae-
nogaster use stridulation during nest-mates recruitment.
Here, the sound signal serves uniquely as a reinforce-
ment of the usual chemical and tactile attractors, result-
ing in a faster response of the nest-mates. Another form
of acoustic signalling is drumming, i.e. vibrations pro-
duced by strokes on the surface of chambers in wooden
nests (Fuchs 1976). This signal serves as a direct alarm
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communication and has a modulating effect on the prob-
ability of individual workers to respond to other signals.

2.2 From insects to robots

The above examples suggest a possible taxonomy of
different forms of communication in insect societies that
can be borrowed for characterising a collective robotic
system (Trianni et al. 2004a):

Indirect or stigmergic communication. A form of com-
munication that takes place through the environ-
ment, as a result of the actions performed by some
individuals, which indirectly influence someone else’s
behaviour (e.g. pheromone trails).

Direct interaction. A form of communication that
implies a non-mediated transmission of information,
as a result of the actions performed by some individ-
uals, which directly influence someone else’s behav-
iour (e.g. antennation, mandibular pulling).

Direct communication. A form of communication that
implies a non-mediated transmission of information,
without the need of any physical interaction (e.g. the
waggle dance, stridulations).

A number of other taxonomies for communication
modalities in robotic systems have been proposed in
the past (see, for example, Balch and Arkin 1994; Cao
et al. 1997; Dudek et al. 2002; Matarić 1998). What we
propose can be considered equivalent to the taxonomy
introduced by Cao et al. (1997), having adapted it to the
natural examples discussed above. The terminology we
used is partly borrowed from Matarić (1998).

A pioneering work on the study of biologically
inspired communication in collective robotics is the one
of Balch and Arkin (1994). Three tasks and three differ-
ent communicative setups were considered. Balch and
Arkin show that direct communication is not required
if the task is characterised by some form of indirect
communication that provides the same amount of infor-
mation. Additionally, they show that, among the direct
communication strategies, a higher complexity does not
forcedly result in an advantage. Stigmergy is the main
coordination mechanism employed in many other works
relevant for swarm robotics research (Beckers et al.
1994; Holland and Melhuish 1999). Finally, it is worth
mentioning the work of Kube and Zhang (1997) and
Kube and Bonabeau (2000) that show how a self-organ-
ising behaviour observed in ants (i.e. collective trans-
port) can be replicated in a group of robots. In this case,
the robotic experiments served as an empirical model
useful to uncover some interesting features of the insect
behaviour.

Direct interactions are not commonly exploited in
robotic systems, as in general physical contacts among
robots are preferably avoided or ignored. A remark-
able exception has to be found in the SWARM-BOTS
project,1 in which self-assembling robots and coopera-
tive strategies have been studied extensively, including
the work presented in this paper (for some examples,
see Groß et al. 2006; Baldassarre et al. 2004).

Simple forms of direct communication modalities are
often chosen in collective robotics. Hayes et al. (2000)
study how a simple binary communication can result
in higher performance in a collective exploration task.
Ijspeert et al. (2001) show how in a strictly collaborative
task (i.e. a task in which cooperation is strictly required
for goal achievement) a simple form of direct commu-
nication can enhance the performance of the system.
Similar to the already mentioned work of Balch and
Arkin (1994), Rybski et al. (2004) study the influence of
different forms of communication on the performance
of a collective robotic system in a foraging task.

We conclude this short literature review mentioning
some interesting work related to communication in an
evolutionary robotics context. The pioneering work of
Werner and Dyer (1991) studies evolution of communi-
cation strategies in a population of male and female arti-
ficial organisms selected for their ability to mate. More
recently, Di Paolo (2000) has studied the evolution of
communication between two simulated agents, whose
goal was staying close to one another on the basis of
acoustic signals only. Another example is given by Quinn
(2001), who evolved a sort of communication strategy
between two simulated robots for allocating the roles of
leader and follower. All the above work in evolutionary
robotics has been conducted in simulation. A remark-
able exception is the work of Quinn et al. (2003), who
studied the evolution of coordinated motion in a group
of three simulated and physical robots. Also in this case,
there is no explicit communication among the robots,
but role allocation emerges from the initial interactions
among the robots.

3 A self-organising artefact: the swarm-bot

A swarm-bot is a self-assembling, self-organising arte-
fact. As mentioned above, the swarm-bot is a physical
structure formed by a number of independent robotic
units, called s-bots. In the swarm-bot form, the s-bots
become a single robotic system that can move and recon-
figure. Physical connections between s-bots are essential

1 See http://www.swarm-bots.org.
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Fig. 2 View of the s-bot from
different sides. The main
components are indicated
(see text for more details)

rigid gripper

microphones

semispherical
mirror

speakers

treels

T-shaped
ring

proximity
sensors

camera

ground
sensors

for solving many collective tasks, such as the retrieval of
a heavy object. Also, during navigation on rough terrain,
physical links can serve as support if the swarm-bot has
to pass over a hole larger than a single s-bot or when it
has to pass through a steep concave region. However,
for tasks such as searching for a goal location or tracing
an optimal path to a goal, a swarm of unconnected s-bots
can be more efficient. In the following, we describe in
detail the s-bot’s features and the simulation model used
for the experiments presented in this paper.

3.1 The s-bot

An s-bot is a small mobile autonomous robot with self-
assembling capabilities, shown in Fig. 2 (Mondada et al.
2004). It weighs 700 g and its main body has a diameter
of about 12 cm. Its design is innovative concerning both

sensors and actuators. The traction system is composed
of both tracks and wheels, each track–wheel pair of a
same side being controlled by a single motor. This com-
bination of tracks and wheels provides the s-bot with a
differential drive motion, which is labelled Differential
Treels© Drive. The treels are connected to the chas-
sis, which contains the batteries. The main body is a
cylindrical turret mounted on the chassis by means of a
motorised joint that allows the relative rotation of the
two parts. Due to the power and control cables that con-
nect chassis and turret, rotation of the turret must be lim-
ited in the range [−π , π ] rad. This constraint, hereafter
referred to as rotational limit, must be taken into account
in developing hole avoidance control strategies, as we
detail in the following sections. The gripper is mounted
on the turret. It can be used for connecting rigidly to
other s-bots or to some objects. The shape of the gripper
closely matches the T-shaped ring placed around the
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s-bot’s turret, so that a firm connection can be estab-
lished. The gripper does not only open and close, but
also has a degree of freedom for lifting the grasped ob-
jects. The corresponding motor is powerful enough to
lift another s-bot.

An s-bot is provided with many sensory systems, use-
ful for the perception of the surrounding environment or
for proprioception. Infrared proximity sensors are dis-
tributed around the rotating turret and can be used for
detection of obstacles and other s-bots. Four proximity
sensors placed under the chassis, referred to as ground
sensors, can be used for perceiving holes or the terrain’s
roughness (see Fig. 2). Additionally, an s-bot is provided
with eight light sensors, two temperature/humidity sen-
sors, a 3-axes accelerometer and incremental encoders
on each degree of freedom.

Each robot is also equipped with sensors and devices
to detect and communicate with other s-bots, such as
an omni-directional camera, coloured LEDs around the
s-bots’ turret, microphones and loudspeakers (see Fig. 2).
The loudspeaker can be used to emit a sound signal vary-
ing its frequency and intensity. The signal is perceived by
the microphones and processed by the on-board CPU
in order to discriminate the perceived frequency and
intensity.

In addition to a large number of sensors for perceiv-
ing the environment, several sensors provide each s-bot
with information about physical contacts, efforts and
reactions at the interconnection joints with other s-bots.
These include torque sensors on most joints as well as a
traction sensor to measure the pulling/pushing forces ex-
erted on the s-bot’s turret. The traction sensor is placed
at the junction between the turret and the chassis. This
sensor measures the direction (i.e. the angle with re-
spect to the chassis orientation) and the intensity of the
force of traction, hereafter called traction, that the turret
exerts on the chassis. The turret of an s-bot physically
executes a vectorial summation of the forces that are ap-
plied to it by other connected s-bots. The traction sensor
plays an important role in the context of coordinated
movement of a group of physically connected s-bots. In
particular, it can be employed to provide the s-bot with
an indication of the average direction towards which
the swarm-bot is trying to move. Traction sensors are
responsible for the detection of the direct interactions
among s-bots. An s-bot can generate a traction force
that is felt by the other s-bots connected through their
grippers. This force mediates the communication among
s-bots and can be exploited for coordinating the activ-
ities of the group: it proved to be important to evolve
coordinated motion strategies in a swarm-bot and for
collective obstacle and hole avoidance (see Baldassarre
et al. 2004; Trianni et al. 2004a).

Fig. 3 A simulated swarm-bot, composed of four s-bots in square
formation. The simulated s-bot is composed of four wheels, a chas-
sis and a cylindrical turret (see text for details). The presence of
a circle painted on top of the turret indicates that the s-bot is
emitting a tone. The arrow on the turret indicates the position of
the simulated gripper. The black line exiting from the chassis and
pointing to the ground indicates a ground sensor

3.2 Simulating the s-bot

In order to design a controller for the swarm-bot through
artificial evolution within a reasonable time, it is neces-
sary to devise a simulation environment. In fact, evo-
lution on the physical robots, besides being impracti-
cal, is extremely time-consuming.2 We defined a simple
s-bot model that at the same time allows fast simulations
and preserves those features of the real s-bot that were
important for the experiments (see Fig. 3). The devel-
oped software is based on Vortex™, a 3D rigid body
dynamics simulator. Each simulation cycle corresponds
to 0.1 real seconds, which provides an optimal compro-
mise between simulation accuracy and speed. In each
simulation cycle, every s-bot performs one control cycle,
obtaining a frequency of 10 control cycles per second,
which ensures a good reaction time for both simulated
and physical robots.

The s-bot’s traction system was simulated by a chassis
and four wheels. Two lateral, motorised wheels provide
the required differential drive motion, modelling the
lateral wheels of the treels system. Two spherical, pas-
sive wheels are placed in the front and the back and
serve as support. The tracks of the treels system are
not modelled, as they would have significantly reduced
the simulation speed. These four wheels are fixed to
the chassis, which also holds the cylindrical rotating tur-
ret that can rotate around its axis. Connections among

2 One single evolutionary run, keeping the same setting we used
in the experiments presented here, would require more than
110 days.
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s-bots can be made dynamically, creating a joint between
two s-bots (see Fig. 3). Differently from previous studies
(see Trianni et al. 2004a), we modelled the rotational
limit in the s-bot simulation, so that the turret can ro-
tate only in the range [−π , π ] rad, consistently with the
hardware counterpart. The implications of the rotational
limit are explained in Sect. 4.1, in which we detail the
different experimental choices we made for the evolu-
tion of behaviours that could be directly transferred on
the physical s-bots.

Concerning the sensors, most of the physical ones
have been modelled in the simulator. For the experi-
ments presented in this paper, we mainly made use of
traction and ground sensors. Four variables encode the
traction force information from four different preferen-
tial orientations with respect to the chassis (front, right,
back and left, see Baldassarre et al. 2004 for more de-
tails). Also the ground sensor configuration differs from
what was previously used. Here it complies with the
physical robot, the ground sensor being integral with the
chassis and positioned in a line parallel to the main direc-
tion of motion, in the same position as shown in Fig. 2.3

Noise is simulated for all sensors, adding a random value
uniformly distributed in the interval [−5%, 5%] of the
sensor saturation value.

Each s-bot is equipped with a loudspeaker and four
microphones, used to detect the tone emitted by other
s-bots. The speaker/microphone system is used to emit
a single frequency signal that is recognised by the s-bots
in a binary way: either one of the s-bots is signalling the
presence of a hole – this could be the s-bot itself – or none
of them are signalling. Therefore, sound perception or
production is simulated by means of a binary variable
that encodes the presence or absence of a sound signal.

4 Evolution of hole avoidance behaviours

The hole avoidance task has been defined for study-
ing collective navigation strategies for a swarm-bot that
moves in environments presenting holes in which it risks
remaining trapped. In such a scenario, due to the limited
sensory apparatus of the s-bot, the swarm-bot is more
efficient than individual units. In fact, the position of the
ground sensors makes it impossible for an s-bot to de-
tect holes that are sidelong with respect to its direction of
motion, because sensors are placed under its chassis and
parallel to its tracks, as shown in Fig. 2. The swarm-bot
can instead perform hole avoidance exploiting its larger
physical structure and the cooperation among the s-bots.

3 In a previous work, the ground sensors were integral with the
turret and distributed evenly around it (see Trianni et al. 2004a).

However, for a swarm-bot to perform hole avoidance,
two main problems must be solved: (1) coordinated mo-
tion must be performed in order to obtain coherent
movements of the swarm-bot, as a result of the actions
of its components; (2) the presence of holes, which can-
not be perceived by all the s-bots at the same time, must
be communicated to the entire group, in order to trig-
ger a change in the common direction of motion. In
some preliminary studies, conducted in simulation only,
we successfully evolved cooperative behaviours for the
hole avoidance task (Trianni et al. 2004a, 2006). In this
paper, we apply the same methodology to the evolution
of behaviours that can be tested on the physical s-bots.
In doing so, new challenges have to be faced, as the
simulation model previously used was differing in some
crucial aspects from the physical robot. In Sect. 4.1, we
give a detailed description of the experimental choices
made in order to cope with these challenges.

Moreover, in this paper we study and compare three
different approaches to communication among the
s-bots. In the first setup, s-bots communicate only
through direct interactions, i.e. they exploit the pull-
ing/pushing forces that one exerts on the other as a
form of communication. This setup, referred to as Di-
rect Interactions setup (DI), is the simplest possible for
hole avoidance. The second and third setups make use
of direct communication among the s-bots in addition
to the direct interactions. In the second setup, referred
to as Direct Communication setup (DC), the s-bots emit
a tone as a handcrafted reflex action to the perception
of a hole. On the contrary, in the third setup, which is
referred to as Evolved Communication setup (EC), the
signalling behaviour is not defined a priori, but it is left
to evolution to shape the best communication protocol.
In the following, we detail the experimental setup. Then,
we describe the controllers and the evolutionary algo-
rithm used, and finally we present the evaluation func-
tion defined for evolving hole avoidance behaviours.

4.1 Experimental setup

We aim at evolving hole avoidance behaviours for a
group of four s-bots connected in a square formation.
This formation was chosen in order to overcome the lim-
itation in the perception of holes that pertains to individ-
ual s-bots or to s-bots connected forming a line. In fact,
when connected in a square swarm-bot, the s-bots can
detect the hole’s edge and react timely notwithstanding
their approaching direction.

The evolution of the hole avoidance behaviour also
requires that the swarm-bot performs coordinated mo-
tion, i.e. the s-bots should prove capable of coherently
moving on flat terrain. We therefore decided to let evo-
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Fig. 4 Experimental conditions in which the swarm-bot is
evolved. In conditions “a” and “b”, a swarm-bot is positioned on
flat terrain and has to perform coordinated motion. The swarm-

bot shape is either a line or a square. In condition “c”, a square
swarm-bot is positioned in an arena with open borders and holes

lution shape the neural controller testing the swarm-
bot both in environments with and without holes (see
Fig. 4). Concerning coordinated motion, Baldassarre
et al. (2006) showed that robust controllers can be
evolved if the s-bots move on a flat plane connected
in a linear formation (see Fig. 4a). However, this set-
ting alone may produce a sub-optimal behaviour, which
becomes less probable if the s-bots are evaluated for
coordinated motion connected in a square formation
(see Fig. 4b). Concerning the evolution of hole avoid-
ance, a square swarm-bot formation is placed in an arena
presenting holes, as shown in Fig. 4c. The arena is a
square of 4 m per side, with two rectangular holes and
open borders. In all cases, the s-bots start connected
in a swarm-bot formation, and the orientation of their
chassis is randomly defined, so that they need to coordi-
nate in order to choose a common direction of motion.
In conditions “a” and “b”, once coordinated, the s-bots
have to maintain straight motion as much as possible.
In condition “c”, the s-bots have to explore the arena
without falling into holes or out of the borders.

In all three setups (DI, DC and EC), s-bots are
equipped with traction and ground sensors, as described
in Sect. 3.2. In DC and EC, microphones and speakers
are also used. The information provided to the controller
by these sensors proved to be sufficient for the evolu-
tion of hole avoidance behaviours (Trianni et al. 2004a).
However, we found that as soon as the rotational limit
between turret and chassis is introduced, a perceptual
aliasing problem arises (see also Baldassarre et al. 2006).
In fact, the information about the angular displacement
of the turret with respect to the chassis is missing, and
the rotational limit can be recognised only referring to
this displacement. Instead of providing this additional
information to the neural controller, we decided to ap-
ply a different solution that can bypass the rotational
limit. This solution, referred to as front inversion mech-
anism, was first introduced by Baldassarre et al. (2006),
in order to mask the rotational limit to coordinated
motion controllers evolved without taking it into ac-

count. Its working principle is very simple: whenever the
turret reaches the rotational limit, the front of the s-bot
is swapped with its back, which becomes the new prin-
cipal front of motion. The front inversion involves both
sensors and actuators, so that the s-bot ends up in a novel
condition that prevents exceeding the rotational limit. A
detailed explanation of the front inversion mechanism
and related issues can be found in Appendix.

4.2 The controllers and the evolutionary algorithm

The s-bots are controlled by artificial neural networks,
whose parameters are set by an evolutionary algorithm.
A single genotype is used to create a group of s-bots with
an identical control structure, a homogeneous group.
Each s-bot is controlled by a fully connected, single layer
feed-forward neural network, a perceptron (see Fig. 5).
Each input is associated with a single sensor, receiving a
real value in the range [0.0, 1.0], which is a simple linear

motors

groundtractionbias sound

sound

Fig. 5 The neural controller. Circles represent neurons, while lines
represent weighted connections from input to output neurons. The
empty circles and normal lines refer to neurons and connections
used in the DI setup: the neural controller takes as input the trac-
tion and ground sensors, plus a bias, and it controls the two wheels
and turret/chassis motor. The bold lines and light grey neurons are
added in the DC setup: the neural controller also receives as input
the perceived sound signals. The dashed lines and the dark grey
neuron are further added in the EC setup: the neural network now
controls the sound emitter also
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scaling of the reading taken from its associated sensor.
Additionally, the network is provided with a bias unit,
i.e. an input unit whose activation state is clamped to 1.
The activation of the output neurons is computed as the
weighted sum of all input and bias units, filtered through
a sigmoid function. The activations of the output neu-
rons are real-valued numbers in the range [0.0, 1.0] and
are used to control the effectors of the s-bot.

In the basic DI setup, the traction and the ground
sensors are used as inputs. Specifically, four inputs of the
perceptron are dedicated to the traction sensor, encod-
ing the traction force intensity and direction into four
variables, as already mentioned in Sect. 3.2. Four other
inputs are dedicated each to one ground sensor. Con-
cerning the actuators, the two outputs of the perceptron
are used to control the left and right wheels, scaling
the activation values in the range [−ωM, ωM], where
ωM ≈ 3.6 rad/s. Additionally, the same two outputs
control the turret–chassis motor. The desired speed of
the turret–chassis motor was set equal to the difference
between the desired speed of the left and right wheels
times a constant k = rw/2dw, where rw is the radius of
the wheels and dw the distance between the two wheels.
This setting leads to a movement of the turret with re-
spect to the chassis that counter-balances the rotation of
the chassis produced by the wheels’ motion. This is use-
ful to help the rotation of the chassis with respect to the
turret when the s-bots are physically connected to one
another.

In the DC setup, two additional binary inputs encode
the information perceived by the microphones, as shown
in Fig. 5. We use two inputs (instead of one) in order to
cope with the rotational limit and the front inversion
mechanism. One input is active when the s-bot uses the
principal front, while the other is active when the s-bot
is using the inverted front. In this way, it is possible to
evolve controllers that can cope with the front inversion
mechanism (see Appendix). These inputs are set to 1 if
at least one s-bot is signalling, while they are set to 0 if
no sound signal is perceived. The activation of the loud-
speaker has been handcrafted in this setup, simulating a
sort of reflex action: an s-bot activates the loudspeaker
whenever one of its ground sensors detects the presence
of a hole. Thus, the neural network does not control
the emission of a sound signal. However, it receives the
information coming from the microphones, and evolu-
tion is responsible for shaping the correct reaction to the
perceived signals.

On the contrary, in the EC setup the sound emitter is
controlled by an additional output added to the neural
network, along with all the required connections (see
Fig. 5). Whenever the activation of this additional neu-
ron is greater than 0.5, a tone is emitted. Therefore, in

this setup evolution is responsible for shaping not only
the response to the emission of a signal, but also the
signalling behaviour. In other words, the complete com-
munication paradigm – the signalling and the reaction to
the perceived signal – is under the control of evolution.

The weights of the perceptron’s connections are
genetically encoded parameters. In all three setups a
simple generational evolutionary algorithm is used. Ini-
tially, a random population of 100 genotypes is gener-
ated. Each genotype is a vector of binary values, 8 bits
for each parameter. The genotype is composed of 144
bits for DI, 176 for DC and 264 for EC. Subsequent
generations are produced by a combination of selection
with elitism and mutation. Recombination is not used.
At every generation, the best 20 genotypes are selected
for reproduction, and each generates four offspring. The
80 offspring, each mutated with a 5% probability of flip-
ping each bit, together with the 20 parents form the pop-
ulation of the subsequent generation. One evolutionary
run lasts 200 generations.

4.3 Fitness evaluation

During evolution, a genotype is mapped onto a control
structure that is cloned and downloaded onto all the
s-bots taking part in the experiment (i.e. we make use
of a homogeneous group of s-bots). Each genotype is
evaluated 12 times, i.e. 12 trials. Each trial is charac-
terised by a different seed for the initialisation of the
random number generator, which influences both the
initial position of the swarm-bot and the initial orienta-
tion of each s-bot’s chassis. Each trial lasts T = 400 con-
trol cycles, each corresponding to 0.1 simulated seconds.
As already mentioned, we have defined three different
conditions for the evolution of both coordinated mo-
tion and hole avoidance (see Fig. 4). Conditions “a” and
“b” are intended to evolve robust coordinated motion
strategies on flat terrain. Condition “c” is devoted to
the evolution of hole avoidance. During evolution, the
swarm-bot is initialised to one of these different con-
ditions for 4 trials, thus obtaining 12 trials in total per
genotype.

The behaviour produced by the evolved controller is
evaluated according to a fitness function that takes into
account only variables directly accessible to the s-bots
(see Nolfi and Floreano 2000, p 73). In each simulation
cycle t, for each s-bot s belonging to the swarm-bot S,
the individual fitness fs(t) is computed as the product of
three components:

fs(t) = ωs(t)�ωs(t)γs(t), (1)
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where:

– ωs(t) accounts for fast motion of an s-bot. It is com-
puted as the sum of the absolute values of the angular
speed of the right and left wheels, linearly scaled in
the interval [0, 1]:

ωs(t) = |ωs,l(t)| + |ωs,r(t)|
2ωM

, (2)

where ωs,l(t) and ωs,r(t) are, respectively, the angular
speed of the left and right wheels of s-bot s at cycle
t, and ωM is the maximum angular speed achievable.

– �ωs(t) accounts for the straightness of the s-bot’s
motion. It is computed as the difference between the
angular speeds of the different wheels, as follows:

�ωs(t) =
{

0 if ωs,l(t)ωs,r(t) < 0

1 −
√ |ωs,l(t)−ωs,r(t)|

ωM
otherwise

.

(3)

This component is different from zero only when the
wheels rotate in the same direction, in order to penal-
ise any turning-on-the-spot behaviour. The square
root is useful to emphasise small speed differences.

– γs(t) accounts for coordinated motion and hole avoid-
ance. It is computed as follows:

γs(t) = 1 − max
(
Fs(t), Gs(t), Ss(t)

)
, (4)

where Fs(t) is the intensity of the traction force per-
ceived by the s-bot s at time t, Gs(t) the maximum acti-
vation among the ground sensors of s-bot s at time t
and Ss(t) a binary value corresponding to 1 if s-bot s is
emitting a tone at time t and 0 otherwise. This compo-
nent favours coordinated motion as it is maximised
when the perceived traction is minimised, which cor-
responds to a coherent motion of the swarm-bot.
It also favours hole avoidance because it is maxi-
mised if the s-bots stay away from the holes. Finally,
the component referring to the speaker has been
designed to minimise the usage of direct communi-
cation, in order to signal only when it is necessary.

Given the individual fitness fs(t), the fitness Fθ of a
trial θ is computed as follows:

Fθ =




0 if fall

1
T

T∑
t=1

min
s∈S

fs(t) otherwise

,
(5)

where T is the maximum number of simulation cycles.
This fitness computation strongly penalises every fall
of the swarm-bot, in order to evolve robust avoidance
behaviours. However, given that many trials are per-
formed on a flat plane, genotypes that result in a good
coordinated motion strategy are still rewarded. Addi-
tionally, at each simulation cycle t we select the mini-
mum among the individual fitnesses fs(t), which refers to
the worst-performing s-bot, therefore obtaining a robust
overall fitness computation. As a final remark, it is worth
noting that in all the three setups the same evaluation
function is used. Even if it may appear that the fitness
evaluation has been designed explicitly for the EC setup,
it ensures a fair comparison of the three setups. In fact,
in DI sound is not used, so that Ss(t) is always 0, while in
DC sound is used corresponding to the maximum acti-
vation of the ground sensors, so that both Ss(t) and Gs(t)
are equal to 1, therefore the handcrafted emission of a
tone is not penalised more than in the EC setup.

5 Results

For all setups – DI, DC and EC– the evolutionary exper-
iments were replicated 10 times, so that 30 evolutionary
runs have been performed on the whole. In all cases, a
successful hole avoidance behaviour was evolved. The
average performance of the best individuals of all evo-
lutionary runs is close to 0.5, where a value of 1 should
be understood as a loose upper-bound to the maximum
value the fitness can achieve.4

5.1 Behavioural analysis

Looking at the behaviours produced by the evolved con-
trollers, we observe no particular difference among the
three setups for what concerns the initial coordination
phase that leads to the coordinated motion of the swarm-
bot. This is not surprising, because coordinated motion
results mainly from the evaluation of the controllers on
a flat terrain, namely, in conditions “a” and “b” shown
in Fig. 4. In these conditions, the use of direct commu-
nication does not lead to any particular advantage, and
the performance achieved by the three different setups
is comparable. Therefore, in the following we describe
the initial coordination phase referring to one particular
controller evolved in the DI setup, as the other control-
lers produce similar behavioural strategies.

4 This maximum value could be achieved only if all s-bots start
with their chassis already aligned in the same direction and always
move in a flat environment, without holes.
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Table 1 Average and standard deviation of the performance F of the best evolved controllers for each evolutionary run in the three
different setups. For each controller, the percentage of falls is also shown

DI setup DC setup EC setup

Run F Falls (%) F Falls (%) F Falls (%)

1 0.43 ± 0.06 41 0.48 ± 0.06 0 0.51 ± 0.06 0
2 0.45 ± 0.07 33 0.50 ± 0.08 22 0.49 ± 0.06 2
3 0.43 ± 0.07 34 0.49 ± 0.06 2 0.50 ± 0.06 0
4 0.47 ± 0.07 56 0.47 ± 0.06 1 0.48 ± 0.08 1
5 0.44 ± 0.07 47 0.51 ± 0.06 1 0.50 ± 0.06 1
6 0.45 ± 0.07 37 0.50 ± 0.05 0 0.55 ± 0.06 2
7 0.44 ± 0.07 39 0.47 ± 0.06 0 0.53 ± 0.05 0
8 0.44 ± 0.06 41 0.48 ± 0.06 1 0.50 ± 0.06 1
9 0.46 ± 0.08 23 0.44 ± 0.08 7 0.51 ± 0.06 2
10 0.45 ± 0.08 30 0.50 ± 0.06 0 0.51 ± 0.06 0

At the beginning of a trial, the s-bots start to move
in the direction in which they were initially positioned,
resulting in a rather disordered overall motion. Within
one or two control cycles the physical connections trans-
form this disordered motion into traction forces that are
exploited to coordinate the group. When an s-bot feels
a traction force, it rotates its chassis so as to reduce this
force. Once the chassis of all the s-bots are oriented
in the same direction, the traction forces disappear and
the coordinated motion of the swarm-bot starts (see also
Baldassarre et al. 2004; Trianni et al. 2004a).

The differences between the three setups appear once
the hole avoidance behaviour is considered. In the DI
setup, s-bots can rely only on direct interactions in the
form of traction forces in order to communicate the
presence of a hole and consequently avoid falling into it.
The s-bot that first detects a hole immediately inverts its
direction of motion, and therefore produces a traction
force that is perceived by the other s-bots. Exploiting
this force, a new coordination phase is triggered, which
results in a new direction of motion that leads the swarm-
bot away from the hole. However, s-bots are not always
capable of avoiding falling. In fact, the avoidance behav-
iour is based on a delicate balance of the forces involved
– i.e. motors, traction and friction forces – which does
not always ensure a prompt reaction to the detection of
the hole.

A faster reaction to the detection of a hole is achieved
in the DC and EC setups, in which s-bots have the pos-
sibility to exploit direct communication mediated by
sound signals.5 This is always the case in all the con-
trollers evolved in different evolutionary runs. In the
DC setting, the activation of the speaker is handcrafted
and corresponds to the perception of a hole with any of
the ground sensors, while the response to this signal is

5 Falls are also registered for these setups, even if much more
sporadically than in the DI case (see also Table 1).

shaped by evolution. In most of the different evolution-
ary runs, the perception of the signal corresponds to the
rotation on the spot of the chassis of all the s-bots but the
one that perceives the hole. This latter one tries to move
away from the arena border and, in doing so, it does not
encounter much resistance from the others, until it ends
up not detecting the hole any more. At this point, the
signalling ceases and the group reorganises moving in a
new direction.

The situation is much more complex for the EC setup.
In fact, in this case evolution is in charge of shaping both
the signalling mechanisms and the response to the per-
ceived signals. It is very interesting to notice how evolu-
tion produced a variety of behaviours, all well adapted
to the hole avoidance task. A detailed description of
all the communication and behavioural strategies cor-
responding to the different evolutionary runs is out of
the scope of this paper. It is anyway interesting to high-
light some of the common points that characterise these
behaviours, which seem to be the cause of the better
performance achieved in this setup, as we show in the
following:

1. Signalling is associated with the perception of a hole,
similar to the DC setup. However, not all ground sen-
sors are associated with a signalling behaviour, but
only those corresponding to the direction of motion.
In this way, s-bots do not influence each other if they
perceive a hole while they are moving away from
it.

2. The signalling behaviour is not only linked to the per-
ception of a hole, but is influenced by other factors
also, such as the traction force perceived and the per-
ception of sound signals. In particular, in some cases,
a high traction force inhibits the production of the
signal. The adaptive function of this inhibition con-
sists in the fact that in the absence of sound signals,
the s-bots try to coordinate based on traction only,
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which may lead to a faster choice of a new direction
of motion away from the hole.

3. Similar to point 2, signal production is in some cases
also inhibited by sound perception. In particular,
when the perception of the self-emitted sound inhib-
its its production, an s-bot performs an alternate sig-
nalling, switching the loudspeaker on and off every
control cycle. In this way, the s-bots’ behaviour is
influenced only in part.

The above mechanisms contribute to achieve a fast and
reliable reaction to the perception of a hole, a reaction
that in general results in an efficient avoidance.

From the qualitative analysis, the use of direct com-
munication seems to confirm our expectations: it results
in a faster reaction to the detection of a hole and there-
fore in a more efficient avoidance behaviour. Addition-
ally, the evolved communication strategy appears more
adaptive than the handcrafted solution. In order to as-
sess the performance difference between the different
setups, we performed a quantitative analysis, described
in the following.

5.2 Quantitative analysis

We performed a post-evaluation analysis and compared
the results obtained with the three setups. For each evo-
lutionary run, we selected the best individual of the
final generation and re-evaluated it 100 times. Each
performance evaluation is the average of the fitness
scored in three trials, one for each experimental condi-
tion encountered during evolution and shown in Fig. 4.
In each trial, characterised by a different random ini-
tialisation, the performance is measured using Eq. (5).
All individuals are tested against the same set of trials,
using the same random initialisation. On the whole, the
selected controllers are evaluated in 300 trials, obtaining
100 performance values that characterise their behav-
iour with respect to both coordinated motion and hole
avoidance. A box-plot summarising the performance of
these individuals is shown in Fig. 6. It is possible to no-
tice that EC generally performs better than DC and DI,
while DC seems to be generally better than DI.

Table 1 reports the average performances obtained
from the post-evaluation analysis, along with the num-
ber of falls registered in condition “c”. This seems to
confirm that the use of direct communication has a rele-
vant effect on the performance. We can also notice that
in the DI setup, the swarm-bot is often unable to avoid
falling. In the other setups, the swarm-bot falls only spo-
radically.
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Fig. 6 Post-evaluation analysis of the best controller produced by
all evolutionary runs of the three different setups. Boxes repre-
sent the inter-quartile range of the data, while the horizontal lines
inside the boxes mark the median values. The whiskers extend to
the most extreme data points within the inter-quartile range from
the box. The empty circles mark the outliers

Table 2 Analysis of variance for the effect of the setups

df Partial SS MS F P

Setups 2 1.823 0.911 279.43 <0.0001
Trials 99 4.153 0.042 12.86 <0.0001
Total 101 5.9760 0.059 18.14 <0.0001
Error 2,898 9.4525 0.003

On the basis of these data, we performed a two-way
analysis of variance (Montgomery 1997) to test if there
is a significant difference in performance among the
three setups. The analysis considers 3 factors (the set-
ups), 100 blocks (the testing trials) and 10 replications
for each combination of factor/block (the evolutionary
runs). The applicability of the method was checked look-
ing at the residuals coming from the linear regression
modelling of the data: no violation of the hypothesis to
use the analysis of variance was found. The result of the
analysis, summarised in Table 2, allows us to reject the
null hypothesis that there is no difference among the
three setups.

The above analysis tells us that there is a statistical
difference among the three setups, but it does not show
which setup is different. Therefore, we performed pair-
wise Tukey’s tests among the three setups. The obtained
results show with 99% confidence that the behaviours
evolved within the EC setup perform significantly bet-
ter than those evolved with both the DI and DC setups.
The latter in turn results to be significantly better than
the DI setup. We can conclude that the use of direct
communication is clearly beneficial for hole avoidance.
In fact, it speeds up the reaction to the detection of a
hole and makes the avoidance action more reliable. We
have also shown that evolving the communication pro-
tocol leads to a more adapted system. In the following,
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Table 3 Results of the post-evaluation using the performance
based on the integrated trajectory. Average performance and stan-
dard deviation are displayed for the best evolved controllers of

each evolutionary run. For each controller, the percentage of falls
is also shown. The individuals chosen for transfer to the physical
s-bots are displayed in bold

DI setup DC setup EC setup

Run Tθ Falls (%) Tθ Falls (%) Tθ Falls (%)

1 0.10 ± 0.21 69 0.48 ± 0.28 5 0.63 ± 0.31 8
2 0.08 ± 0.15 62 0.19 ± 0.26 52 0.46 ± 0.31 13
3 0.10 ± 0.20 66 0.53 ± 0.30 5 0.48 ± 0.32 15
4 0.04 ± 0.12 76 0.32 ± 0.28 28 0.54 ± 0.33 10
5 0.10 ± 0.15 52 0.40 ± 0.27 14 0.43 ± 0.31 14
6 0.11 ± 0.20 61 0.49 ± 0.24 0 0.50 ± 0.28 8
7 0.12 ± 0.19 60 0.43 ± 0.25 0 0.58 ± 0.31 9
8 0.09 ± 0.18 63 0.54 ± 0.27 2 0.46 ± 0.32 14
9 0.28 ± 0.26 29 0.43 ± 0.32 21 0.42 ± 0.37 29
10 0.13 ± 0.24 63 0.56 ± 0.26 1 0.57 ± 0.30 5

we show how these behaviours can be efficiently trans-
ferred to the physical robots.

6 Transfer on physical s-bots

So far, we have shown how evolution can synthesise
neural controllers that produce coordinated, coopera-
tive behaviours in a group of simulated robots. We have
also shown that evolution can shape the communica-
tion protocol in order to maximise the performance of
the robotic system. In this section, we show how the
controllers evolved in simulation can smoothly transfer
to the real world. In order to do so, we first describe
the methodology applied for choosing the individuals to
test in reality. Then, we describe some issues related to
the porting of the evolved controllers on physical robots.
Finally, we present the results obtained with the physical
robots and compare them with the simulation.

6.1 Selection of the controllers

In order to test the evolved behaviours on the physical
robots, a choice had to be made among the available con-
trollers, because testing all the best evolved neural net-
works in a sufficient number of trials would have been
impractical and more time-consuming. We therefore de-
cided to test a single controller per setup and compare
its performance between simulation and reality.

We based the selection of the best controller on a
different performance metric with respect to what was
used during evolution. In fact, the function defined in
Eq. (5) is a very conservative evaluation of the hole
avoidance behaviour. It always takes into account the
worst performing individual of the group and makes a
product of measures that are based on individual sensor
readings, which are affected by high levels of noise in the

real world. Therefore, when computed on data obtained
from the physical robots, Fθ resulted in very low values,
and a comparison with simulation results was not fair.
The new performance metric T gives a more informative
measure of the controller’s quality with respect to hole
avoidance and allows making a fair comparison between
simulation and reality. This performance metric corre-
sponds to the distance covered by the swarm-bot and
is computed integrating the trajectory covered by the
centre of mass of the s-bots during a trial θ . This metric
is computed as follows:

Tθ =




0 if fall

1
DM

T∑
t=1

||XS(t) − XS(t − 1)|| otherwise
, (6)

where XS(t) is the coordinate vector of the centre of
mass of the swarm-bot S at cycle t, T the number of con-
trol cycles performed and DM the maximum distance
that an s-bot can cover moving straight at maximum
speed in T control cycles.

Using Eq. (6), we performed a post-evaluation anal-
ysis of all the best controllers evolved in the 30 evolu-
tionary runs. The swarm-bot was put in a small square
arena, its side measuring 180 cm, shown in Fig. 7a. A real
version of this arena was built, making the comparison
between simulation and reality possible (see Fig. 7b).
The results obtained from the post-evaluation are sum-
marised in Table 3. Both the average performance and
the number of times the swarm-bot fell out of the arena
are shown.6 It is possible to notice that the number of

6 Using these data we performed the same statistical analysis
described in Sect. 5.2, and also in this case we obtained a signifi-
cant difference among the setups, confirming that EC is the best
setup, followed by DC and DI (data not shown).
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Fig. 7 The square arena used
for the comparison between
simulation and physical
s-bots. a The simulated arena;
b the real arena

falls is rather high for the DI setup, and in general much
lower for the DC and EC setups.

The choice of the best controller for each setup should
be based on its performance. However, other factors are
also relevant when considering porting on real robots. In
our case, we were mainly interested in avoiding damage
to the s-bots, therefore we decided to select those con-
trollers that resulted in the least number of falls. In case
of multiple possibilities, as for the DC setup, a choice
based on the highest mean performance has been per-
formed. Consequently, we chose the controllers evolved
in the ninth, sixth and tenth evolutionary runs, respec-
tively, for the DI, DC and EC setups.

6.2 Issues in porting on physical s-bots

The neural network controller is used on the real s-bots
exactly in the same way as in simulation. The values
returned by the various sensors are read every 100 ms,
they are scaled in the range [0,1] and finally fed to the
neural network. The outputs of the network are used to
control the wheels and the turret–chassis motor. There
are only two differences compared to the simulation.
First of all, an exponential moving average is applied
to the outputs of the neural network that controls the
wheels and the turret–chassis motor:

ω(t) = τy(t) + (1 − τ)ω(t − 1), (7)

where ω(t) is the desired angular speed of the wheels at
time t, y(t) the set-point defined by the neural controller
and τ = 0.8 is the time constant used. This average is
required to avoid damage to the robots if the network
output varies too much, and it adds to the smoothing
of the wheels’ speed performed by the PIC™ controller
of the motors. Moreover, we added a recovery func-
tion that is necessary to avoid damage of the s-bots due
to excessive efforts by the motors of the wheels. This
function constantly monitors the torque applied by the
motors of the left and right wheels, and in case the torque
exceeds a given threshold for a long time, the speed of
the wheels is set to 0. Both these modifications make
the system somewhat less reactive to external stimuli,

but they are required in order to avoid an excessive
strain of the motors.

No parameter tuning was required except for the
maximum traction force FM. This parameter is used for
scaling the readings R(t) of the traction sensor:

F(t) =



−1 if R(t) < −FM
R(t)
FM

if |R(t)| ≤ FM

1 if R(t) > FM

, (8)

where F(t) is the normalised value fed to the neural con-
troller. The optimal value of FM depends on the neural
controller, the individual properties of the s-bots (level
of noise, effective power of the motors) and the friction
coefficient of the ground, which can vary due to dust or
humidity. Therefore, we tuned this parameter indepen-
dently for each neural controller in order to maximise
its performance.

6.3 Results

Each selected controller was evaluated in 30 trials, al-
ways starting with a different random initialisation. A
square swarm-bot was placed in the centre of the square
arena shown in Fig. 7b. The behaviour of the swarm-bot
was recorded using an overhead camera and its trajec-
tory obtained using the tracking software SwisTrack,7

which proved to be a valuable tool for tracking a swarm
of robots (Correll and Martinoli 2006). Figure 8a shows
an example of the trajectory extracted using the track-
ing software. The obtained data were used to compute
the performance of the system using Eq. (6).

Qualitatively, the behaviour produced by the evolved
controllers tested on the physical s-bots is very good and
closely corresponds to that observed in simulation8 (see
Fig. 8). S-bots coordinate more slowly in reality than in
simulation, taking a few seconds to agree on a common

7 A software developed by the Swarm-Intelligent Systems Group,
EPFL, http://swistrack.sourceforge.net.
8 Movies of these behaviours are available in the electronic sup-
plementary material.



Biol Cybern (2006) 95:213–231 227

Fig. 8 a View of the arena
taken with the overhead
camera. The black line
corresponds to the trajectory
of the swarm-bot in a trial
lasting 900 control cycles. b A
physical swarm-bot while
performing hole avoidance. It
is possible to notice how
physical connections among
the s-bots serve as support
when a robot is suspended
out of the arena, still allowing
the whole system to work.
Notwithstanding the above
difficult situation, the
swarm-bot was able to avoid
falling

direction of motion, also due to the smoothing of the
wheel speed discussed in Sect. 6.2. Some problems are
caused by the front inversion mechanism, which some-
times leads to a loss of coordination, due mainly to the
high friction of the treels system. Hole avoidance is also
performed with the same modalities as observed in simu-
lation. With the DI controller, the combination of tracks
and wheels of the traction system brings an advantage
compared to the results recorded in simulation, in which
the tracks are not modelled (see Sect. 3.2). In fact, differ-
ently from what happens in simulation, the s-bot that
perceives the hole can produce a traction force even if it
is nearly completely suspended out of the arena. More-
over, the higher friction provided by the tracks allows to
produce higher traction forces that can have a greater
influence on the behaviour of the rest of the group. Sim-
ilarly, the treels system is advantageous for the DC con-
troller, in which the s-bot perceiving the holes pushes
the other s-bots away from the arena border while emit-
ting a sound signal. Concerning the EC controller, on
the contrary, the treels system does not lead to a clear
advantage from a qualitative point of view. In both DC
and EC, we recorded some communication failures, in
which an s-bot misses either to switch on the loudspeaker
or to perceive an emitted signal. In particular, in the EC
setup, failures are more frequent whenever an s-bot tries
to switch the loudspeaker on and off at a high pace.

From a quantitative point of view, it is possible to rec-
ognise some differences between simulation and reality,
as shown in Fig. 9 and Table 4. We compare the per-
formance Tθ recorded in 100 trials in simulation with
the one obtained from the 30 trials performed in reality.
Generally, we observe a decrease in the maximum per-
formance, mainly due to a slower coordination among
the s-bots. This means that physical s-bots start moving
coordinately later than the simulated ones, both at the
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Fig. 9 Comparison of the performance produced in the different
settings by the selected controllers tested both in simulation and
reality. For an explanation of the plot, see Fig. 6

beginning of a trial and after the perception of a hole.
This influences the performance, as the swarm-bot can-
not cover long distances until coordination among the
s-bots is achieved.

Looking at Fig. 9 and Table 4, we can notice that
the performance of the DI controller is better in real-
ity, thus confirming the qualitative analysis for which
the treels system allows to enhance the direct interac-
tions among the s-bots, therefore leading to a better
avoidance behaviour. This is also confirmed by the per-
centage of falls, which is lower in reality than in simu-
lation. Concerning the DC controller, the performance
difference between simulation and reality is minimal.
In this case, we observed that the possible performance
drop due to communication failures was compensated
for by the higher force transmitted from one s-bot to
the other due to the high friction of the treels system.
Here, only one fall was observed out of the 30 trials per-
formed. On the contrary, the best controller of the EC
setup does not perform as well in reality as in simula-
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Table 4 Average and standard deviation of the performance obtained by the selected controllers tested both in simulation and reality.
The percentage of falls is also shown

DI setup DC setup EC setup

Tθ Falls (%) Tθ Falls (%) Tθ Falls (%)

Simulation 0.28 ± 0.26 29 0.49 ± 0.24 0 0.57 ± 0.30 5
Reality 0.33 ± 0.20 20 0.47 ± 0.18 3.3 0.45 ± 0.21 6.6

tion. S-bots are always able to coordinate and perform
coordinated motion and hole avoidance. However, we
observe here that s-bots are slower in avoiding holes due
mainly to some failures in the communication system,
which is fundamental to trigger and support the avoid-
ance action. For this reason, quantitatively the perfor-
mance decreases. However, the behaviour is altogether
good, and the percentage of falls is in line with the results
obtained in simulation, as shown in Table 4.

7 Conclusions

The definition of collective behaviours based on self-
organisation is a problem of particular interest for many
researchers. In this paper, we show that through artifi-
cial evolution it is possible to synthesise controllers that
achieve very good performance in simulation and that
can be smoothly ported to physical robots.

We have shown that the use of direct communication
among the s-bots is particularly beneficial in the case of
hole avoidance. It is worth noting that direct communi-
cation acts here as a reinforcement of the direct interac-
tions among the s-bots. In fact, s-bots react faster to the
detection of the hole when they receive a sound signal,
without waiting to perceive a traction strong enough to
trigger the hole avoidance behaviour. However, traction
is still necessary for avoiding the hole and coordinating
the motion of the swarm-bot as a whole. Additionally,
the statistical analysis of the results obtained in simu-
lation showed that the completely evolved setup out-
performs the setup in which direct communication is
handcrafted. This result is in our eyes particularly sig-
nificant because it shows that artificial evolution can
synthesise solutions which would be very hard to design
with conventional approaches. In fact, the most effective
solutions discovered by evolution exploit some interest-
ing mechanisms for the inhibition of communication that
would have been difficult to devise without any a priori
knowledge of the system’s dynamics.

The neural controllers synthesised by artificial evolu-
tion proved to be robust enough to be tested on physical
robots, notwithstanding the huge gap between the simu-
lation model used for the evolution and the actual s-bot.

The neural controller produced a qualitatively equiv-
alent behaviour to what was observed in simulation.
The performance measured in the real world was some-
what affected by various factors, but the difference with
simulation was never higher than 20% on average. We
can therefore conclude that we succeeded in transfer-
ring an evolved self-organising behaviour from simu-
lated to physical s-bots. To the best of our knowledge,
no other comparably advanced behaviour has been
evolved in simulation and successfully tested on physical
robots.

In future work, we will continue the development
of self-organising, communicating behaviours for the
swarm-bot and, possibly, other robotic platforms. Mainly,
two issues attract our attention: on the one hand, we
are interested in studying the formation of a physically
assembled structure, i.e., a swarm-bot, as an adaptive
response to adverse environmental contingencies that
prevent the single individuals, i.e. the s-bots, to accom-
plish their task. This process goes under the name of
functional self-assembly (Trianni et al. 2004b): The de-
sign of suitable controllers for functional self-assembly
is a problem still at an early stage of study approaching
it using evolutionary techniques is our main goal. On
the other hand, we are interested in the evolution of
communication for synchronisation of the activities of a
group. As in the experiments presented in this paper, the
evolution of communication should be functional to the
achievement of a particular goal, e.g. efficiently avoid-
ing holes. In the case of synchronisation of the group
activities, communication should emerge as a means for
reducing waste of energy at the individual level when
strictly cooperative actions are required.
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See text for more details
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Appendix

The front inversion mechanism

Suppose that an s-bot is driven by a controller that ro-
tates the chassis toward the traction direction, covering
the minimum angular distance. This controller takes as
input the intensity and direction of the traction force
computed from a reference frame integral with the chas-
sis. Moreover, this controller does not take into account
the rotational limit. Suppose also that the s-bot finds it-
self in the situation depicted in Fig. 10a: the chassis is
oriented in the direction indicated as A and a traction
force is perceived as indicated. Driven by its control-
ler, the s-bot rotates the chassis counterclockwise, but
it encounters the rotational limit and gets stuck. Now,
suppose that the traction force stays the same, while the
chassis is oriented in the opposite direction, indicated by
B in Fig. 10b. In this case, the controller rotates the chas-
sis clockwise and reaches the desired position without
encountering the rotational limit.

In the situation depicted in Fig. 10, A and B corre-
spond to the two directions – hereafter called fronts –
of the s-bot’s chassis: one corresponds to forward mo-
tion, the other to backward motion. The symmetry of
the chassis allows to make no distinction between these
two fronts. The front inversion mechanism consists in

swapping front A with front B and vice versa every time
the rotational limit is encountered. With respect to the
above example, when the s-bot is in the situation de-
picted in Fig. 10a, it is exploiting the front A as main
direction of motion and turns counterclockwise, until
the rotational limit is encountered. At this point, the
front inversion mechanism swaps the fronts, so that the
s-bot exploits front B as the main direction of motion.
As the traction force comes now from the left, the s-bot
rotates clockwise and reaches the desired orientation.

Technically, inverting the front from A to B or vice
versa involves a 180◦ rotation of the chassis’ reference
frame, therefore passing from xaya to xbyb, as in Fig. 10.
The inputs of the controller must be computed referring
to the new reference frame. In particular, the traction
encoding must be inverted:

Fb = −Fa,

where Fa is the traction as perceived by the traction
sensor and Fb the value fed to the controller. If other
sensors are used, their readings must be swapped with
respect to both x and y axes before using them as input
to the controller.9 Concerning the wheels, using front B
instead of front A requires that the controller outputs
are inverted as well:

ωb,l = −ωa,r,

ωb,r = −ωa,l,

where ωa,– is the angular speed defined by the controller,
while ωb,– is the angular speed set to the wheel.

The precondition for the application of the front in-
version mechanism is the central symmetry of the sen-

9 This applies to ground sensors in the experiments presented in
this paper.
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sory motor equipment, because it allows a 180◦ rotation
of the reference frame. Moreover, the controller must be
somewhat “symmetric” itself: in the inverted condition,
the controller should produce an action that is opposite
with respect to the non-inverted condition. For example,
a controller that rotates the chassis clockwise for every
perceptual condition is not symmetric. In such a case,
swapping the fronts does not lead to any advantage. A
symmetric controller would turn counterclockwise when
using A and clockwise when using B for a given percep-
tual state, similar to the situation depicted in Fig. 10.
Notice that the controller does not have to be perfectly
symmetric, but it is sufficient that it results in a “qual-
itatively” symmetric action with respect to symmetric
perceptual conditions.

The necessity of having a symmetric controller when
using the front inversion mechanism justifies the intro-
duction of two sound inputs in the DC and EC setups
(instead of adding only one), as mentioned in Sect. 4.2.
Having a single input would lead to a single action, no
matter which front is used. For example, if the response
to a perceived signal is a clockwise turn, it would not
change when inverting the fronts. Therefore, we make
use of two inputs, which are alternately set whether the
active front is A or B. This allows to obtain a symmet-
ric behaviour with respect to the perception of sound
signals (i.e. a clockwise rotation using A and a counter-
clockwise rotation using B). Finally, it is worth noting
that it is up to the evolutionary algorithm to synthesise
a symmetric controller: in fact, if the controller were
not symmetric, the front inversion mechanism would
not work properly and the s-bot would get stuck on the
rotational limit.
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