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Incremental Robot Shaping

JOSEBA URZELAI, DAR IO FLOR EANO, MARCO DORIGO &

MARCO COLOMBETTI

We propose a modular architecture for autonom ous robots which allows for the implementa-

tion of basic behavioral modules by both prog ramming and training, and accommodates

for an evolutionary development of the interconnections among modules. This architecture

can implement highly complex controllers and allows for incremental shaping of the robot

behavior. Our proposal is exempli® ed and evaluated experimentally through a number of

mobile robotic tasks involving exploration, battery recharging and object manipulation.

KEYW ORDS: Robot shaping, incremental evolution, behavior-based robotics, modu-

lar architectures, evolution and learning, reinforcement learning, robot navigation.

1. Robot Shaping

Modern approaches to behavior engineering of autonomous robots have stressed

the importance of modular and distributed architectures composed of simple and

interconnected elements (Brooks, 1990; Dorigo & Colombetti, 1994; Dorigo &

Schnepf, 1991, 1993) where each component has full or partial access to sensory

data and can aþ ect the actions taken by the robot. Distributed modular control

has several potential advantages: it is an open system, it is intrinsically robust to

local failures, and it is suitable for gradual `shaping’ , that is, incremental training

of independent behavioral competencies (Dorigo & Colombetti, 1998).

With modular architectures, relatively complex behavioral patterns can be built

bottom-up from a set of simple basic behaviors. Two aspects are of key importance

for the success of such an approach: the set of basic behaviors; and the mutual

interactions among them. As regards the ® rst point, the choice of which behavioral

modules to assume as basic is typically made by a human designer. Once such a

choice has been made, however, it is often feasible to use machine learning

techniques as an aid to the implementation of the basic modules. Machine learning

methods can also be exploited to develop the interactions among modules.

A problem which is often diý cult to solve is ® nding the optimal balance

between human design and the use of machine learning techniques. To ® nd a
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reasonable solution, one should always have a clear idea of why learning is used in

a speci® c application (Floreano, 1997). In fact, a robot’ s ability to learn its own

behavior can be exploited to: cut development costs by relieving human designers

of part of their burden; bypass the practical impossibility to describe completely

the robot’s environment and task a prior i; and endow the robot with capacities for

self-adaptation, which may play an essential role in both optimizing behavior with

respect to some performance measure, and in coping with unforeseen changes in

the environment.

To exploit machine learning techniques at their best, however, the whole

development activity has to be conceived and organized in an appropriate way. In

the course of our research, we have developed a methodology to assist an engineer

in the process of designing and training an autonomous robot. The behavior

analysis and training (BAT) methodology (Dorigo & Colombetti, 1998) is a ® rst

example of a behavior engineering methodology involving the analysis of behavior,

the integration of machine learning techniques with other aspects of robot design,

and the independent assessment of the learning activity and of the resulting global

behavior. The BAT methodology proposes a rational organization of the main

phases of robot development based on learning techniques, that is: application

description and behavior requirements, behavior analysis, speci® cation, design and

implementation of the physical robot, training, and behavior assessm ent.

The two phases that distinguish BAT more sharply from classical methodologies

for the development of software products are behavior analysis and training.

Behavior analysis includes the speci® cation of the basic behaviors and of their

relationships. Training involves exploiting the robot’s learning capacities in order

to develop the required behavior.

Among the possible approaches to machine learning, reinforcement learning

seems to be particularly ® t for developing robotic behaviors. The reason is that the

only information necessar y to train a reinforcement learning agent is a scalar

evaluation of its behavior, which is relatively easy to produce as compared to

supervised learning requiring step-by-step feedback based on an error value gener-

ated from a training set. As has been argued elsewhere (Dorigo & Colombetti,

1998), the reinforcement program (i.e. the computer program that produces the

evaluation of behavior) can be regarded as a high-level speci® cation of the desired

behavior. From this standpoint, learning translates such speci® cations into a

working controller. Such translation is situated, in the sense that it is sensitive to

aspects of the actual robot± environment interactions which may not be modeled

in any part of the system, and of which the robot designer might even be unaware.

It should be pointed out that robot controllers based on a complex interaction

of many basic components may be very diý cult to understand, particularly so if a

substantial amount of training has been carried out, due to the sensitivity of

learning to unmodeled aspects of the world. A lot of experimental activity may be

necessary to grasp their behavior to a satisfactory degree. This fact makes the ® nal

assessm ent of the robot’ s behavior a more fundamental activity than traditional

system testing. Indeed, behavior assessm ent has to show not only that the system

learned what it had been taught, but also that it had been taught the right thing

which, in practical applications, might be far from trivial.

As we have already pointed out, a major problem is in deciding what should be

explicitly designed and what should be left for the robot to learn from experience.

In several practical situations, it is neither necessary nor advisable to train a control

system completely from scratch. On the one hand, learning not only takes a long
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time, but it also does not guarantee convergence if the parameter search space is

very large. On the other hand, there might be some aspects of the behavior that

could be easily preprogrammed, exploiting available knowledge about the task

constraints. A modular architecture can easily accommodate both adaptive and

preprogrammed modules.

Adaptation in modular architectures can take place at two diþ erent levels:

within a module and between modules. The ® rst level is often concerned with

acquisition of a new speci® c competence and /or with ® ne tuning of some parameters

of the module, such as threshold adjustments, to accommodate minor changes in

the environment or robotic platform. This aspect of adaptation is equivalent to

local search in a restricted parameter space and is well-suited for learning paradigms

such as, for example, reinforcement learning. The second level of adaptation is

concerned with coordination of all modules and /or with acquisition and integration

of new modules to cope with major environmental changes and task constraints.

This aspect of adaptation is analogous to a global search over a coarser space

composed of a ® nite set of behavioral competencies, and seems well-suited to an

evolutionary approach (Brooks, 1992). The evolutionary method chosen should

allow for the addition and integration at later stages of development of new modules

necessary to cope with modi® cations of the robot shell and /or new behavioral tasks.

Besides giving a contribution to the rapidly growing ® eld of evolutionary

robotics, we hope our paper may play a part in the current trend of arti® cial

intelligence and robotics, which takes a deeper understanding of the biology of

intelligence to be an important prerequisite for success. While we do not aim to

model biological mechanisms in any strict sense, our work is biologically inspired

in several respects. In general, we think that biologically inspired models can play

a part at diþ erent levels of system development, namely:

· at the functional level, where the functions of a system are considered with

respect to its environment;

· at the architectural level, where the internal structure of the system is designed

in relationship with its functions;

· at the implementation level, where the problem of realizing an architecture is

considered.

At the functional level, we have been in¯ uenced by biology in considering behavior

(viewed as the interaction between the system and its environment) as the target

of our work, and in taking adaptiveness as a basic feature for any system which has

to interact with the physical world. In agreement with the BAT methodology, such

a standpoint has direct consequences at the architectural level: ® rst, the centrality

of behavior led us to adopt a behavior-based architecture; second, the need for

adaptiveness gives great importance to the system’s learning capabilities and to the

methodology to be followed for training. More precisely, the learning methods we

have adopted (reinforcement learning and evolutionary computation) are both

inspired by biology, and the shaping methodology used in training is loosely derived

from experimental psychology. In fact, the way in which a robot is trained through

reinforcements is remarkably similar to the procedure that psychologists use to

train a laboratory animal to perform a prede® ned behavioral response (Skinner,

1938): in both cases, the ® nal behavior is gradually approached by shaping the

subject’s spontaneous behavior through rewards and punishments. In this work,

we have not pursued the biological analogy further down to the implementation

level. We believe, however, that the lower the level of analysis is, the stronger
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become the constraints posed by the hardware used for implementation, which, in

the case of arti® cial systems, is remarkably diþ erent from that of biological

organisms. Therefore, bringing biological inspiration down to the implementation

level raises a whole new set of issues and challenges that go beyond the scope of

this work.

Approaches related to shaping methodologies can be found in the work by

Nehmzow and McGonigle (1994), who implemented a pattern associator using

supervised learning to change on-line the weight strengths of a neural network

(NN) that controlled a mobile robot, and in the work by Touretzky and Saksida

(1996, 1997), who presented a model of an operant conditioning technique in

which behaviors were progressively combined in order to yield more complicated

action sequences. Multi-level adaptation in modular architectures has been

addressed by Jordan and Jacobs’ (1994) work on mixture of experts and, in the

context of autonomous robotics, by Tani and Nol® (1998). Nol® also indicated that

emergent modularity might outperform hand-designed and prede® ned modularity

(Nol® , 1997a, b). Asada worked on emergent behavior acquisition in modular

architectures (Asada et al., 1996).

This paper is organized as follows. In Section 2 we brie¯ y describe our approach

and methodology. In Section 3 we introduce our modular architecture. In Section

4 we present a number of paradigmatic experiments and discuss their results.

Finally, in Section 5 we draw some conclusions.

2. The BAT Methodology

In this paper we describe the implementation on a real robot of an open modular

architecture that can be incrementally shaped via evolutionary and learning mecha-

nisms while the robot interacts with its environment. The three main objectives of

the proposed method are:

· the architecture must be capable of integrating adaptive modules with prepro-

grammed behaviors;

· the system must allow for incremental and autonomous construction of a suitable

architecture, as demanded by the shaping policy or by major changes in the task

constraints;

· individual modules must be capable of quickly readapting themselves to local

changes without requiring a full re-engineering of the whole architecture.

As we have already remarked, the development of a modular robot controller by

design and training presupposes a suitable methodology, that is, a suitable ordering

of critical decisions. Here we shall brie¯ y sketch the ordering of decisions according

to the BAT methodology (Colombetti et al., 1996; Dorigo & Colombetti, 1998).

The ® rst step in the development process is a suý ciently detailed description of

the robot, the environment and the target behavior, that is, the task that the robot

is intended to carry out. It should be kept in mind that behavior is not a process

produced by the robot alone; rather, by behavior we mean the interaction between

the robot’ s `body’ (i.e. its physical shell) and the environment. For example, the

very notion of obstacle avoidance will be materialized by diþ erent behaviors in an

oý ce setting and in an environment containing clusters of small, randomly placed

obstacles.

The second step in the process of developing a modular controller is an analysis

of the global target behavior, with the goal of breaking it down to a set of simpler
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behaviors. The idea is that the robot’ s global behavior should emerge from the

interaction of basic behaviors, which in turn are not decomposed into simpler

elements but are generated from the interaction between the sensorimotor mapping

implemented by a single module and the environment in which the robot is

situated. In fact, the very notion of basic behavior is rather fuzzy. In one context,

grasping an object may be a basic action, while in another it may be necessar y to

break the grasping behavior into a complex sequence of simpler behaviors, each

deserving a separate implementation. Only experience with robot development can

tell a designer where to stop the analysis.

Often, behavior analysis makes it clear that basic behaviors need special sensors

to gather the necessary input information from the environment, or special e þ ectors

to act on the environment. The third step in the development process therefore

includes the design, implementation and testing of necessary additions to the

robot’ s sensorimotor interface.

The fourth step includes the implementation of the behavioral modules and of

their interconnections, which may be fully developed by hand or acquired through

some machine learning technique. In the experiments described later on, some

behavioral modules are directly programmed and some are learned, while the

interconnections are always learned.

The use of learning techniques to develop robotic behaviors is far from trivial.

It is a main point of the BAT methodology that the ability to learn is best exploited

if an appropriate training activity is carried out. From the point of view of the

trainer, the details of the learning process are usually irrelevant. However, the

trainer must be aware of the kind of information that must be provided during

training to guide the learning process toward the target behavior. Moreover, when

developing a modular architecture one has to decide in advance how to `shape’ the

robot’ s behavior, choosing between a modular and a holistic shaping strategy (i.e.

training each basic behavior separately, and then their interconnections, or training

the whole target behavior in one shot). In the experiments presented later on, we

systematically adopt a holistic shaping strategy. As regards the learning mechanism,

we exploit reinforcement learning techniques. This involves designing and imple-

menting a suitable reinforcement program, that is, a software module which

generates the reinforcements used by the learning algorithm to produce the desired

behavioral modules and interconnections.

The last step in the process of robot development is the ® nal assessm ent of

behavior. When robot training is adopted, there is always the problem of proving

that the behavior obtained satis® es the initial requirements. When this is not the

case, there may be two diþ erent reasons: either the robot has not learned what it

has been taught, or the robot has learned correctly, but it has not been taught the

right thing. Therefore, behavior assessment must clearly distinguish between the

e þ ectiveness of the learning process and the correctness of the reinforcement

program.

3. The Modular Architecture

The control architecture employed is composed of a set of fully interconnected

modules. Each module (Figure 1) has an input and an output. The input comes

from the sensors of the robot. The output consists of two messages: an activation

level that indicates whether the module wants to aþ ect the robot current action

and an output vector which consists of a motor command. At each time-step, a
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Figure 1. Structure of a module. See text for explanation. In this module both the

activation network and the behavior generator are implemented as NNs. The mod-

ule also includes a strictly local learning algorithm L that uses reinforcement signals

coming from a reinforcement program P. A module can receive weighted signals

from other modules (connections in), which are summed up and combined with

the sensory input in order to drive the activation level. In the same way, a module

can send its activation state to other modules in the form of weighted signals

(connections out).

winner-takes-all process occurs among modules. The module with the highest

activation level wins the competition and is allowed to access the motor resources

and control the robot for a short time.

The internal structure of modules is based on two components: an activation

network and a behavior generator. The activation network decides the activation

level of the module by combining current sensory information with the weighted

sum of activation signals coming from other modules. The resulting activation

level, besides being used by the winner-takes-all process, is also sent out to the

other modules in the architecture. Connections among modules can have excitatory

or inhibitory values. In our experiments the activation network is implemented as

a feedforward NN. The behavior generator can be a preprogrammed behavior, a

NN (as in Figure 1), a classi® er system (Booker et al., 1989), or any other structure

suitable for generating motor commands and other behavioral decisions in response

to sensory inputs.

Optionally, modules also incorporate a local learning algorithm and a reinforce-

ment program. The learning algorithm can adapt both the parameters of the

activation network and of the behavior generator using a reinforcement program

de® ned by the engineer. The reinforcement program is also used to generate an

indication of the performance level of the module. Learning is automatically

enabled whenever the performance of the module falls below a prede® ned threshold

(e.g. 90% positive reinforcement signals). In the implementation described below

the reinforcement program used immediate reinforcement signals based on strictly
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local (to the module) sensory information. The learning algorithm is a modi® ed

version of the complementary reinforcement backpropagation algorithm (CRBP)

(Ackley & Littman, 1990). For each input pattern l , it propagates the input vector

I
l through the network to produce a real-valued output vector S

l (si Î [0, 1]) on the

output layer. Each output value is interpreted as the probability that an associated

random bit takes on the value 1. From these probabilities a binary output vector

O
l is stochastically produced. For each input pattern I

l , if the action corresponding

to the current O
l is rewarded by the reinforcement program, the synaptic weights

are modi® ed with the generalized delta rule (Rumelhart et al., 1986) by backpropa-

gating the discrepancy between the binary motor commands and the real-valued

output vector (O
l 2 S

l ). This amounts to increasing the probability of generating

the same motor command O
l for that input pattern I

l . On the other hand, if the

action generates a negative signal, the synaptic weights are changed in the opposite

direction on the basis of ((1 2 O
l ) 2 S

l )). The assumption on which the CRBP

algorithm is implicitly based is that when the O
l output corresponds to a punished

action, then (1 2 O
l ) corresponds to the correct action for the same input pattern

I
l . In this way rewarded outputs will be more likely to occur again and punished

outputs will tend to produce the complement output vector in similar situations

(Meeden, 1996).

The pattern of connectivity among the modules and their individual activation

networks are encoded on a binary string and evolved by a genetic algorithm (Figure

2). Evolution is incremental and operates on variable-length genotypes. Initially, a

set of basic modules is de® ned by the engineer on the basis of availab le knowledge

about the task requirements and the characteristics of the robot shell. The genetic

Figure 2. Genetic encoding of the control architecture. A chromosome encodes

the synaptic strengths of the activation networks of all modules and all intermodule

connections. For each module of the architecture, synaptic weights of the activation

network are coded ® rst, followed by connection weights to the other modules. Each

value is encoded on the genetic string as a 4-bit integer number and is normalized

in the continuous range [0, 1] before decoding it into the corresponding weight

value. New modules are added by increasing the genotype length. In this case,

previously evolved modules and interconnections are masked to protect them from

crossover and mutation operators.
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string encodes the synaptic strengths of the activation networks of all availab le

modules and the values of intermodule connections. Each value is encoded on the

genetic string as a 4-bit integer number and is normalized in the continuous range

[0, 1] before decoding it into the corresponding weight value.

An initial population of such controllers is evolved until an individual is

generated that satis® es the task criteria. Individual modules with learning abilities

can be separately trained before evolution and /or during evolution, depending on

the task constraints. If the task constraints change, or if new hardware modules are

added to the robot, it is possib le to de® ne new modules and to increment the

genotype length by including the new activation networks and all connections to

previous modules. However, old parts of the genotype are masked so that they

cannot be aþ ected by the crossover and mutation operators. Incremental evolution

o þ ers at least two advantages. It allows the engineer to modify parts of the task

de® nition, environment and /or robot con® guration without restarting the whole

evolutionary process, and it makes it possib le to evolve behaviors which otherwise

would not be evolvable (as has been shown by Floreano (1993) and Nol® and

Floreano (1998) in experiments in which environment complexity was gradually

increased, and by Harvey et al. (1994) who experimented with a varying ® tness

function). In this article we focus on the former aspect of incremental evolution.

4. Evolution and Shaping

In this section we apply the BAT methodology (Colombetti et al., 1996; Dorigo &

Colombetti, 1998) described in Section 2. In particular, we run an experiment

aimed at demonstrating two aspects of incremental robot shaping: incremental

evolution to accommodate hardware and task modi® cations; and automatic local

adaptation of an individual module to changed environmental conditions.

4.1. Robot, Environment, Task

The robot employed in this experiment was the miniature mobile robot Khepera

(Mondada et al., 1993), which has a circular shape, a diameter of 55 mm, a height

of 30 mm and a weight of 70 g (Figure 3). Khepera is supported by two wheels

(and two small Te¯ on balls) whose speeds and rotation directions can be controlled

independently. Eight infrared proximity sensors, six positioned on the front side

Figure 3. The Khepera robot is placed in the environment with a battery charger.

The task is to keep moving in the environment, avoid obstacles, and periodically

recharge the batteries.
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and two on the back side, return continuous values between zero and one

proportional to the distance of an object from the sensor. Additionally, each sensor

can measure the ambient light. The robot is also equipped with a microcontroller

and four rechargeable batteries.

The environment was a rectangular arena (40 3 60 cm) whose walls were

covered with white paper. A 20-cm-long metallic bar for battery charge was

attached to one side of the arena and a 20-watt light bulb was positioned above it

(Figure 3). The metallic bar could be used for recharging the robot batteries by

using special contacts plugged on the robot.

The desired task was that of developing a controller capable of moving the

robot around the arena as much and as long as possib le, avoiding obstacles and

periodically recharging the batteries at the recharging station.

4.2. B ehavioral Decomposition and Module Allocation

The global task can be decomposed into four simple behaviors: wander, obstacle

avoidance, light following and battery recharge. Four modules were accordingly

allocated:

(1) Wander. Used to move the robot around the environment. The behavior

generator was a programmed simple straight motion (whatever the sensor

activation was). The input consisted of information coming from the proximity

sensors, used by the activation network in order to decide whether the

wandering module was activated or not. The output commanded the robot’ s

wheels.

(2) Obstacle avoidance. The behavior generator was an adaptive NN mapping

sensor activations into one of four possible motor actions.1 A reinforcement

program punished increased sensor activations and rewarded decreased sensor

activations. The learning algorithm was the CRBP described in Section 3. The

input consisted of information coming from the proximity sensors and the

output commanded the robot’ s wheels.

(3) Light-following. The behavior generator moved the robot towards light sources

using the direction of the vector resulting from the activity of all ambient light

sensors. It received ambient-light sensor values and the battery level as inputs,

and the output commanded the robot’ s wheels. No learning mechanism was

required because there was only one light source and suý cient gradient

information in the environment.

(4) Recharge. The behavior generator froze every motor activity until the battery

charge indicated full. The module was a programmed wait action that simulated

the battery charging operation. It received front proximity sensor values2 and

the battery charge indicator as inputs, and commanded all available motors.

Individual activation networks were genetically evolved and no other local learning

mechanism aþ ected them during evolution. All modules were fully interconnected

and encoded on binary strings as described in Section 3.

4.3. Training

Khepera was attached via a serial port to a Sun SPARC Station by means of a

light-weight aerial cable and rotating contacts. The genetic algorithm and control

architecture were run on the workstation and the serial cable was used to read
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sensor activations and send motor commands every 100 ms. This solution allowed

us to keep track of several data during training for later analysis.

Instead of using the real batteries available on the Khepera (which last approxi-

mately 30 minutes and require an additional 40 minutes to recharge), a virtual

battery lasting 50 seconds and a fast virtual recharger (taking 5 seconds to recharge

whenever the robot touched the metallic bar in recharging mode) were simulated

during training. Electric power was provided through the aerial cable.3

The only module with local learning capabilities was obstacle avoidance. Local

learning in the obstacle avoidance module was always active for all individuals. For

each action, the reinforcement program provided a negative reinforcement

(R 5 2 1) if the activation of the proximity sensors increased, or a positive

reinforcement (R 5 1) if the action of the proximity sensors decreased.

An initial population of 100 individuals was randomly created and evolved on

the physical robot without any human intervention for 40 generations (approxi-

mately 2 days). Each individual, starting with a full battery, was tested for a

maximum of 300 actions (a full battery allowed approximately 200 actions). Fitness

points were calculated and accumulated at every action according to a function

that encouraged straight motion and low sensor activation (Floreano & Mondada,

1994).

U 5 D V * (1 2 i ) (1)

where D V is a measure of how straight the motion of the robot is, and (1 2 i )

encourages distance from walls. D V 5 ½ (v left + vright ½ /(2 * vmax ), 0 < D V < 1, where v left

and v right are the signed speed values of the wheels (positive is one direction,

negative the other), and vmax is the maximum rotation speed of a wheel (positive

value). 0 < i < 1 is the activation value of the proximity sensor with the highest

activity. Controllers capable of recharg ing the battery could accumulate more

® tness scores than others.

4.4. Analysis of Results

Fitness scores were scaled in the range [0, 1]. The maximum ® tness score attainable

without recharging was approximately 0.5. Figure 4 plots the average population

® tness and the ® tness of the best individual at each generation during evolutionary

training. After few generations there are already individuals capable of recharg ing,

but their low score indicates that they still spend much time against walls. In the

environment used for the training stage, individuals with a ® tness value above

0.70 (achieved after 25 generations) performed the desired task appropriately,

coordinating all the modules.4

Figure 5 shows the performance of the obstacle avoidance module for the best

individual of the ® rst generation. Initial motor actions5 generated by the behavior

generator network produced a random movement of the robot, resulting in a poor

performance. As the robot received reinforcement signals from its interactions with

the environment, the network gradually learned the correct synaptic weights for

performing the obstacle avoidance behavior. A performance level of 0.6 corresponds

to a good obstacle avoidance behavior. An ideal performance of 1.0 could be

achieved only by a robot that moved forward in an environment without obstacles.

4.5. Task and Hardware Modi® cations

In a second stage, we added a number of small objects to the environment and

equipped the Khepera with a gripper module (Figure 6). The gripper module has
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Figure 4. Fitness values during evolution. The dash-dotted line shows average

population ® tness, the continuous line the ® tness of the best individual at each

generation. Data were smoothed using rolling averages (time window 5 3).

Figure 5. Performance of the obstacle avoidance module while learning to avoid

walls from randomly initialized weights. Reinforcement values are rolling averages

(window size 5 30). Performance below zero means a higher percentage of negative

reinforcements, above zero a higher number of positive reinforcements.
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Figure 6. Small objects of roughly equal size are randomly distributed in the

environment and the Khepera robot is equipped with a gripper module. The addi-

tional task is to ® nd the objects, pick them up and release them outside the arena

while maintaining the previous navigation and recharging abilities.

two degrees of freedom: it can lift /lower the arm and open /close the gripper. An

optical barrier between the two segments of the gripper provides sensory informa-

tion on the presence of an object.

The desired task was that of collecting the highest number of objects and

releasing them outside the arena, while maintaining the already evolved abilities of

navigation, obstacle avoidance and battery recharge.

4.6. B ehavioral Decomposition and Module Allocation

The new task can be decomposed into two relatively complex behaviors: object

gripping and object releasing. The complexity comes from the fact that each

module must learn to discriminate between objects and walls. Two new modules

were allocated as follows.

(1) Object gripping. The behavior generator implemented the following sequence

of programmed actions. It moved the robot towards the direction of the vector

resulting from the activation of the proximity sensors, it lowered the gripper,

it backed until the optical barrier was on (object well-positioned), closed the

gripper and lifted the object. The activation network decided whether the

pattern of activity of the infrared sensors corresponded to an object or to a

wall. The reinforcement program provided reinforcements using information

coming from the optical sensor on the gripper. If the gripper detected a

graspable object, the activation network received a positive reinforcement

(R 5 1), otherwise it received a negative reinforcement (R 5 2 1).6 Learning

was always enabled for all individuals. The learning algorithm was that

described in Section 3. The input consisted of information coming from the

optical barr ier and proximity sensors, and the output commanded the robot’ s

wheels and the gripper.

(2) Object releasing. The behavior generator implemented the following sequence

of programmed actions. It moved the robot towards the vector resulting from

the activation of the proximity sensors, lowered the gripper and dropped the

object. The activation network learned to discriminate walls from objects as in

the object gripping module, but the value of the reinforcement signal was
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Figure 7. The new architecture for the extended task and hardware components.

Two new modules have been added and connected to previous modules.

reversed. Learning was always enabled for all individuals. The input consisted

of information coming from the optical barr ier and proximity sensors, and the

output commanded the robot’ s wheels and the gripper.

The new modules were fully connection to all previously existing modules (Figure

7) and the genotype representation was augmented by including the new inter-

module connections and the synaptic values of the new activation networks.

As mentioned already, the synaptic values of the new activation networks were

learned during the lifetime of each decoded individual. Learning started from the

evolved synaptic values, but ® nal values were not written back into the genetic

string. Alternatively, one could use a Lamarckian mechanism, that is, encode on

the genetic representation the changes acquired through lifetime learning. Although

this method might speed up both the evolutionary and learning processes, it might

also drive the controller into local minima (for a discussion of Darwinian vs

Lamarckian evolution, see Parisi and Nol® (1996)).

4.7. Training

Evolutionary training resumed from the last evolved population (generation 40).

The already evolved parts of the chromosomes were masked in order to exclude

them from crossover and mutation. The individuals of the initial generations of the

new task pushed the objects towards the walls.7 In order to make the evolutionary

process automatic, virtual objects were employed. A virtual object is the generation

of a pattern of sensory activation as if a physical object was encountered by the

robot. Sensor activations were recorded before training for an object positioned at

various locations around the shell of the robot. For each individual, eight objects

were virtually placed in random locations. Without this procedure, somebody

should have assisted the robot by manually repositioning objects in the arena

during training.8 Evolutionary training was continued for 40 generations. The

® tness function, which maintained the previous components, was extended by

adding 0.5 points for every gripped object and 1.0 point if the object was correctly

released outside the arena (see also Nol® (1997b) for a similar ® tness de® nition).



D
ow

nloaded By: [U
LB U

niversity of Brussells] At: 13:25 2 M
arch 2007 

354 J. Urzelai et al.

Figure 8. Self-supervised learning to discriminate objects by active exploration.

The robot wanders around until it detects an obstacle (1 and 2), then turns towards

the detected obstacle (3), lowers the gripper in front of it and observes whether the

optical barrier between arms detected an object in order to associate the sensory

pattern of infrared sensor activation with the corresponding category (4).

The Khepera mobile robot had to learn to discriminate between objects and walls.

Both the object gripping and the object releasing modules learned autonomously

to distinguish between objects and walls by lowering the gripper in front of the

detected obstacle, observing whether the optical barr ier between arms detected an

object (see also Pfeifer (1996) for a similar procedure), and associating the sensory

pattern of infrared sensor activation with the corresponding category (Figure 8).

4.8. Analysis of Results

Both the average population ® tness and the ® tness of the best individuals gradually

increased across generations (Figure 9). After approximately 15 generations (gen-

eration 55 in the ® gure), the best controllers already displayed the desired abilities.

It should be noted that within 300 actions best individuals can pick up at most ® ve

real objects (corresponding approximately to a ® tness value of eight). However,

since virtual objects appeared at random without taking into account robot trajec-

tories and gradual depletion of the environment observed, ® tness values during

evolutionary training could be higher than eight.

Figure 10 plots the performance of the object gripping module for the best

individual after 15 generations while it learns to discriminate small objects from

walls using the local learning algorithm. Figure 11 displays the activation of the

modules composing the control architecture while the best individual of the last

generation was tested with eight real objects evenly distributed in the arena. The

wander behavior is active most of the time, sporadically interrupted by the obstacle

avoidance behavior. The light-following behavior becomes active when the battery
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Figure 9. Fitness values during incremental evolution on the extended task. The

dash-dotted line shows the average population ® tness, the continuous line the ® tness

of the best individual at each generation. Data were smoothed using rolling averages

(window size 5 3). A temporary dip from generation 60 to 70 took place overnight,

and it might be due to some physical events, such as the robot getting stuck with

the gripper, or noisy transmission over the serial line.

is almost discharged. While the robot returns to the recharging station, it has an

object in the gripper and therefore it temporarily activates the obstacle avoidance

behavior to avoid an object on its way. Once the recharging bar is detected, the

recharge module takes control until the battery is fully charged. Five objects are

gripped and released outside the arena.

4.9. Environmental Change

The objects employed during evolutionary training had a diameter of 10 mm. In

order to test the adaptation abilities of the object gripping and object releasing

modules, all objects were replaced by larger objects with a diameter of 25 mm

(Figure 12) while the best individual analyzed above was tested in the environment.

Recall that local learning is automatically enabled whenever the performance

indicator of the module drops below a threshold (here the threshold was 100%

correct response, therefore learning was on almost all the time).

4.10. Analysis of Results

Figure 13 shows the readaptation performance of the object gripping module when

the small objects are replaced by larger ones. No additional evolutionary training

is required.

After object substitutions, walls and objects are sometimes confused, resulting

in a performance drop. However, the signal coming from the optical sensor on the
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Figure 10. Performance of the object gripping module while learning to discrimin-

ate small objects (diameter is 10 mm) from walls. Reinforcement values are rolling

averages (window size 5 30). Performance below zero means a higher percentage

of negative reinforcements, above zero a higher number of positive reinforcements.

Performance around zero means random discrimination.

gripper continuously provides information that punishes or rewards the activation

network. Readaptation to new objects takes place locally and automatically without

requiring modi® cations in other parts of the control architecture.

5. Conclusions

In this paper we have presented a modular architecture for autonomous robots

which allows for the implementation of basic behavioral modules by both hand

programming and training, and accommodates for an evolutionary development

of the interconnections among modules. This architecture is particularly suitable

for developing autonomous robots along the lines of the BAT methodology, which

stresses the importance of anlayzing the target behavior into basic components and

of incremental shaping. The feasibility of the approach is shown by the results of

experimental activity carried out on a number of tasks of non-trivial complexity.

The approach to incremental robot shaping described here extends signi® cantly

previous results by Dorigo and Colombetti (1998). On one hand, connections

among modules are developed more freely than in Dorigo and Colombetti’s

distributed classi® er system (ALECSYS). On the other hand, the experiments

reported show the feasibility of holistic shaping (i.e. of the simultaneous training

of several modules and of their interconnections). As a whole, the approach

advocated in this paper leads to a more natural and eþ ective way of training

autonomous robots to perform complex behaviors. At the same time, this approach

also extends previous results from Floreano and Mondada (1996) in the direction

of practical applicability of the evolutionary method. By incorporating some

knowledge about the task, the adaptive process is almost one order of magnitude
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Figure 11. Module activations for 225 actions of the best individual after 80 gen-

erations. Five objects were picked up and released outside the arena. While the

third object was in the gripper, the robot went to recharge. BtLv, battery level;

Wand, wander behavior; ObAv, obstacle avoidance behavior; LtFl, light-following

behavior; BtCh, recharge behavior; ObGr, object gripping behavior; ObSr, object

in the gripper (sensor); ObRl, object releasing behavior.

Figure 12. A small object (10 mm of diameter) seen during evolutionary training

and a new larger object (25 mm).

faster than in experiments where evolution started from scratch. Furthermore, here

the evolved controllers can easily be reused and extended to more complex tasks.

Another interesting point (which so far has been investigated only to a very

limited extent) is that the proposed architecture allows one to mix easily prepro-

grammed and learned behaviors. This aspect is going to be of fundamental
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Figure 13. Performance of the object gripping module when small objects were

substituted by larger objects. Reinforcement values 2 1, 1 are rolling averages

(window size 5 30). Performance below zero means a higher percentage of negative

reinforcements, above zero a higher number of positive reinforcements. Performance

around zero means random discrimination.

importance in practical applications, because the use of learning for certain speci® c

behaviors may be uneconomical or even dangerous. Moreover, the fact that any

reinforcement learning algorithm can be used within the basic models makes our

architecture extremely ¯ exible and potentially suitable for a wide range of possible

applications.

In principle, one may consider the possibility of allowing for diþ erent learning

mechanisms also at the level of connections. At this level, however, we think that

restricting to an evolutionary approach is well justi ® ed. While it is not possible to

constrain a prior i the kind of learning to be carried out within a single behavioral

module, we know that at the higher level the agent has to learn a network of

connections. At this level, the use of an evolutionary algorithm ensures that the

space of possible connections will be searched globally, thus minimizing the risk of

converging to a highly suboptimal local maximum of the ® tness function.

While the results described in this paper appear to be encouraging, we are

aware that there is a long way to go before an extensive use of learning becomes

feasible in practical robotic applications. In particular, we should increase our

understanding of how sensory input can be used best to compute reinforcements.

In fact, we think that for any learning agent it will be crucial to extract as

much information as possible from its own interactions with the environment. A

distributed modular approach to solving this problem seems to us an eý cient

solution.
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Notes

1. Discrete actions corresponding to motor speeds are given by two output neurons, each corresponding

to a motor. Each output neuron can have a positive or a negative value, generating in all four possible

movements: go forward, turn right, turn left, move backward.

2. The proximity sensors were used by the activation network in order to detect the battery charging

point and activate the module.

3. This strategy did not change the diý culty and /or realism of the training environment, but consider-

ably speeded up our measures.

4. A maximum score of 1.0 would be attainable only in an environment without walls.

5. A motor action lasted 100 ms. Before each new motor action the speed of each wheel was set to a

new value.

6. If the robot tried to pick a wall up, the optical barrier of the gripper was not activated.

7. As two new modules had been added to the architecture, intermodular coordination was not optimal

and obstacle avoidance was not activated every time an object was detected.

8. As individuals of the initial generations pushed the objects towards the walls, after some generations

all the objects would have been placed in contact with the walls and the robot would not have been

able to pick them up by lowering the gripper.
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