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ABSTRACT
We study a self-organized collective decision-making strat-
egy to solve the best-of-n decision problem in a swarm of
robots. We define a distributed and iterative decision-making
strategy. Using this strategy, robots explore the available op-
tions, determine the options’ qualities, decide autonomously
which option to take, and communicate their decision to
neighboring robots. We study the effectiveness and robust-
ness of the proposed strategy using a swarm of 100 Kilobots.
We study the well-known speed versus accuracy trade-off an-
alytically by developing a mean-field model. Compared to a
previously published simpler method, our decision-making
strategy shows a considerable speed-up but has lower accu-
racy. We analyze our decision-making strategy with partic-
ular focus on how the spatial density of robots impacts the
dynamics of decisions. The number of neighboring robots is
found to influence the speed and accuracy of the decision-
making process. Larger neighborhoods speed up the deci-
sion but lower its accuracy. We observe that the parity of
the neighborhood cardinality determines whether the system
will over- or under-perform.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: intelligent
agents, multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation, Theory

Keywords
collective decision making; majority rule; consensus; swarm
intelligence; swarm robotics; self-organization; modeling

1. INTRODUCTION
Governing the increasing complexity of man-made sys-

tems in terms of reliability and robustness requires new
paradigms of systems engineering. Simplicity might be the
key to enable the design of large complex systems based
on many simple and autonomous components. In robotics,
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the design of the Kilobot robot [27] shows how production
costs can be drastically reduced by limiting sensory, actu-
ation, and computational requirements. Yet, the control of
large collections of autonomous robots remains an under-
investigated challenge that demands novel approaches. As
a result of local interactions between individual agents and
their environment, swarm intelligence enables the design of
simple controllers that are highly scalable and robust to
noise and component failures [1, 2]. Swarms of up to 1000
robots have recently been shown to successfully complete
tasks such as aggregation [15], collective transport [28] and
self-assembly [29]. Here, we focus on the more general task of
collective decision-making which is a prerequisite for a num-
ber of different swarm applications [22, 11]. Whether the
swarm needs to identify the shorter path to traverse, the
most suitable shape to form, or the most favorable work-
ing location, it first needs to address a quality-dependent
collective decision-making problem [9, 18].

We study a self-organized collective decision-making strat-
egy to solve the best-of-n decision problem in a swarm of
robots [21]. This problem requires the swarm to establish
a collective agreement on the highest-valued option among
a finite set of n alternatives. A collective decision-making
strategy that solves the best-of-n problem is a distributed
decision mechanism capable of processing the information
provided by the options’ quality in order to drive the swarm
towards the formation of a majority for the best option. This
mechanism—generally known as the modulation of positive
feedback [10]—acts by amplifying or reducing the period of
time in which an individual agent actively participates in the
decision-making process as a function of the option’s qual-
ity. Preferences for different options are promoted propor-
tionally to their quality with the best option being favored.

Previous studies focused on the solution of particular in-
stances of the best-of-n problem and rely on domain-specific
choices for the modulation of positive feedback; being strictly
coupled to the asymmetry of the environment, these de-
sign choices cannot be easily transferred to other scenarios.
In [9, 4], the quality of an option corresponds to the size of
the associated area in the environment. Two decision rules
are specifically designed to adjust an agent’s probability to
change the preference for an area as a function of the area’s
size. These rules are based on ad hoc defined functions. Their
free parameters are determined either empirically or using a
genetic algorithm with the aim of rapid and stable collective
decisions. In [18, 31, 35] the authors apply the more general
majority rule to the problem of finding the shorter of two
paths connecting a starting and a target location. Once 3
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agents meet in the starting location, they form a team, they
mutually share their preferences for a particular path, and
eventually apply the majority rule to determine the team’s
path towards the target location. In this case, the modula-
tion of positive feedback is provided indirectly to the agents
via the environment: the shorter the path to traverse, the
more frequently agents participate in the decision process
favoring that alternative. The same reasoning applies to the
study presented in [32, 3] where the majority rule is substi-
tuted by the k-unanimity rule. When using the k-unanimity
rule, an agent changes its preference towards a particular
option only after consecutively encountering k other agents
favoring that option. The value of k determines the speed
and accuracy of the decision-making process. Reina et al. [25]
take inspiration from unifying models of decision-making in
honeybees swarms and vertebrate brains [17] and use direct
recruitment and cross-inhibition between pairs of agents. Fi-
nally, consensus achievement problems are also widely inves-
tigated in the field of control engineering [12, 26, 30]. How-
ever, researchers generally focus on continuous decisions-
making problems, i.e., problems with an infinite number of
equally-valued alternatives which do not require a quality-
based discrimination process.

In this paper, we abstract the quality of an option from
its particular origins (e.g., brightness level, chemicals con-
centration). When designing the decision-making strategy,
we assume that the robot is equipped with appropriate sen-
sors to determine the quality of the different options and
that this is always a bounded measurement. With this ab-
straction we are able to design more general and portable
solutions for scenarios where the options’ quality is an ab-
solute metric.

We propose a self-organized decision-making strategy that
overcomes the limitations of previous studies by decoupling
the modulation of positive feedback from the decision rule.
In our strategy, agents directly modulate positive feedback
by advertising their preferences for a time proportional to
the option quality. This feature is shared with the weighted
voter model by Valentini et al. [36]. When using the voter
model as a decision rule, agents change their preferences by
copying the preference of a randomly chosen neighbor within
a limited interaction range. In contrast to the weighted voter
model, we implement individual agent decisions using the
majority rule. The majority rule speeds up the decision pro-
cess and enables the implementation of the strategy in very
large swarms. We study the well-known speed versus accu-
racy trade-off in collective decision-making [6, 24]. We test
the effectiveness of the proposed strategy with more than
30 hours of robotic experiments using a swarm of 100 Kilo-
bots. The dynamics of collective decisions are modeled by a
system of ordinary differential equations (ODEs). We show
analytically that the majority rule allows the system to take
faster decisions compared to the weighted voter model but
with lower accuracy. An influential feature is found to be the
spatial density of the robots, which defines the cardinality of
a robot’s neighborhood (i.e., number of agents within per-
ception range) and affects both the speed and the accuracy
of the decision process.

2. DECISION-MAKING STRATEGY
Our aim is to design a self-organized decision-making strat-

egy that is applicable to different instances of the best-of-n
decision problem. Here, the quality of an available option i

is a value ρi ∈ (0, 1]; that is, we abstract away the particular
features of an option that determine its quality. In the con-
sidered scenario, the swarm options correspond to regions
in the space representing resources with a certain quality. A
swarm of N agents is initially located in the nest, which is
an area functioning as a decision-making hub. The nest pro-
vides access to n = 2 equally distant sites, A and B. Agents
in the swarm may perceive the quality ρi, i ∈ {A,B}, of a
site by exploring it. Once returned to the nest, the acquired
information is exploited during the decision-making process
by modulating the positive feedback for the respective site.

We propose a simple, self-organized decision-making strat-
egy. Agents always have a preference for a particular site re-
ferred to as the agent’s opinion. The agent control algorithm
consists of four control states (Fig. 1a). In the dissemination
states (DA,DB) agents broadcast their opinion within a lim-
ited spatial range. Concurrently, they perform defined move-
ments to maintain a well-mixed spatial distribution within
the nest [20]. The purpose of the dissemination states is to
spread agents’ opinions and to prevent their spatial frag-
mentation that may create deadlocks [5]. In the exploration
states (EA, EB) agents travel from the nest to the site asso-
ciated with their current opinion, explore the site, estimate
its quality, return to the nest, and proceed to the respec-
tive dissemination state. The procedure enables the agents
to estimate the quality of a site, that is, to collect a sam-
ple measurement. Despite the noisiness of this individual
measurement, an average over many agents’ measurements
determines the global behavior due to the self-organized na-
ture of the decision-making strategy [21, 36].

A key feature of the proposed strategy is the modulation of
positive feedback that promotes the spread of the best opin-
ion. Agents adjust the average time spent in dissemination
states proportionally to the opinion’s quality by the prod-
uct ρig, i ∈ {A,B}. The parameter g is the unbiased dissem-
ination time and is set by the system designer. In this way,
agents directly control the positive feedback effect of the ma-
jority rule by modulating their participation in the decision
process and driving it towards the best opinion. A similar
modulation mechanism is adopted by house-hunting honey-
bee swarms in their waggle dance behavior [19, 33]. Before
agents leave the dissemination states, they record the opin-
ions of their neighbors. They add their own current opinion
to the record and apply the majority rule to determine their
next state (gray boxes in Fig. 1a). Depending on the out-
come of the majority rule, agents switch either to EA or EB .
In the case of ties, agents keep their current opinion.

3. ROBOTIC SCENARIO
Large-scale robotic experiments are a valuable tool for the

validation of a self-organized control strategy. Physics-based
multi-agent simulations require simple models of robots and
interactions to ensure computational tractability and may
limit accuracy. In contrast, the constraints imposed by the
real world and real robots allow a more convincing verifica-
tion of a strategy’s scalability and robustness. We therefore
implemented the collective decision-making strategy pro-
posed above in a swarm of 100 Kilobots. A video describing
the strategy and the robot experiments can be found in [37].

The Kilobot is a small, low-cost robot commercially avail-
able for about e110 that enables experimentation with large
groups of embodied agents (see Fig. 1b). It has a diameter
of 3.3 cm and a battery that allows for a few hours of auton-
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Figure 1: Illustrations of: a) the probabilistic finite-state machine of the individual agent (solid and dotted
lines represent respectively deterministic and stochastic transitions; MR, majority rule); b) the Kilobot robot;
c) robot arena; d) finite-state machine of robot motion control during the dissemination state (RW, random
walk; PT, phototaxis; !PT, antiphototaxis).

omy. The Kilobot implements stick-slip motion using three
legs and a pair of vibrating motors positioned at its sides. It
achieves forward motion at a nominal speed of 1 cm/s and
turns in place at up to π/4 rad/s. The Kilobot is equipped
with a light sensor that enables the robot to perceive the in-
tensity of ambient light. Finally, the robot is able to commu-
nicate infrared messages of 3 bytes with nearby robots and
to sense the distance to the transmitting robot at a range
of up to 10–20 cm depending on the reflection properties of
the ground surface.

We implemented the proposed self-organized, collective
decision-making strategy in a site-selection scenario. N =
100 robots are placed in a rectangular arena of 100×190 cm2

(Fig. 1c), which is bigger than a single robot’s footprint
by a factor of approximately 2 × 103. The arena is parti-
tioned into three regions: at the two sides there are sites of
80×45 cm2 (respectively, site A on the right side and site B
on the left side); the nest is at the center and has dimensions
100×100 cm2. The goal of the swarm is to reach a large ma-
jority of individuals that favor the better site (henceforth
site A). A light source positioned at the right side of the
arena creates a light gradient and allows for directed navi-
gation between the three areas.

As a consequence of the Kilobots’ limited perception ca-
pabilities, we emulated the identification of sites and the
estimation of their quality using infrared beacons. Robots
perceive the two borders between the sites and the nest
from two arrays of beacons positioned under the Perspex
surface of the arena. For each border, 5 Kilobots are posi-
tioned upside-down under the surface and function as bea-
cons. Each beacon repeatedly broadcasts a message contain-
ing the type (A or B) and the quality (ρA or ρB) of a site.
Robots perceive these messages only within the sites in the
proximity of the borders (approximately 15 cm) because the
area under the nest is covered by lightproof paper and bea-
cons have a limited communication range.

3.1 Robot Control Algorithm
The proposed collective decision-making strategy meets

the requirements of simplicity imposed by the limited ca-
pabilities of the Kilobot robot. We develop the decision-
making strategy using only the motors, the light sensor, and
the infrared transceiver of the Kilobot. Depending on the
current perceptions of the environment and on the control
state, a robot alternates between three low-level motion be-

haviors: random motion (random-walk) and oriented motion
towards or away from a light source (respectively, phototaxis
and anti-phototaxis). In the random-walk behavior, robots
perform an exploration-oriented random walk called Lévy
flight [14]. The robot moves forward for an exponentially
distributed period of time; then, it changes orientation by
turning in place for a normally distributed time. In the pho-
totaxis (anti-phototaxis) behavior, robots perform oriented
motion towards (away from) the light source placed on the
right side of the arena. The robot initially searches for the
direction towards (away from) the light source by turning in
place and sensing the ambient light. Once the correct direc-
tion is found, the robot moves straight until ambient light
measurements fall outside a certain tolerance range. At this
point the robot resumes the search for the correct direction.

In the dissemination state, robots move within the nest
and repeatedly broadcast their opinion as well as a ran-
domly generated 16-bit identifier that (with high probabil-
ity) uniquely identifies the robot’s opinion in a local neigh-
borhood. To modulate positive feedback, robots spend an
exponentially distributed period of time in the dissemina-
tion state whose mean duration is given by either ρAg or
ρBg. Note that the mean duration of the dissemination state
is a combination of the scaling parameter g, set by the sys-
tem designer, and of the robot’s current estimate of a site’s
quality (either ρA or ρB), which depends on the problem at
hand. Concurrently, robots perform a random walk aimed
at stirring the spatial distribution of opinions within the
boundaries of the nest (Fig. 1d). If, during this period of
time, a robot perceives a message from a border beacon, for
example the border beacon of site A (site B), the robot rec-
ognizes that it is mistakenly leaving the nest and enters the
anti-phototaxis (phototaxis) behavior with the aim to return
to the nest. Before leaving the dissemination state, a robot
records the opinions of its neighbors for three seconds, adds
its own current opinion, and applies the majority rule to de-
termine which site to explore (possibly switching opinion).
The rather short time for opinion collection is required to
reduce the time-correlation of the recorded opinions and to
prevent individual decisions based on outdated information.

In the exploration state, robots move towards the site as-
sociated with their current opinion using the light source as
a reference point; they explore the area for an exponentially
distributed period of time (emulating the actual estimation
of the site’s quality), and then return to the nest. We devel-
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Figure 2: Illustration of an experiment with 100 Kilobots. Screen-shots taken respectively at the beginning
of the experiment, t = 0 min (left); at approximately half of the decision process, t = 35 min (center); and at
the end, t = 90 min (right).

oped a simple mechanism based on infrared beacons to en-
sure that transitions between dissemination and exploration
states happen only in the nest. This mechanism ensures that
a robot which has to explore a site reaches it before moving
back to the dissemination state. For a robot in state EA (re-
spectively, EB) the phototaxis (anti-phototaxis) behavior is
adopted in two stages. Firstly, the robot performs phototaxis
(anti-phototaxis) until it perceives a message from beacon
A (beacon B), thus ensuring that the robot is correctly en-
tering site A (B). Secondly, the phototaxis (anti-phototaxis)
behavior is prolonged for as long as the robot receives mes-
sages from beacons A (B). Following this simple mechanism
robots enter the site and advance into it. The same mecha-
nism is used by robots in order to return to the nest.

3.2 Robot Experiments
The spatial density of robots may influence the perfor-

mance of collective systems either positively or negatively [13,
16]. To understand how spatiality affects the proposed self-
organized decision-making strategy, we study the effects of
different neighborhood sizes N on the dynamics of the deci-
sion process. Specifically, we are interested in understanding
how neighborhood size affects the time and the accuracy of
the process. We perform two series of robotic experiments
where we vary the maximum number of opinion messages
that a robot is allowed to receive before applying the ma-
jority rule. In doing so, we emulate the effects of different
spatial densities on the decision process. We refer in the
analysis to the size G = N + 1 of the opinion group used by
a robot which includes its own opinion (Gmax ∈ {5, 25}). We
consider a scenario where site A is twice as good as site B.
We therefore set the sites quality broadcast by the boarder
beacons to ρA = 1 and ρB = 0.5. Robots are initially lo-
cated in the nest, initialized in the dissemination state with
random opinion (either A or B) and unbiased quality esti-
mation (ρ̂A = ρ̂B = 1). For each experiment, we perform
10 independent runs using N = 100 robots for a duration of
90 min each. The parameter g determines the average dura-
tion of the dissemination state prior to its modulation. Too
small values for g may prevent robots’ opinions from being
spatially well-mixed, hence resulting in opinion fragmenta-
tion, while too big values increase the time necessary for the
swarm to take a collective decision. Based on a few prelim-
inary experiments we chose to set g to 8.4 min (i.e., about
500 sec). Fig. 2 shows photos of one of the experiments.

We show in Fig. 3a the dynamics of the proportion of
robots with opinion A during the decision process ((DA +

EA)/N). When Gmax = 25, the swarm takes approximately
60 min to exceed a 90% majority of robots in favor of opin-
ion A (white box-plots). When the maximum group size is
reduced, Gmax = 5, the swarm exceeds the 90% majority in
around 70 min, hence taking approximately 10 min longer
(gray box-plots). Thus, we observe a positive correlation be-
tween the speed of the decision process and the average
neighborhood size: the bigger the neighborhood the faster
the decision process. Additionally, Fig. 3a shows that even
though the swarm establishes a large majority of > 95%,
the swarm does not reach a 100%-consensus. This is a con-
sequence of limited performance of some robots despite care-
ful calibration and maintenance efforts. Occasionally, robots
would require re-calibration during the experiment, hence
loose agility, and are less likely to change opinion. At times,
robots have battery failures or switch to stand-by due to
short-circuits caused by robot-to-robot collisions. Still, the
proposed self-organized decision-making strategy proves to
be robust by enabling the swarm to establish a large ma-
jority for the best option and, therefore, to take a collective
decision.

Robot experiments show both the robustness of the self-
organized decision-making strategy and the effects of spatial
density on the velocity of the decision process. However, the
overhead of robot experiments limits the available data and
hence our analysis. In order to deepen our understanding
concerning the effects of the robot density on the system
performance, we collect additional statistics and use this in-
formation to define a qualitative mathematical model (see
Sec. 4). A first step towards the definition of a proper model
is to analyze the spatial distribution of robots during the
experiments. We collect data concerning the size G of the
group of opinions over which a robot applies the majority
rule. Fig. 3b shows the probability mass function P (G) es-
timated from a single experimental run for both settings
(Gmax ∈ {5, 25}). We measure an average group size of 8.57
when robots are allowed to receive up to Gmax = 25 mes-
sages. The average group size is reduced to 4.4 for Gmax = 5.

A second step is that of analyzing the time required by
a robot to complete the procedure of the exploration state.
Fig. 3c shows the probability density function of the explo-
ration time σ−1. As expected, the distribution of the explo-
ration time in the two settings is similar: P (σ−1) is approxi-
mately centered around its mean value σ−1 = 6.06 min. We
also observe a few samples with very high values (� 6.06 min),
that is, P (σ−1) has a long tail. This result is related to the
above discussion of technical problems. That is, due to mo-
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Figure 3: Illustrations of the results of robot experiments: a) proportion of robots with opinion A over time;
b) probability distribution of the robot group size G when applying the majority rule; and c) distribution of
the time necessary for the robots to complete the exploration state.

tion difficulties, a few robots spend a long time in the explo-
ration state. Additionally, we also collect data on how often
a robot applies the majority rule on average. Robots take on
average 6.65 and 6.96 decisions, respectively, in the first and
second setting. Hence, each robot performs about 7 trips go-
ing from the nest to one of the two sites and therefore takes
about 7 site quality samples.

4. MEAN FIELD MODEL
With the results of robot experiments at hand, we define

a qualitative mathematical model aimed at understanding
the influence of spatial densities. We use tools of dynami-
cal system theory to study the effects of the agents’ neigh-
borhood size on the dynamics of the decision process. For
each opinion, we model the time evolution of the expected
proportion of agents in the dissemination state, dA and dB
respectively, and the expected proportion of agents in the
exploration state, eA and eB respectively. We assume that
(i) robots have a constant neighborhood sizeN and (ii) each
robot has already a valid quality estimate associated with
its initial opinion at time t = 0. Although these simplifying
assumptions differ from the actual robotic implementation,
they enable the definition of a concise mathematical model.

An essential feature of the proposed decision-making strat-
egy is the modulation of the time agents spend in the dis-
semination state advertising their own opinion. This modu-
lation biases the system dynamics towards consensus on the
best opinion and is achieved by letting the agents weight the
unbiased duration g of the dissemination state by the qual-
ity ρA (ρB) of their opinion A (B). We define coefficients α =
(ρAg)−1 and β = (ρBg)−1 as shortcuts to represent the rates
at which agents move from the dissemination state to the
exploration state for opinions A and B. In the robotic ex-
periments we set the design parameter g = 8.4 min. We es-
timate the mean duration σ−1 of the exploration state from
the data shown in Fig. 3c to be σ−1 = 6.06 min.

We model the outcome of the majority rule by considering
the probability pAB that an agent with opinion A switches
to opinion B as the result of applying the majority rule for
a neighborhood of size N (similarly for pBA). In addition,
we also consider those cases when the majority rule does
not trigger a switch which is modeled by probabilities pAA

and pBB . Since agents only advertise their opinion when
they are in the dissemination state, these probabilities de-
pend only on the opinion distribution dA and dB of agents in
the dissemination state. The probability to have a neighbor

with opinion A is given by pA = dA
dA+dB

. For example, for an

agent with opinion A and neighborhood size N , the prob-
ability pAB can be defined by considering all possible ma-
jorities that make the agent switch opinion towards B. Say
N = 2, then an agent switches from A to B if and only if it
encounters a neighborhood BB (i.e., two neighboring agents
with opinion B). The agent would keep opinion A in the case
the neighborhood is AB, BA, or AA. Under the well-mixed
assumption, probability pAA is equal to p2A + 2pA(1 − pA)
while pAB = (1 − pA)2. For an agent with opinion A and
neighborhood size N , we have

pAA =

N∑
i=bN/2c

(
N
i

)
piA(1− pA)N−i, (1)

pAB =

bN/2c−1∑
i=0

(
N
i

)
piA(1− pA)N−i. (2)

The summations define a discrete integration of a Binomial
distribution. Specifically, pA is the success probability,N the
number of trials, and i the number of successes. Equations
for probabilities pBB and pBA are derived by swapping the
power indexes in Eqs (1–2).

Finally, we define a system of 4 ordinary differential equa-
tions 

d

dt
dA = σeA − αdA,

d

dt
dB = σeB − βdB ,

d

dt
eA = pAAαdA + pBAβdB − σeA,

d

dt
eB = pABαdA + pBBβdB − σeB .

(3)

The first two equations model the change in the propor-
tion of agents in the dissemination state. Note that during
the dissemination of opinions, agents do not switch opinion.
dA (respectively dB) increases at a rate σ due to agents re-
turning from the exploration state eA (respectively eB) and
decreases at a rate α (respectively β) due to agents leaving
the dissemination state. The last two equations model the
proportion of agents in the exploration state. For the case
of eA, the proportion increases due to agents that were in
the dissemination state before and have switched to the ex-
ploration state. This includes both agents that were in favor
of opinion A before and stay with it and agents that were
in favor of opinion B but have switched to opinion A. The
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Figure 4: Illustrations of the analysis of the ODE model in Eqs 3: a) predictions of the ODE model against
robot experiments; b) heat-map representing the time to consensus and the border between basins of attrac-
tion of consensus states (the darker the shades of gray, the longer the decision time); c) decision time ratio
between the weighted voter model (TVM) and the majority rule (TMR).

Table 1: Summary of study parameters: DP, set by
designer; RE, estimated from robot experiments;
PP, parameter that defines the problem.

Parameter Value Type

Quality of Site A ρA = 1.0 PP
Quality of Site B ρB ∈ {0.5, . . . , 0.99} PP

Maximum group size Gmax ∈ {5, 25} DP
Mean neighborhood size N ∈ {2, 4, 8} RE

Exploration time σ−1 = 6.06 min RE
Dissemination time g = 8.4 min DP

proportion eA decreases at a rate σ due to agents leaving
the exploration state (similarly for eB).

5. ANALYSIS
In this section, we analyze the mean field mathematical

model introduced in Sec. 4 with the aim of deepening our
understanding of the proposed decision-making strategy. We
first validate the mathematical model defined in the system
of Eqs (3) against the results of robot experiments. Next, we
use the model to study the speed versus accuracy trade-off
in reference to the majority rule. Finally, we compare the
proposed decision-making strategy with the weighted voter
model of Valentini et al. [36]. We summarize all parameters
studied in the following analysis in Table 1.

5.1 Model Validation
We validate the predictions of our ODE model by com-

paring them to our robot experiments. We set the neigh-
borhood size to N = 8 for the case of Gmax = 25, and
N = 4 for Gmax = 5 by approximating the data collected
during robot experiments (see Sec. 3.2). We compare tran-
sient and asymptotic dynamics of the ODE model to the re-
sults from robotic experiments. For both problem settings,
Fig. 4a shows that trajectories predicted with the model
(labeled ODE, solid and dashed lines) resemble the average
robot performance (cross and diamond symbols) but at an
increased velocity. The prediction of the transient dynamics
improves when scaling the time as t′ = 3(t + g) (labeled
ODE’, dotted and dot-dashed lines). That is, robot experi-
ments are approximately 3 times slower than predictions of
the ODE model. In addition, the offset represented by g in t′

is due to the fact that, in the experiments, robots do not have

an initial estimate of their opinions, which need an average
time g to be acquired. The discrepancies between the tran-
sient dynamics of the model and those of robot experiments
are a consequence of the simplifying assumptions (i) and
(ii) of the model (see Sec. 4); of the fact that the model is
a continuous approximation and does not account for finite-
size effects; and of spatial interferences among robots that,
by increasing the spatial correlation of opinions, make the
system depart from the well-mixed assumption underlying
the model. The asymptotic dynamics are correctly predicted
by the model. The stability analysis of the system of Eqs (3)
determines three roots: two asymptotically stable solutions
correspond to consensus on A,

{dA =
ρAg

ρAg + σ−1
; dB = 0; eA =

σ−1

ρAg + σ−1
; eB = 0},

and consensus on B,

{dA = 0; dB =
ρBg

ρBg + σ−1
; eA = 0; eB =

σ−1

ρBg + σ−1
};

the third solution is an unstable fixed point.

5.2 Speed Versus Accuracy Trade-Off
We analyze the system of Eqs (3) with the aim to un-

derstand the speed versus accuracy trade-off [6, 24] in our
robot system. On the one hand, we want to determine how
the initial distribution of opinions among the agents affects
the performance of the swarm. On the other hand, we want
to quantify, at least qualitatively, how the spatial density
of robots influences the speed and accuracy of the collective
decision, i.e., how an increase or decrease in the group size G
impacts the performance of the swarm.

Fig. 4b shows the speed versus accuracy trade-off arising
from different parameter configurations. The solid line is the
border that separates the basins of attraction between the
two asymptotically stable solutions, respectively, consensus
on A and on B. This border increases roughly logarithmi-
cally with the group size G. The higher the value of the bor-
der, the smaller the basin of attraction of the best option
(site A). This result indicates that increasing G reduces the
accuracy and the robustness of the decision-making process
(note that fluctuations could move the system towards B
even from the unbiased initial condition dA = dB = 0.5).
The time necessary to take a decision increases with the
proximity of the initial conditions to the border of the basins
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of attraction and decreases for increasing values of the group
size G. This is shown in Fig. 4b where the darker the shades
of gray, the longer is the time necessary for a collective de-
cision. The inset in Fig. 4b highlights an unexpected feature
of the majority rule. When the size G of the group of opin-
ions used in the majority rule is even, the decision process
takes longer to complete and the best opinion’s basin of at-
traction shrinks. Consequently, the accuracy is reduced for
even group sizes. Groups of even sizes have a chance of ties.
In case of ties, the agent keeps its current opinion, which
eventually favors the current majority at the swarm level [7,
8]. This analysis raises the interesting question of whether
tie-breakers could increase accuracy and/or speed. Future
empirical and theoretical studies will focus on the design of
mechanisms to improve the swarm performance in the case
of even group sizes (e.g., random tie-breaker).

5.3 Weighted Voter Model Comparison
The proposal of a new approach to a certain problem re-

quires a comparison to existing state-of-the-art solutions.
However, as discussed in the introduction, most of the exist-
ing algorithms for the best-of-n decision problem rely on the
exploitation of particular features of the environment for the
modulation of positive feedback. In the scenario tackled in
this study, we deliberately avoided such features with the
aim of devising a more general decision-making strategy.
As a consequence, these algorithms do not directly apply
to our scenario with the only exception being the weighted
voter model [36]. Although a comparison based on robot ex-
periments would be desirable, the high cost of experiments
would result in a limited number of independent runs and a
resulting low significance of statistical tests. Instead, we use
the ODE model introduced in Sec. 4 and the one discussed
in [36]. We compare analytically the performance of these
decision-making strategies using the same parameter values
(with the exception of the average neighborhood size N ).

We therefore conclude the analysis with a comparison
of the proposed majority rule-based decision-making strat-
egy with the weighted voter model. Fig. 4c shows the ratio
TV M/TMR between the decision time TV M of the weighted
voter model and the decision time TMR of the majority rule
for N = 2 and different values of ρB ∈ {0.5, . . . , 0.99}. The
majority rule enables decisions that are generally faster than
those of the weighted voter model, reaching in extreme cases
a speed-up of up to 103. In a limited range of parameter
configurations, we observe a slow-down of the majority rule
around the border between different basins of attraction of
consensus states (solid line with TV M/TMR < 1). The di-
amond in Fig. 4c indicates the speed-up of 1.61 provided
by the majority rule in the investigated robotic scenario.
In summary, the majority rule allows for much faster de-
cisions at the cost of reduced accuracy while the weighted
voter model takes much longer to establish a decision but
guarantees the optimal solution.

6. DISCUSSION
In this section, we deepen our discussion concerning the

primary contributions of this study. We first focus on the
the proposed self-organized decision-making strategy and we
highlight the differences from previous works. Then, we dis-
cuss the implementation of this strategy on real robots and
we summarize the relevant design choices.

6.1 Decision-Making Strategy
The generality of the proposed self-organized decision-

making strategy is a result of the abstraction of options’
qualities from their particular origins. This abstraction al-
lows us to employ a simple and general decision-making
mechanism: the majority rule. The majority rule is invariant
to the number of options, which could possibly be unknown.
Therefore, the proposed strategy directly applies to the gen-
eral case of n different options (agents can replicate the dis-
semination and exploration states for each newly encoun-
tered option). Also the reported ODE model is easily gener-
alized to the case of n > 2 options. More options are modeled
by introducing new equations in the system of Eqs (3) and
by adapting Eqs (1–2) to sum over a Multinomial distribu-
tion instead of a Binomial distribution.

The proposed decision-making strategy substantially dif-
fers from the canonical majority rule model. In the canonical
majority rule model [7, 8], all agents are perpetually located
in a unique environment and repeatedly apply the majority
rule over a set of equally valued alternatives. The focus of
the canonical model is therefore on breaking the symmetry
between the different alternatives. As a consequence, it lacks
a mechanism that allows the agents as a whole to process
the information provided by the options’ qualities. In the
proposed decision-making strategy, this mechanism is repre-
sented by the direct modulation of the duration of options’
promotion performed by the agents—modulation that takes
place in the dissemination state. Provided sufficient initial
conditions are met (see Fig. 4b), this modulation mecha-
nism gives the swarm the momentum necessary to steer the
collective decision towards the best alternative. Note that
neither of these two mechanisms alone would solve the con-
sidered scenario. On the one hand, using only the majority
rule would not favor the best alternative. On the other hand,
the sole modulation in the dissemination state does not pro-
vide agents with the means to change their opinions and
eventually take a collective decision.

In contrast to the weighted voter model proposed by Valen-
tini et al. [36], we implement individual agents’ decisions us-
ing the majority rule. In the limit of an infinite number of
agents, the weighted voter model guarantees consensus on
the best option available to the swarm. However, there is
a trade-off—as shown in Fig. 4c, this extremely high accu-
racy comes at the cost of much longer convergence times.
This feature reduces the overall efficiency of the decision-
making strategy and may also prevent designers from using
the weighted voter model whenever the chosen robot plat-
form suffers from limited energy autonomy—as was the case
for our robot experiments. In contrast, the majority rule
allows the swarm to take much faster collective decisions,
at the cost of reducing the overall accuracy. Nonetheless,
it allows us to implement the decision-making strategy and
to perform tests using a swarm of 100 Kilobots. Therefore,
the proposed decision-making strategy is preferable in sce-
narios where a short decision time is the main goal whilst
the weighted voter model should be considered whenever
the accuracy of the collective decision is of primary impor-
tance (provided that the used robot platform has sufficient
autonomy). Furthermore, the majority rule gives designers
an additional degree of freedom: the size of the group of
opinions used for individual agents’ decisions. Given a suf-
ficiently high spatial density, designers may operate on the
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maximum group size with the aim of calibrating the speed
and the accuracy of the collective decision.

6.2 Robot Implementation
The Kilobot is very limited in its sensory capabilities and

its performance is extremely sensitive to passive obstacles
that cannot be perceived, such as walls or objects scattered
in the environment. For example, a Kilobot may get stuck at
one of the arena walls. Due to the lack of appropriate sensors,
the robot would not be capable to detect this problematic
situation, and therefore, to trigger appropriate escape ac-
tions. The situation worsens when many Kilobots are placed
in a small environment. They may start to form clusters near
a wall which might result in the failure of the overall exper-
iment. In addition, the Kilobot is lightweight, and therefore
it is sensitive to the level of the surface it is operating on. In
order to minimize the undesirable effects resulting from the
arena’s walls and surface level, we designed the arena with
a slightly concave profile, in contrast to a perfectly flat and
level surface. In this way, when moving, the robots have a
natural slight tendency to move towards the center of the
arena, reducing the chances of forming clusters at walls that
are sufficiently large to block many robots.

In the robot implementation of the proposed decision-
making strategy, robots spend an exponentially distributed
period of time in both the dissemination and exploration
states. The exponential distribution is characterized by high
variance, and therefore, this choice injects a certain amount
of noise into the system. Although other choices are pos-
sible, which may result in faster decisions, we found the
exponential distribution extremely beneficial in the robot
experiments. By injecting noise into the system, we pre-
vent synchronization effects among robots that, with high
probability, would result in spatial fragmentation of robots’
opinions and consequently would prevent the system from
achieving a collective decision. That is, a certain level of
noise helps to maintain a well-mixed distribution of opin-
ions within the nest. As a result of its self-organized nature,
the speed and the accuracy of the proposed decision-making
strategy is minimally affected by noise, as highlighted in [36]
for the case of the weighted voter model. Additionally, we
found this choice to be beneficial for minimizing the forma-
tion of clusters of robots near the arena’s walls—a scenario
that is more likely to occur when robots are synchronized.

Finally, we investigated the cause of the relatively long
time that is necessary to take a decision. Is it a consequence
of the implemented decision-making strategy itself or does
it depend considerably on the robots’ limited speed? From
data collected during the robot experiments we know that,
during the 90 min of execution, each robot performs only
about 7 trips going from the nest to one of the two sites and
back. Thus, a robot takes about 7 samples of site qualities.
Moreover, from Fig. 3a we know that a collective decision
is already taken after about 60 min on average. Hence, we
can expect the number of necessary samples to be approxi-
mately two-thirds of what was measured for the full 90 min.
Given that the number of site visits is small, we conclude
that the long execution time is a result of the limited speed
of the Kilobots. A seemingly more efficient alternative could
be to have each robot visit all sites first and then let it
compare its estimate to determine the best option. In this
case, only 2 site visits would be required. However, such a
decision-making strategy would not be self-organized, would

not utilize cooperation among the robots, and would conse-
quently suffer from several drawbacks. On the one hand, the
direct comparisons of option qualities is more sensitive to
noisy estimates [23]. On the other hand, it would reduce the
efficiency of the swarm with increasing number of alterna-
tive options. Indeed, when the information from the envi-
ronment is processed in a self-organized manner, agents are
not required to estimate the quality of all available options
individually, as shown by studies of house-hunting honey-
bees [33, 34], where the large majority of bees visit only one
or two of the available alternatives.

7. CONCLUSIONS
We described a self-organized collective decision strategy

to solve the best-of-n decision-making problem in a swarm
of robots. This strategy couples a time-modulation mecha-
nism, that biases the system dynamics towards consensus
on the best option, with individual robots’ decisions based
on the majority rule. We have shown that our strategy can
be implemented on a swarm of 100 robots with minimal
actuation, perception, and computational capabilities. The
robot experiments prove the feasibility of our strategy in
large swarms and its robustness to robot failures. The con-
sensus states are the only asymptotically stable solutions,
as shown using the mean-field model. Using this model, we
have (i) explored the speed versus accuracy trade-off that
arises in the majority rule from different robot densities and
(ii) compared the proposed strategy to the weighted voter
model [36]. The comparison shows that our strategy speeds
up the decision-making process considerably. We have shown
that the speed of the decision-making process increases with
the neighborhood size while its accuracy decreases.

Future empirical work will include the comparison of the
proposed strategy with the weighted voter model through
robot experiments as well as the investigation of direct com-
parisons of opinion qualities. As discussed in Sec. 5.2, room
for improvement exists for individual agents’ decisions in
the case of even group sizes. We will investigate the effect
of tie-breakers in future research. Further theoretical studies
will be focused on the general case of n alternative options
by extending the mean field model of Eqs 3 following our
discussion in Sec. 6.1. Additional empirical and theoretical
work will consider the network dynamics arising from the
robots’ spatial interactions. Building on the interaction net-
work abstraction, we will focus on the definition of quantita-
tive stochastic models for the accurate prediction of decision
dynamics.
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Bruxelles, Brussels, Belgium, 2011.

[33] T. D. Seeley. Honeybee Democracy. Princeton
University Press, 2010.

1313



[34] T. D. Seeley and S. C. Buhrman. Group decision
making in swarms of honey bees. Behavioral Ecology
and Sociobiology, 45(1):19–31, 1999.

[35] G. Valentini, M. Birattari, and M. Dorigo. Majority
rule with differential latency: An absorbing Markov
chain to model consensus. In Proceedings of the
European Conference on Complex Systems 2012,
Springer Proceedings in Complexity, pages 651–658.
Springer, 2013.

[36] G. Valentini, H. Hamann, and M. Dorigo.
Self-organized collective decision making: The
weighted voter model. In Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’14, pages 45–52.
IFAAMAS, 2014.

[37] G. Valentini, H. Hamann, and M. Dorigo.
Self-organized collective decisions in a robot swarm. In
Proceedings of the 29th AAAI Conference on Artificial
Intelligence, AI Video Competition. AAAI Press, 2015.
http://youtu.be/5lz HnOLBW4.

1314




