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Univeristé Libre de Bruxelles - Bruxelles - Belgium

{etuci,vtrianni,mdorigo}@ulb.ac.be

Abstract. In this paper, we aim to design decision-making mechanisms
for an autonomous robot equipped with simple sensors, which integrates
over time its perceptual experience in order to initiate a simple signalling
response. Contrary to other similar studies, in this work the decision-
making is uniquely controlled by the time-dependent structures of the
agent’s controller, which in turn are tightly linked to the mechanisms for
sensory-motor coordination. The results of this work show that a single
dynamic neural network, shaped by evolution, makes an autonomous
agent capable of “feeling” time through the flow of sensations determined
by its actions.

1 Introduction

Animals that forage in patchy environments, and do not have any a priori knowl-
edge concerning the quality of the patch, must decide when it is time to leave
a patch to move to another one of potentially better quality. Optimal foraging
theory models assume that the experience that the animals have of the patch
during time has an incremental or a decremental effect on the animal tendency
to remain in the patch. These models show that some animals behave as if
they made their decision on information gained while foraging [1]. Artificial au-
tonomous agents might face similar problems: they may be required to change
their behaviour because of information gained through a repeated interaction
with their environment. In this paper, we aim to design decision-making mech-
anisms for an autonomous robot equipped with simple sensors, which integrates
over time its perceptual experience in order to initiate alternative actions. In
other words, the behaviour of the agent should change as a consequence of its
repeated interaction with particular environmental circumstances.

We are interested in exploiting an evolutionary biologically-inspired
approach, based on the use of dynamical neural networks and genetic algo-
rithms [2]. Generally speaking, the appeal of an evolutionary approach to robotics
is twofold. Firstly, and most basically, it offers the possibility of automating a
complex design task [3]. Secondly, since artificial evolution needs neither to un-
derstand, nor to decompose a problem in order to find a solution, it offers the
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possibility of exploring regions of the design space that conventional design ap-
proaches are often constrained to ignore [4]. In our work, artificial evolution
should tightly couple the agent’s decision-making mechanisms to the nature of
the environment and to the sensory-motor capabilities of the agent.

The experiment, described in details in section 2, requires an autonomous
agent to possess both navigational skills and decision-making mechanisms. That
is, the agent should prove capable of navigating within a boundless arena in
order to approach a light bulb positioned at a certain distance from its starting
position. Moreover, it should prove capable of discriminating between two types
of environment: one in which the light can be actually reached; the other one in
which the light is surrounded by a “barrier” which prevents the agent from pro-
ceeding further toward its target. Due to the nature of the experimental setup,
the agent can decide in which type of environment it is situated only if it proves
capable of (a) moving coordinately in order to bring forth the perceptual expe-
rience required to discriminate between the two environments; (b) integrating
over time its perceptual experience in order to initiate a signalling behaviour if
situated in an environment in which the light cannot be reached.

The contribution of this paper consists in showing that a single dynamic
neural network, shaped by evolution, make an autonomous agent capable of
“feeling” time through the flow of sensations determined by its actions. In other
words, the controller allows an agent to make coordinated movements which
bring forth the perceptual experience necessary to discriminate between two dif-
ferent types of environment and thus to initiate a simple signalling behaviour.
Low level “leaky-integrator” neurons, which constitute the elementary units of
the robot’s controller, provide the agent with the required time-dependent struc-
tures. This is not the first experiment in which time-dependent structures are
evolved to control the behaviour of agents required to make decision based on
their experience (see, for example, [5–7]). However, in [7] and in [5] the task
was simpler than the one described in here, because the controller was only in
charge of making the decision, while the nature of the perceptual experience of
the robot was determined by the experimenter. The work illustrated in [6] and
the one described in this paper differ in term of the nature of the cue/s exploited
by the agent to make the discrimination: in [6] the cues the agent exploits are
environmental structures (regularities) which the agent’s controller has to ex-
tract; in our task, the cue the agent has to exploit concerns the persistence of a
perceptual state, which is common to both types of environment.

2 Methods

Description of the task. At the start of each trial, a robot is positioned
within a boundless arena, at about 100 cm west of the light, with a randomly
determined orientation chosen between north-east and south-east (see Figure 1
left). The light is always turned on during the trial. The robot perceives the
light through its ambient light sensors. The colour of the arena floor is white
except for a circular band, centred around the lamp, within which the floor
is in shades of grey. The circular band covers an area between 40 cm and 60
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Fig. 1. Depiction of the task. The small black circles represent the robot at starting
position. The small empty circles represent the light bulb. The arena floor is white
everywhere except within a circular band surrounding the light. The way in zone cor-
responds to the sector of the band, indicated by dotted lines, in which the floor is white.
In both pictures, the continuous arrows are examples of good navigational strategies;
the dashed arrows are examples of forbidden trajectories. In Env. B, the continuous
arrow gets thicker to indicate that the robot emits a sound after having made a loop
around the light.

cm from the light; the floor is black at exactly 40 cm from the light; the grey
level decreases linearly with the distance from the light. The robot perceives the
colour of the floor through its floor sensor, positioned on its belly. The robot
can freely move within the band, but it is not allowed to cross the black edge.
The latter can be imagined as an obstacle, a trough, that prevents the robot to
further approach the light (see dashed arrows in Figure 1). The area in shades
of grey is meant to work as a warning signal which “tells” the robot how close
it is to the danger—i.e., the black edge.

There are two types of environment. In one type, referred to as Env. A, the
band presents a discontinuity (see Figure 1, left). This discontinuity, referred to
as the way in zone, is a sector of the band in which the floor is white. In the
other type, referred to as Env. B, the band completely surrounds the light (see
Figure 1, right). The way in zone represents the path along which the robot is
allowed to safely reach the light. A successful robot should prove to be capable
of performing phototaxis as well as looking for the way in zone to avoid to cross
the black edge of the band. Such a robot should always reach the light in Env. A,
whereas, in Env. B, besides avoiding to cross the black edge, the robot should
signal the absence of the way in zone by emitting a tone. How can the robot
distinguish between Env. A and Env. B? The cue the agent should use is a
temporal one: that is, the Env. B can be “recognised” by the persistence of the
perception of the band for the amount of time that, given the trajectory and
speed of the robot, corresponds to the time required to make a loop around the
light. If the perception of the band persists long enough, this means that there
is no way in zone, and a tone has to be emitted.

The difficulty of this experiment resides in synthesising a controller which,
by solely integrating over time the perception of the colour of the floor under the
robot’s belly, brings forth something similar to the “feeling” of being travelling
within the band for the time required to complete a loop, so to “recognise” that
there is no way in zone. The amount of time required for the robot to perform
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a complete loop of the band depends on the dimensions of the band and on
the way in which the robot moves within the band. The characteristics of the
band are set by the experimenter and they do not change during the evolution.
The way in which the robot moves within the band—e.g., its average speed and
its trajectory—is determined by the robot’s controller, by directly setting the
speed of the robot’s wheels. Thus, a successful controller should make the robot
move in such a way that, if the perception of the band persists over a certain
amount of time, the following conclusions can be drawn: (i) the band does not
present any discontinuity; (ii) the sound signalling must be activated. Continuous
time recurrent neural networks (CTRNNs), shaped by evolution, seem to be a
suitable tool to obtain this kind of mix between mechanisms for sensory-motor
coordination and time-dependent structures required to perform this task [5].

The simulation model. The robot and its world are simulated using a modified
version of the “minimal simulation” technique described by Jakobi in [8]. Jakobi’s
technique uses high levels of noise to guarantee that the simulated controller will
transfer to a physically realised robot with no loss of performance. Our simulation
models a Khepera robot, a 55 mm diameter cylindrical robot. This simulated
robot is provided with two ambient light sensors, placed at 45 degrees (A1) and
-45 degrees (A2) with respect to its heading, and a floor sensor positioned facing
downward on the underside of the robot (F ). The light sensors have an angle
of acceptance of 120 degrees. Light levels change as a function of the robot’s
distance from the lamp. The light sensor values are extrapolated from a look-
up table which corresponds to the one provided with the Evorobot simulator
(see [9]). The floor sensor can be conceived of as a proximity infra-red sensor
capable of detecting the level of grey of the floor. It produces an output which is
proportional to the level of grey, scaled between 0—when the robot is positioned
over white floor—and 1—when it is over black floor.

The controller and the evolutionary algorithm. Fully connected, eight
neuron CTRNNs are used. All neurons are governed by the following state equa-
tion:

dyi

dt
=

1
τi


−yi +

8∑
j=1

ωjiσ(yj + βj) + gIi


 σ(yj + βj) =

1
1 + e−x

(1)

where, using terms derived from an analogy with real neurons, yi represents
the cell potential, τi the decay constant, βj the bias term, σ(yj + βj) the firing
rate, ωji the strength of the synaptic connection from neuron jth to neuron
ith, Ii the intensity of the sensory perturbation on sensory neuron i. Three
neurons receive input (Ii) from the robot sensors: e.g., neuron N1 takes input
from A1, N2 from A2, and N3 from F . These input neurons receive a real value
in the range [0,1], which is a simple linear scaling of the reading taken from its
associated sensor. The other neurons do not receive any input from the robot’s
sensors. The cell potential (yi) of the 6th neuron, mapped into [0,1] by a sigmoid
function (σ) and then set to 1 if bigger than 0.5 or 0 otherwise, can be used
by the robot to control the sound signalling system The cell potential (yi) of
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the 7th and the 8th neuron, mapped into [0,1] by a sigmoid function (σ) and
then linearly scaled into [-10,10], set the robot motors output. The strength of
synaptic connections ωji, the decay constant τi, the bias term βj , and the gain
factor g are genetically encoded parameters. Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of 0.2.

A simple generational genetic algorithm (GA) is employed to set the pa-
rameters of the networks. The population contains 100 genotypes. Generations
following the first one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the three highest scoring
individuals (“the elite”) from the previous generation are retained unchanged.
The remainder of the new population is generated by fitness-proportional selec-
tion from the 70 best individuals of the old population. Each genotype is a vector
comprising 81 real values (64 connections, 8 decay constants, 8 bias terms, and
a gain factor). Initially, a random population of vectors is generated by initial-
ising each component of each genotype to values chosen uniformly random from
the range [0,1]. New genotypes, except “the elite”, are produced by applying
recombination with a probability of 0.3 and mutation. Mutation entails that a
random Gaussian offset is applied to each real-valued vector component encoded
in the genotype, with a probability of 0.15. The mean of the Gaussian is 0, and
its standard deviation is 0.1. During evolution, all vector component values are
constrained to remain within the range [0,1]. Genotype parameters are linearly
mapped to produce CTRNN parameters with the following ranges: biases βj ∈
[-2,2], weights ωji ∈ [-6,6] and gain factor g ∈ [1,12]. Decay constants are firstly
linearly mapped onto the range [−0.7, 1.7] and then exponentially mapped into
τi ∈ [10−0.7,101.7]. The lower bound of τi corresponds to a value slightly smaller
than the integration step-size used to update the controller; the upper bound
corresponds to a value slightly bigger than the average time required by a robot
to reach and to perform a complete loop of the band in shades of grey.

The evaluation function. During the evolution, each genotype is coded into
a robot controller, and is evaluated 40 times—20 times in Env. A and 20 in
Env. B. At the beginning of each trial, the neural network is reset—i.e., the
activation value of each neuron is set to zero. Each trial differs from the others
in the initialisation of the random number generator, which influences the robot
starting position and orientation, the position and amplitude of the way in zone,
and the noise added to motors and sensors. For each of the 20 trials in Env. A,
the position of the way in zone is varied to facilitate the evolution of robust
navigational strategies. Its amplitude varies within the interval [π

6 , π
2 ]. Within

a trial, the robot life-span is 80 s (400 simulation cycles). A trial is terminated
earlier if either the robot crosses the black edge of the band (see dashed arrows
in Figure 1) or because it reaches an Euclidean distance from the light higher
than 120 cm. In each trial t, the robot is rewarded by an evaluation function ft

which corresponds to the sum of the following four components:
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Rmotion =
df − dn

df
Rerror = −pb

tb

Rnear =
{

pc/tc Env. A
0 Env. B Rsignal =

{
0 Env. A

pa/ta Env. B

Rmotion rewards movements toward the light bulb: df and dn represent re-
spectively the furthest and the nearest Euclidean distance between the robot
and the light bulb. In particular, df is updated whenever the robot increases its
maximum distance from the light bulb. At the beginning of the trial, dn is fixed
as equal to df, and it is subsequently updated every time step when (i) the robot
gets closer to the light bulb; (ii) df is updated. In this latter case, dn is set equal
to the new df. In Env. A, dn is set to 0 if the robot is less than 7.5 cm away
from the light bulb. In Env. B, dn is set to 0 if the robot makes a complete
loop around the light bulb while remaining within the circular band. Rerror is
negative to penalise the robot for (i) signalling in Env. A, and (ii) signalling in
Env. B before having made a loop around the light: pb is the number of simula-
tion cycles during which the robot has erroneously emitted a tone, and tb is the
number of simulation cycles during which the robot was not required to signal.
Rnear rewards movements for remaining close to the light bulb: pc is the number
of simulation cycles during which the robot was no further than 7.5 cm away
from the light bulb in Env. A, and tc is the robot life-span. In Env. B the robot
cannot get closer than 40 cm to the light, therefore, this component is equal to 0.
Rsignal rewards signalling in Env. B: pa is the number of simulation cycles during
which the robot has emitted a tone after having made a loop around the light,
and ta is the number of simulation cycles during which the robot was required
to emit a tone. In Env. A, this component is always set to zero. Recall that the
robot is also penalised for crossing the black edge of the band and for reaching a
distance from the light higher than 120 cm. In these cases, the trial is ended and
the robot’s fitness is computed by considering the current state of the system.

3 Results

Twenty evolutionary simulations, each using a different random initialisation,
were run for 6000 generations. We examined the best individual of the final
generation from each of these runs in order to establish whether they evolved
the required behaviour. During re-evaluation, each of the twenty best evolved
controllers was subjected to a set of 100 trials in Env. A and a set of 100 trials
in Env. B. At the beginning of each re-evaluation trial, the controllers are reset.
Each trial has a different initialisation (see section 2 for details). During re-
evaluation, the robot life-span is 120 s (600 simulation cycles).

Firstly, we analyse the navigational abilities of the best evolved robot in an
Env. A. Recall that, in these circumstances, a successful robot should reach the
light bulb going through the way in zone, without signalling. Figure 2 shows the
percentage of time each of these robots spent in an area located in the proximity
of the light bulb during the 100 re-evaluation trials in Env. A, as computed
by the fitness component Rnear. These results prove that almost all the best
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evolved robots employ successful navigational strategies which allow them to
find the way in zone, and to spend between 40% and 80% of their life-time close
to the target. In both types of environment, the run n. 1 and n. 8 are slightly
less successful than the others. We observed that their failure was caused by
a tendency to cross the black edge of the band. A qualitative analysis of the
robots’ behaviour shows that, when the best evolved robots are situated in an
Env. B, their navigational strategies allow them (i) to approach the light as
much as possible without crossing the black edge of the band, and (ii) to make
a loop around the light, between 40 cm and 60 cm from the light, following a
trajectory nearly circular. The agents are not evolved just to navigate properly
toward the light, but also for accurately discriminating between the two types of
environment. Recall that the agents are required to make their choice by emitting
a tone only if they “feel” they have been situated in an Env. B. We observed that
none of the best evolved robots emits a tone if situated in Env. A. Table 1 shows
data concerning the signalling behaviour of the best evolved robots in Env. B.
In particular, the column (Succ.) shows the percentage of successful trials at the
discrimination task, for each of these robots, during the 100 re-evaluation trials.
We can notice that eleven out of twenty robots never missed to emit a tone if
situated in Env. B (i.e., run n. 2, 3, 6, 7, 10, 13, 14, 16, 17, 18, 20). The robot
run n. 4 shows a 96% success rate. The other eight robots did not emit any tone
during each of the 100 re-evaluation trials in Env. B (i.e., run n. 1, 5, 8, 9, 11,
12, 15, 19).

The quality of the signalling behaviour can be established with reference to
the amount of error of type I (Err. I) and error of type II (Err. II) made by
the successful robots. The Err. I refers to those cases in which the robot emits
a tone before having made a loop around the light. The Err. II refers to those
cases in which the robot emits a tone after having completed the loop. Err. I
can be considered as a false positive error—i.e., signalling that there is no way
in zone when there may be one. Err. II can be considered as a false negative
error—i.e., not accurately signalling that there is no way in zone. Both types
of error are calculated with respect to the angular displacement of the robot
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Fig. 2. Box-and-whisker plot visualising the fitness component Rnear of the best evolved
strategies for each run, computed over 100 trials in Env. A. The box comprises obser-
vations ranging from the first to the third quartile. The median is indicated by a
horizontal bar. The whiskers extend to the most extreme data point which is no more
than 1.5 times the interquartile range. Outliers are indicated as circles.
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Fig. 3. The graph shows the average and standard deviation of Err I—i.e., negative
angles—and Err II—positive angles—for each environmental condition defined by the
distance between the black edge of the band and the light. The values are averaged
over 100 re-evaluation trials.

around the light from the starting position—the position at the time when the
robot enters into the circular band—to the signalling position—the position at
the time when the robot starts signalling. If the robot makes no errors, this
angle is 2π. The bigger is the angle, the less reliable is the signalling mechanism.
However, we should notice that, due to the nature of the task, it is very difficult
to make no errors—i.e, emitting a tone precisely at the time in which an entire
loop around the light is made. For our purpose, we consider successful an agent
that, in order to signal the absence of the way in zone, manages to reduce the
amount of errors of both types. As shown in column “Err. I—Avg.” and in
column “Err. II—Avg.” of table 1, the robots evolved in runs n. 17, 18 and 20
manage to keep their average error of both types smaller than an angle of 10
degrees. The robots evolved in runs n. 3 and n. 7 are also quite accurate, with
both types of error smaller than 16 degrees. All the other “signalling” robots are
less accurate, with average errors bigger than 20 degrees.

Table 1. Quality of the performance of the twenty best evolved robots in Env. B
during the 100 re-evaluation trials. The table shows the average angle (degrees), the
standard deviation, and the number of times the error was made for both Err. I and
Err. II. The success rate (%) at the discrimination task is indicated by Succ.

run Err. I Err. II Succ.

Avg. Std n. Avg. Std n. (%)

n. 1 - - 0

n. 2 18.55 5.05 3 99.96 24.45 97 100

n. 3 8.50 5.67 36 11.70 8.68 64 100

n. 4 0 0 0 64.65 13.88 96 96

n. 5 - - 0

n. 6 5.14 3.26 13 30.66 20.92 87 100

n. 7 2.86 4.13 9 15.14 9.02 91 100

n. 8 - - 0

n. 9 - - 0

n. 10 0 0 0 44.63 15.48 100 100

run Err. I Err. II Succ.

Avg. Std n. Avg. Std n. (%)

n. 11 - - 0

n. 12 - - 0

n. 13 7.88 8.53 14 34.84 23.29 86 100

n. 14 4.05 4.40 11 25.30 21.62 89 100

n. 15 - - 0

n. 16 6.41 4.94 37 22.69 38.80 63 100

n. 17 6.67 3.36 96 1.88 1.44 4 100

n. 18 7.65 5.01 70 5.89 4.42 30 100

n. 19 - - 0

n. 20 6.11 3.92 59 9.02 6.88 41 100
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The mechanisms that the successful robots employ to solve the discrimination
task are tuned to those environmental conditions experienced during evolution.
As expected, they do not properly work if the environment changes. For example,
we observed that both the reduction and the increment of the distance between
the black edge of the band and the light disrupt the robots’ performance: the
smaller is the distance, the bigger is the Err. II—i.e., signalling after having
made a loop around the light; the higher is the distance, the bigger is Err. I—
i.e., signalling before having made a loop around the light. However, as far as
it concerns the robot evolved in run n. 17, we observed that in particular cir-
cumstances it is capable of adjusting its behaviour to the altered environmental
conditions. As shown in Figure 3, when the black edge of the band is 34 cm away
from the light, the performance of the robot is comparable to the one recorded
in those conditions experienced during evolution. Moreover, when this distance
is 54 cm, the Err I gets smaller. How do we explain the robustness of this be-
haviour? An explanation could be that the robot is taking into account (i.e., it
integrates over time) both the perception of the floor and the intensity of the
light. Obviously, in the altered environmental conditions, the perception of the
floor is not disrupted. That is, the robot can still freely move within the band in
order to bring forth the perception of the colour of the floor that it was used to
experience during evolution. However, for a given perception of the floor, the cor-
responding light intensity is altered by the fact that the black edge of the band
is not at the same distance from the light, as during evolution. It is reasonable
to conclude that, for an agent that integrates both the perception of the floor
and the intensity of the light, the relationship between these two sensory inputs
might have a bearing on the emission of the tone. For example, for a given level of
grey, the higher/lower is the intensity of the light the shorter/longer is the time
it takes to the robot to emit a tone. This mechanism improves the robustness
and the adaptiveness of the agent’s controller in particular environments that
differ from the one experienced during evolution. Interestingly, the evolution of
this mechanism has not been favoured by any selective pressures explicitly in-
troduced to encourage the emergence of robust controllers. Serendipitously the
artificial neural networks turned out to be capable of tracking significant vari-
ations in environmental conditions—i.e., the relationship between the intensity
of the light and levels of grey of the floor.

4 Conclusions

In this paper, we have shown that a single dynamic neural network can be
synthetised by evolution to allow an autonomous agent to make coordinated
movements that bring forth the perceptual experience necessary to discriminate
between two types of environments. The results illustrated here are of particular
interest because, contrary to other previous similar studies, in this work the
decision-making is uniquely controlled by the time-dependent structures of the
agent controller, which in turn, are tightly linked to the mechanisms for sensory-
motor coordination. Unexpectedly, one of the evolved controllers proved robust
to variation in the environmental conditions without being explicitly evolved for
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this. Based on this preliminary but encouraging results, in future works, we will
consider more challenging experimental setups. In particular, the integration of
the agent perception over time will not be solely finalised to a simple signalling
response, but it will trigger effective alternative actions as it is the case for animal
species making decisions about the quality of foraging sites.
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