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Abstract. This paper is about the design of an artificial neural network
to control an autonomous robot that is required to iteratively solve a
discrimination task based on time-dependent structures. The “decision
making” aspect demands the robot “to decide”, during a sequence of
trials, whether or not the type of environment it encounters allows it to
reach a light bulb located at the centre of a simulated world. Contrary
to other similar studies, in this work the robot employs environmental
structures to iteratively make its choice, without previous experience
disrupting the functionality of its decision-making mechanisms.

1 Introduction

Evolutionary Robotics (ER) is a methodological tool for the design of robots’
controllers. Owing to its properties, ER can also be employed to study the evo-
lution of behaviour and cognition from a perspective complementary to classic
biological/psychological methods (see [4]).

Given the current “status” of their research field, ER practitioners focus not
only on studies with an explicit bearing on engineering or biological literature
but also on studies which aim to further develop their methods. For example,
several research works have focused on the modelling and exploitation of al-
ternative controllers for autonomous robots—e.g., spiking networks [7], and gas
networks [0]. In general, these works look at how to exploit evolution to shape
these controllers rather than at the complexity and the significance of the evolved
behaviour. Contrary to these, other works are more focused on the evolution of
novel—i.e., never evolved yet—and complex behaviour. For example, some works
exploited “classic” neural structures to evolve controllers for agents capable of
non-reactive or learning behaviour [§]. The results of these studies should be
considered as a “proof-of-concept”: they show that the type of control structure
employed can be shaped by evolutionary algorithms to provide the robot with
the underlying mechanisms required to solve the task at hand.

The work illustrated in this paper belongs to the latter category. To the best
of our knowledge, this is the first study in which a single (i.e., non modularised)
dynamic neural network has been shaped to control the behaviour of an au-
tonomous robot engaged in an iterated discrimination task[]. The task requires

! A literature review of the field can be found in [9].
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navigation within a circular arena in order to approach a light bulb located at the
centre of this simulated world. The “decision making” aspect requires the robot
“to iteratively decide”, during a sequence of trials, whether or not the types of
environment it encounters allow it to accomplish its task. The difficulty of the
task lies, on the one hand, in the nature of the discrimination problem, which re-
quires the integration of sensory information over time; on the other hand, in the
design of decision making mechanisms to carry out the iterated discrimination
task. That is, this task requires the robot to possess memory structures which do
not lose their functionality due to potentially disruptive effects of the previous
experience—i.e., the nature and the amount of discriminations already made.
The results show that dynamic neural networks can be successfully designed by
evolution to allow a robot to iteratively solve the discrimination task based on
time-dependent cues. We also provide an analysis which gives some hints on the
strategy employed by the best evolved robot to solve the task.

2 Methods

Description of the task. At the start of each trial, the simulated robot is
placed in a circular arena with a radius of 110 cm (see Fig.[Il). The arena is sim-
ulated as a toroidal world; that is, if the robot traverses the world’s boundaries
from one side, it comes in from the other side at the anti-diametrical position.
At the centre of this world there is a light bulb that is always turned on during
a trial. The light can be perceived up to a distance of 90 cm. Between 90 cm and
110 c¢m of distance to the bulb, the robot does not perceive any light. We refer to
this area of the arena as the dark zone. The robot perceives the light through its
ambient light sensors. The colour of the arena floor is white except for a circular
band, centred around the lamp, within which the floor is in shades of grey. The
circular band covers an area between 40 cm and 60 cm from the light. The band
is divided in three sub-zones of equal width but coloured differently—i.e., light

Env A Env B S-bot

Dark zone Dark zone

Fig. 1. Depiction of the task and picture of a s-bot close to a 1 Euro coin. The dark zone
is the area within the dotted circles. The target area, centred on the light, is indicated by
the dashed circle. The continuous arrows are examples of good navigational strategies.
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grey, dark grey, and black. The robot perceives the colour of the floor through
its floor sensor, positioned under its chassis.

The robot can freely move within the arena as well as on the circular band,
but it is not allowed to cross the black edge of the band close to the light. This
edge can be imagined as an obstacle or a trough, that prevents the robot from
further approaching the light. Whenever the robot crosses the black edge, the
trial is unsuccessfully terminated. The light grey and the dark grey zones are
meant to work as a warning signal which indicates to the robot how close it
is to the danger—i.e., the black edge. There are two types of environment. In
one type—referred to as Env A—the band presents a discontinuity (see Fig. [l
left). This discontinuity, referred to as the way in zone, is a sector of the band
in which the floor is white. In the other type—referred to as Env B—the band
completely surrounds the light (see Fig. [[l middle). The way in zone represents
the path along which the robot is allowed to safely reach the light in Env A. The
robot cannot reach the proximity of the light in EFnv B.

At the start of each trial, the robot does not know in which type of envi-
ronment it is located. It finds itself positioned in the dark zone with a random
orientation. At this time its task is to explore the arena, in order to get as close as
possible to the light. If it encounters the circular band it has to start looking for
the way in zone in order to continue approaching the light. If it finds the way in
zone, the robot has to get closer to the light and remain in its proximity for 10s.
After this time, the trial is successfully terminated and the robot is randomly
re-positioned in the dark zone. If there is no way in zone (i.e., the current envi-
ronment is Env B), the robot should be capable of (a) “recognising” the absence
of the way in zone, (b) notifying by a sound signal the absence of the way in
zone, (c) coming back to the dark zone by performing anti-phototaxis. Back in
the dark zone either because re-positioned or because returned there, the robot
has to “prepare” itself for a new trial in which the characteristics of the environ-
ment are unknown. The transition between two consecutive trials is particularly
complex in case the robot has just concluded a trial in Fnv B. This transition
requires the robot to turn the sound off and to switch from anti-phototaxis (i.e.,
the last behaviour performed in Fnv B) to random walk and then phototaxis
once the light falls again within its perceptual field.

This task is very similar to the one described in [9] since the robot is required
to make use of a temporal cue in order to discriminate between Env A and Env B.
This discrimination is based on the persistence of the perception of a particular
sensorial state (e.g., the perception of the grey floor, the light, or both) for the
amount of time that, given the trajectory and speed of the robot, corresponds
to the time required to make a loop around the light. In other words, if the
perception of a particular sensorial state common to both types of environment
lasts significantly long with respect to the speed and trajectory of the robot,
then that sensorial state might be used by the robot to “conclude” that there is
no way in zone, and a tone has to be emitted (see [9] for more details).

However, with respect to [9], this task is meant to be a step further in the
evolution of decision making mechanisms based on time-dependent structures.
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In [9], we studied the evolution of decision making mechanisms for a one shot
discrimination task by simply resetting the robot’s controller (i.e., set to 0 the cell
potential of the neurons) at the beginning of each trial. The resetting “facilitates”
the task of discriminating between Env A and Env B since (a) the integration of
the sensorial state which eventually leads to the emission of the sound signal is
not disrupted by the type and the amount of previous experience; (b) the robot
does not need to terminate the emission of the sound signal, since, given the way
in which sound is implemented, such an event is automatically determined by
the resetting; (c) the robot does not need to “recognise” the end of the current
trial and the beginning of a new one, since such transition implies the resetting
of the activation values of the neurons of its controller. In other words, each trial
is for the robot like a new life in which, starting from the same internal state, a
single decision has to be made.

The task described in this paper is made significantly more complex with
respect to what shown in [9] by (a) avoiding to impose the resetting of the robot
controller at the beginning of each trial, and consequently by (b) letting the
robot autonomously develop the conditions which set the end of a trial and the
beginning of a new one. If the robot controller is not reset at the beginning of
a trial, the decision to be made in the trials following the first one, will nec-
essarily be carried out by mechanisms which have already been “shaped” by
previous experienceE Therefore, it is important that the functionality of the de-
cision making mechanisms employed by the robot are not disrupted by previous
experience. In other words, discriminating between Env A and Env B requires
the robot to make use of memory structures to integrate over time a particular
sensorial state. Carrying out such an iterated discrimination task requires the
robot to possess memory structures which do not lose their functionality due to
potential disruptive effects of the previous experience—i.e., the nature and the
amount of discriminations already made. Furthermore, the robot should be able
to exploit its perception in order to establish when a trial ends and a new one
starts. This is particularly important at the end of an exploration in Env B, in
which the robot should conclude the trial by emitting a tone and moving away
from the light and should begin the new trial with the sound turned off and
performing light seeking behaviour. These changes (i.e., sound on - sound off,
anti-phototaxis - phototaxis) have to be triggered by perceptual states which
ideally set the end of a trial and the start of a new one.

Several implementation details such as (i) requiring the robot to perform
anti-phototaxis in Env B, (ii) the introduction of the dark zone, and (iii) the
toroidal world, have been introduced to make sure that the robot’s sensory ex-
perience can potentially provide the support the robot needs in order to make
iterated choices. For example, a robot that successfully terminates a trial in Env
B can exploit the perceptual states associated with performing anti-phototaxis
and with its presence in the dark zone to “prepare” itself for the new trial (a) by
turning the sound signalling off, and (b) by adjusting its internal state so that it
will be ready for a new discrimination task. In particular, being repositioned in

2 In our model, it is the neuron’s cell potential to be modified by the robot’s experience.
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the dark zone after a success in Env A, or reaching the dark zone after a success
in Env B, are two events that can be unambiguously employed by the robot in
order to establish the end of the current trial and the beginning of the following
one. In the absence of a global framework of reference (e.g., a compass), the
toroidal world makes it easier for a robot to navigate in the dark zone in order
to reach the area in which the light source can be perceived.

The simulation model. The robot and its world are simulated using the “min-
imal simulation” technique described in [6]. This technique uses high levels of
noise to guarantee that the simulated controller transfers to the physical robot
with no loss of performance (see [I]). Our simulation models some of the hard-
ware characteristics of the real s-bots. The s-bots are small wheeled cylindrical
robots, 5.8 cm of radius, equipped with infrared proximity sensors, light and hu-
midity sensors, accelerometers, and omni-directional camera (see Fig. [I] right,
and alsohttp://www.swarm-bots.org/ for more details). In particular, our sim-
ulated s-bot is provided with four ambient light sensors, placed at —112.5° (A;),
—67.5° (Az), 67.5° (As), and 112.5° (A4) with respect to its heading, a floor
sensor positioned facing downward on the underside of the robot (F), an omni-
directional sound sensor (S), and a loud-speaker. The motion of the robot is
implemented by the two wheel actuators. Light levels change as a function of
the robot’s distance from the lamp. Light sensor activation values are taken
from a look-up table which contains sampled information from the real robot.
The ground sensor detects the level of grey of the floor. The robot floor sensor
outputs the following values: 0 if the robot is positioned over the white floor; 21,)
if the robot is positioned over the light grey floor; g if the robot is positioned
over the dark grey floor; 1 if the robot is positioned over the black floor. The
simulated speaker produces a binary output (on/off); the sound sensor has no
directionality and intensity features. Concerning the function that updates the
position of the robot within the environment, we employed the Differential Drive
Kinematics equations, as presented in [2]. 10% uniform noise was added to the
light sensor readings, the motor outputs and the position of the robot.

The controller and the evolutionary algorithm. Fully connected, eight
neuron continuous time recurrent neural networks (CTRNNSs) are used. All neu-
rons are governed by the following state equation:

8
a —Yi + ijio'(yj + B5) + 91 o(x)

Ti

1

- l14e 2 (1)

j=1

where, using terms derived from an analogy with real neurons, y; represents the
cell potential, 7; the decay constant, §; the bias term, o(y; + ;) the firing rate,
wj; the strength of the synaptic connection from neuron jt" to neuron i*", I; the
intensity of the sensory perturbation on sensory neuron 4. Four neurons receive
input (I;) from the robot sensors: neuron Nj takes input from Al;A2, N5 from

A3;A4, N3 from F', and N4 from S. Neurons Ny, No, and N3 receive as input a
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real value in the range [0,1], while neuron Ny receives a binary input (i.e., 1 if a
tone is emitted, otherwise 0). The other neurons do not receive any input from
the robot’s sensors. The cell potential (y;) of the 6! neuron, mapped into [0,1]
by a sigmoid function (o), is used by the robot to control the sound signalling
system (i.e., the robot emits a sound if ys >= 0.5). The cell potentials (y;) of
the 7t" and the 8" neuron, mapped into [0,1] by a sigmoid function (¢) and
then linearly scaled into [—6.5,6.5], set the robot motors output. The strength
of synaptic connections wj;, the decay constant 7;, the bias term 3;, and the gain
factor g are genetically encoded parameters. Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of 0.1.

A simple generational genetic algorithm is employed to set the parameters
of the networks [3]. The population contains 100 genotypes. Generations fol-
lowing the first one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the three highest scoring
individuals (“the elite”) from the previous generation are retained unchanged.
The remainder of the new population is generated by fitness-proportional selec-
tion from the 70 best individuals of the old population. Each genotype is a vector
comprising 81 real values (64 connections, 8 decay constants, 8 bias terms, and
a gain factor). Initially, a random population of vectors is generated by initial-
ising each component of each genotype to values chosen uniformly random from
the range [0,1]. New genotypes, except “the elite”, are produced by applying
recombination with a probability of 0.3 and mutation. Mutation entails that a
random Gaussian offset is applied to each real-valued vector component encoded
in the genotype, with a probability of 0.13. The mean of the Gaussian is 0, and
its standard deviation is 0.1. During evolution, all vector component values are
constrained to remain within the range [0,1]. Genotype parameters are linearly
mapped to produce CTRNN parameters with the following ranges: biases 3; €
[-2,2], weights w;; € [—6, 6] and gain factor g € [1,12]. Decay constants are firstly
linearly mapped onto the range [—0.7,1.7] and then exponentially mapped into
7; € [10797,10*7]. The lower bound of 7; corresponds to a value slightly smaller
than the integration step-size used to update the controller; the upper bound
corresponds to a value slightly bigger than the average time required by a robot
to reach and to perform a complete loop of the band in shades of grey.

The evaluation function. During evolution, each genotype is coded into a
robot controller, and is evaluated ten times, 5 trials in Env A, and 5 trials in
Env B. The sequence of environments within the 10 trials is chosen randomly.
Each trial (e) differs from the others in the initialisation of the random num-
ber generator, which influences the robot starting position and orientation, the
position and amplitude of the way in zone, and the noise added to motors and
sensors. The width of the way in zone can vary from 45° to 81°. Within a trial,
the robot life-span is 80 s (800 simulation cycles). In each trial, the robot is
rewarded by an evaluation function f. which corresponds to the sum of the
following four components:
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1) C} rewards fast movement to the target area. C; = d";vdc where d; and d.
represent respectively the initial and the current Euclidean distance between the
robot and the light bulb. In Env A, C; is set to 1 if the robot terminates the
trial less than 35 cm away from the light bulb. In Env B, C; is set to 1 as soon
as the robot reaches the circular band without crossing the black edge in the
direction of the light.

2) Cy rewards movements away from the light. Co = dil _ iftrial in Env B, 0 if
trial in Env A or if Cy < 1 (dmae = 110 cm).

3) C3 rewards agents that never signal in Env A and that always signal in EFnv B.
Cj5 is set to 1 if the robot signals properly, 0 otherwise. The robot is considered
to have signalled only if it has done so being closer than 70 cm from the light.
By doing so, we create an area between 70 cm and 110 cm from the light that
the robot can use to turn the sound off at the end of a trial in Fnv B.

4) Cy rewards movements toward the light. Cy = 1 — éﬁ if trial in Env A, 0
otherwise. k is the number of simulated time-steps the robot spent to reach the
target area, and T' = 800 is the total number of simulated time-steps available
to the robot. An important feature of this evaluation function is that it simply
rewards agents that make a proper use of their sound signalling system, without
directly interfering with the nature of the discrimination strategies.

3 Results

Ten evolutionary simulations, each using a different random initialisation, were
run for 7000 generations. We examined the best individual of the final generation
from each of these runs in order to establish whether they evolved the required
behaviour. Recall that the robot is successful in Env A if it reaches the target
area without emitting any sound signal; it is successful in Env B if (a) it reaches
the circular band, (b) signals the absence of the way in zone by emitting a tone,
and (c) comes back to the dark zone (anti-phototaxis).

During the post-evaluation phase, each of the ten best evolved controllers
was subjected to a set of 252 different re-evaluations. Since a re-evaluation is
composed of 10 trials, out of which 5 are Env A and 5 are Env B, 252 (51,05',)
is the number of possible evaluations which differ in the order of presentation
of Env A and Env B. 2520 is the total number of trials experienced by each
robot during the post-evaluation, half of which in Env A and half in Env B.
Note that during evolution, each robot experienced only a particular sequence
of 5 trials in Env A and 5 trials in EFnv B. Since the robot controller is reset only
at the beginning of each evaluation, the order of presentation of the types of
environment might bear upon its performance. A robot that results successful in
the post-evaluation is one which employs a strategy which is effective regardless
the sequence of environments.

During the post-evaluation phase, we looked at the robot’s capability to reach
the light bulb (Succ.) in Env A, without making any error. Errors can be of three
types: error (I) refers to the case in which the robot emits a sound signal, error
(IT) refers to the case in which the robot crosses the black edge of the band, error



238 E. Tuci, C. Ampatzis, and M. Dorigo

Table 1. Results of post-evaluation showing the performance of the best evolved con-
trollers of each run. The percentage of success (Succ.) and the percentage of errors (I,
IT, IIT in Env A, and IV, V, VI, VII in Env B) over 252 evaluations are shown for both
Env A and Env B. Additionally, the average offset A, its standard deviation (degrees),
and the number of successful trials (n.) are shown for Env B.

TUN Env A Env B
Suce. Types of Error (%) Succ. Types of Error (%) offset A
I 11 11T IVv. V. VI VII Auvg. Std n.

n. 1 83.17 7.77 4.76  0.15 1.42 14.92 0.00 4.12 79.52 21.25 115.86 18
n. 2 94.12 5.87 0.00 0.00 96.42 1.34 0.00 0.00 2.22 50.52 124.08 1215
n. 3 22.85 0.00 77.06 0.0 0.0 0.23 0.0 99.76 0.0 — — 0.0
n. 4 84.92 14.68 0.23 0.00 98.57 0.0 0.0 0.0 1.42 -81.12 39.32 1242
n. 5 86.19 833 5.23 0.07 81.58 0.07 0.15 15.23 2.93 -10.8 79.05 1028
n. 6 33.17 10.07 50.55 6.19 92.93 0.00 0.00 0.079 6.98 6.1 104.75 1171
n. 7 88.49 11.11 0.39 0.00 97.53 0.00 0.00 0.00 2.46 -15.81 80.87 1229
n. 8 82.93 16.50 0.47 0.07 96.19 1.11 0.00 0.00 2.69 -60.04 82.16 1212
n. 9 99.68 0.07 0.23 0.00 95.87 2.06 0.00 0.23 1.82 71.03 50.89 1208

n. 10 59.04 40.95 0.00 0.00 98.57 0.07 0.00 0.00 1.34 -155.86 57.36 1242

0.0

T T ‘"
1 54.2 104.0 132.2 179.3
Time in sec

Fig. 2. The graph shows the output of the neuron that controls the sound (N, see
continuous thick line), the floor sensor reading (F', see continuous thin line), the average
values of the light sensor readings (A1, A2, As, A4, see dotted line), during the first 5
trials of a 10 trials evaluation in which the robot did not make any error. The numbers
on the x-axis, show at which point of the robot life-span a new trial begins.

(III) refers to the case in which the robot makes both errors I and IT within the
same trial. Similarly, in Env B, we looked at the performance of the robot in
completing the task as mentioned above (Succ.), without committing any error.
Four error types are possible: error (IV) refers to the lack of sound signalling,
error (V) refers to the robot crossing the black edge of the band, error (VI) refers
to the robot missing to reach the dark zone after having signalled; error (VII)
refers to the case in which the robot makes error IV, V, and VI within the same
trial. Furthermore, in Env B we also compute the offset (offset A) between the
entrance position of the robot in the circular band and the position in which the
robot starts to signal (see [9] for a description of how the offset A is computed).
This measure accounts for the precision of signalling with respect to the time it



Evolving Neural Mechanisms for an Iterated Discrimination Task 239

takes for the robot to complete a loop around the light. Offset A takes value 0°
if the robot signals exactly after covering a complete loop of the circular band.
Negative values of the offset A suggest that the robot signals before having
performed a complete loop; positive values correspond to the situation in which
the robot emits a tone after having performed a loop around the light.

The results of the post-evaluation, shown in Table[d] shed light on two aspects
of our work: first, they give a quantitative estimate of the overall success rate
of the evolved strategies; second, they provide elements to infer the behavioural
strategies employed by our robots to solve the task. Concerning the percentage of
success in both types of environment, the results are quite encouraging. Despite
the complexity of the task, six runs out of ten—runs n. 2, 4, 5, 7, 8, 9—show
a percentage of success (Succ.) in both types of environment higher than 80%
(i.e., more than 2016 successful trials out of 2520). The strategies of run n. 2
and 9 are the most effective, with a percentage of success in both environments
higher than 94%. The performance of run n. 4, 5, 7, 8 is mainly “blurred” by
errors of type I, caused by a risk-taking behaviour, which led the robot to signal
slightly before having completed a loop around a light—see the negative values
of the average offset A. Among the less successful robots, the performance of
run n. 10 is also disrupted by errors of type I. The bad result of run n. 6, and n.
2 is mainly due to crossing the black edge of the circular band (error type II).
Run n. 1 is quite successful in Env A, but its performance is particularly bad
in Env B. In view of its high error rate of type VII, we can conclude that this
robot employs the strategy of never signalling in Env B, and of remaining on
the circular band circuiting around the light. It is worth noticing that the two
most successful runs (i.e., run n. 2 and 9) employ a risk-averse behaviour, since
they have the tendency to signal slightly after having completed a loop around
a light—see the positive values of the average offset A.

The graphs shown in Fig. [2] give us some hints on the mechanisms employed
by robot run n. 9 (a) to control the sound, and (b) to switch from phototaxis to
anti-phototaxis and vice-versa. As far as it concerns (a), Fig. 2l shows that the
output of neuron Ny increases if the robot is on the circular band. The output of
Ng crosses the 0.5 threshold—i.e., the sound is turned on—if the robot remains
on the band for a time slightly higher than the time required to make a loop
around the light. This can be inferred by the positive value of the offset A in
Table [[l Concerning (b), the robot performs phototaxis as long as it does not
perceive any sound. Fig. 2l shows that the perception of sound makes the robot
change strategy—i.e., from phototaxis to anti-phototaxis. Once the robot is out
of the band, the output of neuron Ng starts decreasing. However, given the rate
of change of the output of neuron Ng, the robot stops emitting a tone just after
having reached the dark zone. Owing to this mechanism, the robot manages, by
the end of a trial in Env B, to set the cell potential of neuron Ng to a value
which makes it possible for it (a) to approach the light at the beginning of the
following trial, since no sound is emitted, and (b) to be in a “state” to be able
to perform another discrimination.
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4 Conclusions

In this paper, we have shown that a single dynamic neural network can be syn-
thesised by evolution to allow an autonomous robot to successfully perform an
iterated discrimination task, based on time-dependent structures. The results
illustrated here are of particular interest because, to the best of our knowledge,
this is the first study in which an autonomous robot manages to iteratively
solve a complex non-reactive task without previous experience disrupting its
decision making mechanisms. The performance of the best evolved robot was
not disrupted by the sequence of presentation of the environments. However,
the robustness of the evolved strategies with respect to other potentially more
disruptive environmental changes, such as the dimensions of the circular band,
and the dark zone, remains to be assessed.
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