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Programming robot swarms is hard because system requirements are formulated at the swarm level (i.e., globally) while control
rules need to be coded at the individual robot level (i.e., locally). Connecting global to local levels or vice versa through
mathematical modeling to predict the system behavior is generally assumed to be the grand challenge of swarm robotics. We
propose to approach this problem by programming directly at the swarm level. Key to this solution is the use of heterogeneous
swarms that combine appropriate subsets of agents whose hard-coded agent behaviors have known global effects. Our novel
global-to-local design methodology allows to compose heterogeneous swarms for the example application of self-organized task
allocation. We define a large but finite number of local agent controllers and focus on the global dynamics of behaviorally
heterogeneous swarms. The user inputs the desired global task allocation for the swarm as a stationary probability distribution
of agents allocated over tasks. We provide a generic method that implements the desired swarm behavior by mathematically
deriving appropriate compositions of heterogeneous swarms that approximate these global user requirements. We investigate
our methodology over several task allocation scenarios and validate our results with multiagent simulations. The proposed
global-to-local design methodology is not limited to task allocation problems and can pave the way to formal approaches to
design other swarm behaviors.

1. Introduction

A primary challenge that complicates the spread of applica-
tions of large collections of embodied agents [1, 2] is how to
design individual agent controllers for a given desired collec-
tive behavior. The canonical, local-to-global approach [3]
includes a trial and error refinement of individual agent con-
trol rules followed by a macroscopic analysis of resulting
swarm behaviors [4, 5] or a formal verification of specific
properties of interest [6–9]. Designing agent controllers for
a target swarm behavior in a noniterative way without con-
tinuous refinements has proven challenging. At present, only
a few methods exist and they are tailored to specific scenar-
ios (e.g., task allocation [10–12], formation control [13], self-
assembly [14–16], and collective construction [17]). The
challenge is to find a generic method to automate global-
to-local programming [18].

To tackle this challenge, we propose a novel global-to-
local design approach. Our key idea is to compose a het-
erogeneous swarm [19–22] using groups of behaviorally

different agents such that the resulting swarm behavior
approximates a user input representing the desired behavior
of the entire swarm. This idea is arguably related to the con-
cept of population coding from neurosciences where certain
cognitive phenomena (e.g., perception of directional move-
ment) result from the average of different individual contri-
butions from populations of neurons [23]. Analogously to
population coding [24], we derive a global-to-local design
method that performs a function approximation of the user
input as a linear combination of basis vectors, each represent-
ing the global influence of a different agent controller.

We illustrate this idea by defining a prescriptive design
method for self-organized task allocation [25–27]. Specifi-
cally, we tackle variants of the single-task robots, multi-
robot tasks problem (ST-MR) [28] with static, sequential,
and periodic swarm allocations. This problem is generally
known as the coalition formation problem and has been
extensively studied in the multiagent community [29, 30].
Standard multiagent approaches, however, require complex
cooperation strategies with a priori negotiation or bidding
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for task assignments and unconstrained global communica-
tion. These approaches are not suitable for large-scale
swarms of unreliable agents with high scalability require-
ments that need to avoid communication bottlenecks.

The swarm intelligence community developed a rich
framework of algorithms for self-organized task allocation
that are suitable for unreliable, embodied agents. Instead of
forming a priori coalitions, self-organized multiagent sys-
tems achieve task allocation as a result of the continuous
interaction among agents and between agents and the envi-
ronment. Popular approaches include threshold-based algo-
rithms [26, 31] and recruitment strategies inspired by the
foraging behavior of ant colonies [25, 27]. More recently,
Castillo-Cagigal et al. [32] investigated periodic binary task
allocation and proposed a self-organized synchronization
strategy whose macroscopic behavior results in a bimodal
distribution of robots over two tasks—a scenario we con-
sider here, too. All these studies, however, employ local-to-
global design approaches (i.e., bottom-up with challenges
in anticipating global behaviors). Although the proposed
strategies are often supported by descriptive macroscopic
models [33], these studies do not provide a prescriptive
design method as ours here.

A notable exception is the method proposed by Berman
et al. [10] for the design of task allocation. In their work, the
authors consider problems with more than two tasks. Each
agent decides to switch tasks independently of other agents,
and therefore, agents do not interact with each other. Their
method, based on a linear continuous model, optimizes a
set of transition rates between pairs of tasks that define a
unique agent controller with the aim to converge as quickly
as possible to a given swarm allocation. Differently from the
probability distribution over swarm allocations considered
here, they assume a single swarm allocation as input corre-
sponding to the mode of our unimodal scenario (see Section
3.1). Due to the lack of interactions among agents, their
method cannot achieve the nonlinear, oscillatory dynamics
of the swarm that we describe in our multimodal scenarios
(see Section 3.2). The approach of Berman et al. [10] has also
been extended to incorporate feedback gathered from the
environment by individual agents [11, 12]. Agents keep
track of the number of successfully completed tasks and
report this information to a centralized authority (called
the hive) that, in turn, updates the parameters of their sto-
chastic control policy. Differently, our design approach pro-
vides a completely self-organized solution that does not
require any centralized authority.

We consider a simple scenario where a user wants to
design a swarm that allocates its members to only two tasks.
Despite the simplicity of this task allocation problem, a few
variations are possible. Let us say we have task 0 and task
1 and we want to design a swarm with 80% of agents work-
ing on task 0 and 20% working on task 1. In a trivial
approach, we could statically assign agents to tasks before
deployment. However, it is generally beneficial to require
the swarm to allocate agents to tasks after deployment so
as to increase robustness to individual agent failures. Agents
have only local perception and cannot accurately estimate
the number of agents currently assigned to either task.

Hence, the swarm behavior is inherently stochastic. Even
for a good design of the agent controller, we can only hope
to have 80% of the agents assigned to task 0 on average over
time due to the variance introduced by each agent accuracy
in assessing the current state of the swarm. A variant of this
scenario arises when the user wants to define the variance of
the swarm allocation (i.e., increasing it over the accuracy-
limited value), for example, to increase the swarm’s potential
for exploration over exploitation. Another variant is repre-
sented by sequential task allocation. For instance, we initially
want the 80/20% allocation as above but followed in a later
phase by a 30/70% allocation, possibly triggered by external
factors. For example, in a surveillance task, a swarm may
need to monitor the inside and outside of a facility allocating
agents in different proportions during the day and night. Yet
another variant is periodic task allocation. We allow the
swarm to autonomously decide when and how often to
switch from 80/20% to 30/70%.

In more formal terms, a swarm allocation corresponds to
a partitioning of the agents into two working groups, one for
each of the two tasks. The user provides a description of the
desired swarm allocations as a probability distribution over
the space of all possible swarm allocations. To define a spe-
cific swarm behavior, the user manipulates the number and
positions of the distribution’s modes (i.e., local probability
maxima) with each mode corresponding to a target swarm
allocation (e.g., as above with the two modes 80/20% and
30/70%). The user can specify a static task allocation sce-
nario by means of a unimodal distribution. A sequential task
allocation scenario is defined through a sequence of unimo-
dal distributions and a criterion to trigger a switch in swarm
allocation. Finally, a user can define a periodic task alloca-
tion scenario using a distribution with two or more modes.
The swarm periodically and autonomously changes the allo-
cation of agents as specified by the modes in a stochastic
manner. While this approach may seem unnecessarily con-
trived for this simple case of binary task allocation, we
believe it can be extended to more complex task allocation
problems as well as other swarm problems that can be
approached using probabilistic finite state machines (see
Figure 1).

Our global-to-local design method hinges on three main
ideas and assumptions: (a) nonprogrammable agents, (b)
means of predicting global system behavior from local agent
behavior, and (c) accepting and leveraging the probabilistic
nature of swarm behavior. We give up the freedom of having
programmable agents as we assume hard-wired behaviors of
predefined controller types. However, we regain that free-
dom at the global level by composing heterogeneous swarms
with wisely chosen doses of several agent controller types.
For these predefined local agent controllers, we know their
global swarm effect that we can model via the abovemen-
tioned basis vectors. By appreciating the probabilistic nature
of swarms, we can model individual behaviors using proba-
bilistic finite state machines (PFSMs), generalizing our
approach to a wide range of scenarios representable by
PFSM, and similarly also understand global swarm behavior
via population models. We perceive the swarm as a stochas-
tic dynamical system with the swarm making probabilistic
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autonomous decisions switching between global states. We
define an arbitrarily large number of agent controllers, that
is, sets of predefined control rules. For each agent controller,
we derive a basis vector that models its global-level contribu-
tion to the swarm dynamics. Specifically, each basis vector
describes the transient dynamics of a homogeneous swarm
where all agents run the same controller. The probability
distribution over swarm allocations given by the user as
input defines the desired asymptotic behavior of the swarm.
From this input, we mathematically derive a response vector
to describe the desired transient dynamics of the swarm.
These transient dynamics are such that the swarm will
asymptotically converge to the stationary distribution in
input from the user. We then use the response vector as a
reference to select the necessary agent controllers through
a linear combination of our initial set of basis vectors.
Finally, we systematically search for a proper composition
of a heterogeneous swarm by estimating the coefficients in
a lasso regression [34] between the response vector and a lin-
ear combination of basis vectors. We use penalized regres-
sion to limit the set of selected controller types to a few
that are indeed required (i.e., basis vector with strictly posi-
tive coefficients) and the value of the coefficients to define
the proportions of agents executing each of the selected
controllers.

2. Materials and Methods

2.1. Experimental Design.We build on the idea of behavioral
heterogeneity to define a global-to-local design method for
ST-MR task allocation problems. We consider the problem
of designing a swarm of N agents that allocates its members
to a pair of tasks (task 0 and task 1) as defined by a user
input. The user input, formally defined in Section 2.2, pre-
scribes a desired swarm allocation by means of a stationary
probability distribution π defined over the space of all possi-
ble allocations of N agents to 2 tasks. We leverage the
degrees of freedom that can be gained at the global level by
mixing different agent controllers at the local level. Contrary
to local-to-global approaches that manually explore a possi-
bly infinite space of design solutions to obtain a single agent
controller for an homogeneous swarm, we restrict our
design-space to a large but finite number of alternatives

and systematize our search to obtain a combinatorial solu-
tion. To do so, we consider a set of parameterized control
rules as the basis of the individual agent controller and
obtain a large albeit finite number of different controllers
by varying these parameters (see Section 2.3). The outcome
of this search—called swarm composition—is a heteroge-
neous swarm formed of groups of agents with different
controllers.

Let C = fðhG1 ; b1i, c1Þ,⋯, ðhGm ; bmi, cmÞg represent a
swarm composition with m≪N agent controllers. hGi ; bii
represents the ith agent controller whereas ci gives the num-
ber of agents in the swarm with that controller. For each
agent controller, parameters Gi and bi define, respectively,
the number of task allocations that an agent needs to observe
from other agents before applying a decision rule and the
enumeration index identifying the specific set of decision
rules associated to the ith controller (see Section 2.3). We
consider the problem of finding a swarm composition C that
approximates the stationary distribution π defined by the
user (see Section 2.2). We tackle this problem with a pre-
scriptive model-driven approach by defining a macroscopic
model that, given the local agent controllers, describes both
the transient and the stationary behavior of the swarm,
and a method to derive, from the desired stationary behavior
π, a (reference) model of a transient swarm behavior that
converges to π. The first model, introduced in Section 2.4,
provides a space E of basis vectors, each describing the
behavior of an homogeneous swarm executing a specific
agent controller. The second model, introduced in Section
2.5, gives a response vector y that describes the behavior of
the heterogeneous swarm as required by the user (i.e., the
behavior of the target swarm composition). Finally, we can
formulate a linear combination y = Eβ of basis vectors. As
described in Section 2.6, the key is to find appropriate coef-
ficients β to select basis vectors. They represent the desired
swarm composition C via ci ∝ βi.

2.2. User Input. Let ðX,N − XÞ represent a swarm allocation,
where X ∈X is the number of agents allocated to task 0
(respectively, N − X to task 1), and X = f0, 1,⋯,Ng is the
set of all possible macroscopic states of the swarm (i.e., all pos-
sible distributions of agents over the two tasks). The user
inputs a desired stationary probability distribution π = ðπ0,
⋯, πNÞ, πi > 0, over the macroscopic state space. Entries πi, i
∈X, give the probability that the swarm allocation is ði,N −
iÞ; each mode of π (i.e., local probability maxima) defines a
desired swarm allocation ðX,N − XÞ by virtue of representing
those allocations that are most likely to realize at any given
time. The number of modes of the user input determines the
particular variant of the task allocation scenario. A distribu-
tion πwith one uniquemode corresponds to a single and static
swarm allocation; given a sequence π1, π2,⋯ of such distribu-
tions, we can design swarms for sequential task allocation by
including a triggering criterium for agents to change their con-
trol rules. When the user input π is a multimodal distribution,
the swarm behavior requested by the user is periodic task allo-
cation. With a certain frequency, the swarm changes the allo-
cation of its members according to the different swarm
allocations determined by the modes of π.

Task 0 Task 1

T0 1

T1 0

Figure 1: Finite state machine of the agent controller. Agent
controller as probabilistic finite state machine for the simplistic
two-task allocation. Transition conditions T0⟶1 and T1⟶0 are
defined by the respective agent controller type and need to
depend on locally measurable features only.
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2.3. Agent Controllers.We consider agents with only local per-
ception of their environment and local agent-to-agent com-
munication. By building on these limited capabilities, we
define a recipe to enumerate finitely many different agent con-
trollers. We achieve this by considering a template of a control
rule that can be instantiated with different configurations and
that allows us to enumerate different agent controllers. We
abstract from any domain-specific actions that an agent would
need to execute in a particular task and application. Instead,
we focus on the agent interactions and the decision-making
necessary to fulfill the swarm allocations desired by the user.
We consider a system where tasks are uniformly distributed
in a closed environment in which agents (a) move randomly
while working on either of the two tasks, (b) have the ability
to perceive the allocation of their neighbors, and (c) to trigger
a change in their allocation (one at a time).

Agents act stochastically and asynchronously. They
repeatedly apply two control rules: self-switching and
switch-or-recruit. When executing the self-switching rule,
an agent changes its current allocation to the alternative
task. The global effect of the self-switching rule can be assim-
ilated to the spontaneous switching behavior of unreliable
agents subject to internal noise [35, 36]. Using the switch-
or-recruit rule, an agent has a greater influence on the cur-
rent swarm allocation. It can decide to either increase or
decrease the number of agents allocated to a task by one
unit. As a function of its current allocation and those of its
neighbors, the agent either self-switches to the other task
or recruits a neighbor from those with the alternative alloca-
tion. When the agent acts as a recruiter, the recruited neigh-
bor always switches its task allocation and it does so
independently of its internal state and of its actual agent
controller. That is, passively recruited agents always switch
their task allocation without objections. Control rules are
executed randomly by individual agents: self-switching with
rate σ and switch-or-recruit with rate ρ (respectively, with
probabilities pσ = σ/ðσ + ρÞ and pρ = ρ/ðσ + ρÞ).

All agents only have local perception of the current
global task allocation. We say that each agent perceives the
currently assigned tasks from its neighbors (i.e., agents
within proximity, for example, within communication
range). Note that all agents move at all time, and neighbor-
hoods are subject to change, that is, the underlying network
is dynamic. Each agent knows a number N 0 of neighbors
currently assigned to task 0, a number N 1 =G − 1 −N 0 of
neighbors currently assigned to task 1, and its own currently
assigned task forming a set of information from G≪N
agents (G − 1 neighbors plus the considered agent). We
define agent controllers hG ; bi, b ∈ f1,⋯, 2G−1g, that differ
from each other by the logical function ΔG,b. We use func-
tion ΔG,b to define the local task-switching behavior of an
agent and to determine the global effect of the switch-or-
recruit rule. Function ΔG,b takes as input a group of task allo-
cations of size G. This group includes the task allocation of
the agent applying the switch-or-recruit rule and that of its
G − 1 neighbor agents. Parameter b is an index that encodes
a particular task-switching behavior and ranges over all pos-
sible agent controllers based on the same group size G. For a

group of task allocations of size G, we have G + 1 possible
group compositions. We do not assign any action to homo-
geneous groups (i.e., groups with either 0 or G agents allo-
cated to task 0). Therefore, ΔG,b has G + 1 possible inputs
and three possible outputs (i.e., switch allocation, recruit a
neighbor, no action). Moreover, since the no-action is fixed
in each agent controller, we obtain 2G−1 possible functions
ΔG,b. Function ΔG,b is defined as ΔG,b = ðΔ1,⋯, ΔG−1Þ, Δi =
±1. Δi gives the change of agents allocated to task 0 when
an agent applies the switch-or-recruit rule over a group of
allocations that contains i ∈ f1,⋯,G − 1g entries for task 0.
Given a particular choice of values for parameters G and b,
we set Δi = +1 if the ith bit of b (expressed in the binary
numeral system) equals 0; otherwise, we set Δi = −1.
Table 1 shows an example of an agent controller defined
by Δ3,1 = ð+1,−1Þ; in this case, the switch-or-recruit rule cor-
responds to the majority rule often used in swarm robotics
research [37, 38]. By enumerating all ΔG,b for increasing
values of G, we obtain an arbitrary large set B = fhG1 ; 1i,
⋯, hG1 ; 2G1−1i,⋯hGi ; 1i,⋯, hGi ; 2Gi−1i,⋯g of different
agent controllers.

Note three properties that result from the above defined
controllers. (a) Agent controllers are independent of the
controllers of neighboring agents and only require to know
their task allocations. (b) The interplay between self-
switching and direct recruitment eases the mixing of task
allocations among agents with different controllers. (c) Due
to self-switching, the resulting decision-making process is
ergodic which prevents its absorption at extreme states
where all agents are allocated to one of the two tasks [39].
These properties are fundamental for the definition of our
global-to-local design method because they allow us to pre-
dict the global behavior of a heterogeneous swarm.

We have developed a simple microscopic multiagent
simulator to validate our design method. In our simulations,
agents consist of situated mass-less points moving within an
environment of 100 × 100 space units with a velocity of 2
space units per time step. We consider a time step of 0:1 sec-
onds, and, at every time step, we update the position in space
of each agent in the swarm. Since agents are asynchronous,
we update their task allocation only when they execute a
control rule. Agents are always assumed to work on one of
the two tasks and to periodically execute their agent control-
ler. Independently of the controller hG ; bi, agents perform a
random walk. They do not collide with each other but can
collide with the boundaries of the environment. In the case
of a collision with a boundary, the agent bounces back with
a mirrored angle of incidence. When executing the switch-
or-recruit rule, agents note their own task allocation and
sample the task allocations of their G − 1 closest neighbors.
In the following, we show the average of 104 simulations
each lasting 105 seconds.

2.4. Basis Vectors. For each agent controller, we use a discrete-
time Markov chain fXðtÞ ∈X : ∀t ⩾ 0g to describe the global
dynamics of a homogeneous swarm of N agents executing the
same controller. In the derivation of the Markov chain, we
assume for simplicity that at each time step, one agent in the
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swarm executes a control rule. Note that this assumption does
not lead to a slowdown of the allocation dynamics nor to any
other loss in performance. Since agents act in real time—-
which is continuous—and are not synchronized, we have that
the probability of two or more concurrent executions of con-
trol rules by different agents is zero (as a consequence of the
time step of 0:1 seconds set in our multiagent simulations
and of the choice of values for parameters σ and ρ, we rarely
observed concurrent executions of control rules by two or
more agents). The discretization of the time in terms of the
number of control rule executions allows us to simplify our
mathematical derivations without introducing approxima-
tions. In Section 3.2, we provide means to recover the time
as a continuous entity from the number of control rule execu-
tions. A direct consequence of this assumption is that the
number X of agents in the swarm allocated to task 0 changes
by Δ ∈ f+1, 0,−1g units per time step. Therefore, the resulting
Markov process is described by a tridiagonal matrix PG,b of
size ðN + 1Þ × ðN + 1Þ.

For a given agent controller hG ; bi with function ΔG,b
= ðΔi,⋯, ΔG−1Þ, the transition matrix PG,b is defined as

PG,b X, X + 1ð Þ = pσ 1 − X
N

� �
+ pρ 〠

k:Δk=+1

X

k

 !
N − X

G − k

 !

N

G

 ! ,

ð1Þ

PG,b X, Xð Þ = pρ 〠
k∈ 0,Gf g

X

k

 !
N − X

G − k

 !

N

G

 ! , ð2Þ

PG,b X, X − 1ð Þ = pσ
X
N

+ pρ 〠
k:Δk=−1

X

k

 !
N − X

G − k

 !

N

G

 ! : ð3Þ

Probability PG,bðX, X + 1Þ models the transition X⟶
X + 1 of winning one more agent being assigned to task 0.
It is the sum of two contributions: the probability that an
agent currently allocated to task 0 self-switches its allocation
to task 1; and the probability that any agent increases the
value of X by applying the switch-or-recruit rule with a
change Δk = +1. Occurrences of certain group compositions
(i.e., assumed current task allocations of a considered agent
and its current neighbors forming a set of size G) are mod-
eled using the hypergeometric distribution. Equation (2)
models the transition X ⟶ X without effect. PG,bðX, XÞ
results from those agents that do not execute any action as
a result of the application of the switch-or-recruit rule over
a homogeneous group with either 0 or G allocations for task
0. Equation (3) is derived similarly to Equation (1).

Equations (1)–(3) define an ergodic Markov chain PG,b.
Based on PG,b, we derive a basis vector eG,b that gives the
expected change eG,bðXÞ of the swarm allocation X resulting
from the next agent executing a control rule. We obtain

eG,b Xð Þ = +1 ⋅ PG,b X, X + 1ð Þ − 1 ⋅ PG,b X, X − 1ð Þ: ð4Þ

Given a system state X, the function eG,bðXÞ returns the
expected change 1/T∑T⟶∞

t=0 Xðt + 1Þ − XðtÞ of X. We obtain
an arbitrary large space E by considering all basis vectors
eG,b, b ∈ f1,⋯, 2G−1g, for groups of increasing sizes G.

Figure 2(a) shows examples of basis vectors (dashed
lines) and their linear combination (solid line) over all pos-
sible system states X (i.e., N + 1 possible task allocations).
For intervals on X with eG,bðXÞ > 0, the transient behavior
of the swarm drives the task allocation process in the direc-
tion of the extreme allocation to the right, towards X =N .
For intervals on X with eG,bðXÞ < 0, there is a push to the left,
towards X = 0. Zeros eG,bðXÞ = 0 would indicate stable and
unstable fixed points in a deterministic system but need to
be interpreted here as random dynamical attractors [40]
due to the system’s stochasticity. These points represent task
allocations X that either attract or repel the swarm allocation
process. Attraction points identify the modes of the station-
ary distribution πG,b of PG,b. Basis vectors are pairwise sym-
metric with each other around pσð1 − X/NÞ, X ∈X ; that is,
for each b, there exists b′ such that eG,b = pσð1 − X/NÞ −
eG,b′ . Therefore, an equal number of agents with controllers

hG ; bi and hG ; b′i cancel each other’s effect of the switch-
or-recruit rule and leave only the contribution of the self-
switching rule.

2.5. Response Vector. In our global-to-local design method,
we obtain the response vector y, which represents the
expected change of the user-desired swarm, from the sta-
tionary distribution π (see Section 2.2). We first construct
a Markov chain Py that converges to π itself and then com-
putes y from Py with Equation (4).

The stationary distribution π of an ergodic Markov
chain with transition matrix P can be uniquely determined
by solving the system of equations πP = π [41]. The inverse
problem, however, is less trivial, and its solution is in general

Table 1: Example of logical function ΔG,b with G = 3 and b = 1.
Symbol a gives the current task allocation of the focal agent, N 0
is the number of neighbors allocated to task 0, and ðΔ1 = +1, Δ2 =
−1Þ define the outcome of ΔG,b (in this case a majority rule).
Symbol “–” represents no action.

a N 0 ΔG,b Action

0 0 Δ1 Switch

0 1 Δ2 Recruit

0 2 – –

1 0 – –

1 1 Δ1 Recruit

1 2 Δ2 Switch
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not unique. In the case of our tridiagonal transition matrix,
this problem implies the exploration of a manifold fPg char-
acterized by 2N dimensions. This number of dimensions is
due to the sparse structure of tridiagonal matrices and to
the fact that transition matrices are row-stochastic (i.e.,
row entries are nonnegative and sum up to 1). As a conse-
quence, in order to construct our response vector y, we need
to find a set of 2N additional constraints.

The stationary distribution π defined by the user
imposes a set of N + 1 linear constraints on this manifold
through equation

πi = 〠
j∈X

πjP j, ið Þ,∀i ∈X: ð5Þ

The intuitive interpretation is that the probability πi of
state i has to be the sum of all influxes from any state j to i
(including i = j). Due to the linear relation ∑i∈Xπi = 1, one
of these constraints is redundant and the stationary distribu-
tion π reduces the number of dimensions of fPg from 2N to
N . Therefore, a general transition matrix Py that converges
to π can be parameterized by N constant values referred to
as ψ = ðψ1,⋯, ψNÞ. By constraining the transition matrix
Py to be row-stochastic, we obtain the set of inequalities

0 ⩽ ψ1π2 ⩽1,
0 ⩽ ψi−2πi−2 + ψi−1πi ⩽1,∀i ∈ 3,N − 1f g,
0 ⩽ ψNπN ⩽1:

ð6Þ

Any choice of values for parameters ψ = ðψ0,⋯, ψn−2Þ
that satisfies the above set of inequalities defines a transition
matrix Py that satisfies πPy = π. Since probabilities πi, i ∈X ,
are nonnegative by definition, all entries in the parameter
vector ψ can always be chosen to be sufficiently small to sat-
isfy the set of inequalities in Equation (6). Using Equation
(6), we have obtained N of 2N constraints necessary to

determine a transition matrix Py that asymptotically con-
verges to π.

In order to uniquely determine a transition matrix Py , we
still require N additional constraints. By inspecting Equation
(2), we see that all agent controllers hG ; bi, b ∈ f1,⋯, 2G−1g,
have equal diagonal entries PG,bðX, XÞ. Furthermore, the
probabilities PG,bðX, XÞ converge for increasing group sizes
G as indicated by example group sizes G ∈ f2,⋯, 15g shown
in Figure 2(b). This implies that, by making a simple initial
guess for parameters G, ρ, and σ, we can easily impose an
additional set of N + 1 linear constraints and uniquely deter-
mine a matrix Py. As we will see in the following, this initial
guess of parameters is not binding and can be revised during
the application of the method.

For a desired stationary distribution π and initial param-
eters G, ρ, and σ, we can solve πPy = π and obtain the tran-
sition matrix Py . The solution of the system of equations is
subject to two constraints: the diagonal entries of Py are con-
stant and equal to diag ðPyÞ = diag ðPG,bÞ (for any choice of

b ∈ f1,⋯, 2G−1g); all rows of Py are nonnegative and sum
up to 1. Since the first and last rows of Py have only
two nonzero entries, these two constraints suffice to com-
pute Pyð0, 1Þ and PyðN ,N − 1Þ. We compute all remaining
entries PyðX, X − 1Þ and PyðX, X + 1Þ recursively following
the sequence

Py 1, 0ð Þ = π0
1 − Py 0, 0ð Þ

π1
, ð7Þ

Py 1, 2ð Þ = 1 − Py 1, 1ð Þ − Pb 1, 0ð Þ,
⋯

ð8Þ

Py X, X − 1ð Þ = πX−1
1 − Py X − 1, Xð Þ

πX
, ð9Þ

Py X, X + 1ð Þ = 1 − Py X, Xð Þ − Py X, X − 1ð Þ: ð10Þ
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Figure 2: Basis vectors and switching probabilities. (a) Basis vectors resulting from agent controllers h7 ; 3i, h7 ; 14i, h7 ; 38i and their linear
combination C = fðh7 ; 3i, 40Þ, ðh7 ; 14i, 10Þ, ðh7 ; 38i, 50Þg (parameters: N = 100, ρ = 1, and σ = 1/9) and (b) the probability PG,bðX, XÞ of
not changing the current swarm allocation after the execution of the switch-or-recruit rule by an agent for increasing values of the group
size G (parameters: N = 100, ρ = 1, σ = 0:1, b = 1, and G ∈ f2,⋯, 15g).
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Finally, the response vector y is obtained from Py by
computing its expected change as in Equation (4).

2.6. Regression Problem. Starting from an arbitrary set B =
fhG1 ; b1i, hG2 ; b2i,⋯g of agent controllers, Equation (4)
allows us to define our search space using a matrix E whose
columns are the transposed basis vectors eG,b, hG ; bi ∈B.
The response vector y is derived from the stationary distri-
bution π using Equations (7)–(10) and (4). In order to deter-
mine our swarm composition C, we need to find a column
vector β of regression coefficients that satisfies

y ≃ Eβ, βi ⩾ 0: ð11Þ

Coefficients βi are required to form a conical combina-
tion. Therefore, we requireβi ⩾ 0, so that ci ≃Nβi results in
a nonnegative number of agents with controller hGi ; bii.

In general, the accuracy of a solution to the regression
problem in Equation (11) increases with the number of basis
vectors whose coefficient βi is greater than zero (i.e., a
greater number of involved basis vectors helps to fine-tune
the result). However, that would mean to use many different
agent controllers in rather small subpopulations. This
increased heterogeneity would, for example, complicate pro-
duction and handling of robot swarms. More importantly, it
might compromise the robustness of the designed swarm. In
fact, a swarm composition based on many different agent
controllers is more affected by agent failures because each
agent controller is likely to be represented by only a few
agents in the swarm. As a result, in the case of agent failures,
the actual swarm composition might soon depart from the
designed one. In contrast, a swarm with few agent control-
lers but big subpopulations for each suffers less from the loss
of agents because these losses are more likely to be homoge-
neously distributed across agent controllers. The swarm is
more robust as it will still approximately allocate its agents
as specified by the user input. To design for robustness, we
seek to maximize the number of agents using each of the
selected agent controller and therefore to minimize the
number of different agent controllers used in the designed
swarm composition.

We therefore search for a solution that minimizes the
number of nonzero coefficients βi. The perfectly suited
method for this objective is to define the regression problem
as a lasso problem [34] with positivity constraints

arg minbβ∈ℝn

1
2 y − Eβk k22 + λ βk k1, βi ⩾ 0,∀i ∈X: ð12Þ

The first summand implements the actual minimization.
The regularization coefficient λ in the second summand deter-
mines the weight of the ℓ1-penalization term and controls the

sparsity of the solution bβ . Given a solution bβ of the lasso
problem (12), we normalize each coefficient βi according to
βi = βi/∑m

j=1βj so that the coefficients βi sum to 1 and satisfy
the physical conservation of swarm size. The final swarm com-
position C is obtained by computing the number ci of agents
with controller hGi ; bii as ci =Nβi and rounding these values

in order to have integer numbers of agents for each controller
and a swarm of any desired size N.

3. Results

We apply our method to design heterogeneous swarms for
both unimodal and multimodal user inputs π. As discussed
above, heterogeneous swarms formed by many different
agent controllers might not be robust to failures. Hence,
we minimize the number of agent controllers and give prior-
ity to the robustness of the designed solution. We prefer
qualitative over quantitative accuracy in the approximation
of π. In the following, we design swarms with N = 100
agents. Since π is independent of the magnitude of ρ and σ
but only depends on probabilities pρ and pσ, we set ρ = 1
and vary σ in ½0 ; 1�. In the multiagent simulations, ρ and σ
are divided by a factor of 100.

3.1. Unimodal User Input. Figures 3(a) and 3(b) show the
results of the proposed method applied to a unimodal user
input. The red solid line in Figure 3(a) represents the user
input π which defines the desired allocation ð25, 75Þ. From
π, we derive a response vector y by first constructing an
equivalent Markov chain as in Equations (7)–(10) and suc-
cessively applying Equation (4). We initially set parameters
to G = 6 and σ = 0:1. The resulting response vector y (red
solid line in Figure 3(b)) shows sudden jumps for values of
X∈½10 ; 40�. These jumps can be reduced by tuning the initial
values of G and σ. However, we observe that tuning is not
necessary and might even worsen the accuracy of our design
method.

We consider asymmetric agent controllers for G ∈ f3,
⋯, 6g and solve the lasso problem (12) for λ = 1. We obtain
the swarm composition C1 = fðh6 ; 7i, 39Þ, ðh6 ; 11i, 5Þ, ðh6 ;
15i, 56Þg that consists of three agent controllers with G = 6.
Due to the requirement of sparsity, the expected change
ŷfitted computed from C1 using the Markov chain does not
accurately fit the response vector y (see Figure 3(b)). This
also applies to the expected change ŷagent that we measured
empirically in multiagent simulations. The designed solution
fulfills the essential requirements, such as the zeros and the
signs of y in the region of interest (½10 ; 40�). This suffices
to design a composition C1 that closely meets the user input
as shown in Figure 3(a) by the distribution bπ fitted predicted
using both the Markov chain model (blue circles) and the
distribution bπagent resulting from multiagent simulations
(histograms).

Similarly to the solution proposed by Berman et al. [10],
our method can also be used to implement sequential task
allocation. Let us consider a series of user inputs π1,⋯, πk.
By applying our method to each user input, we can derive
a set of swarm compositions fC1,⋯, Ckg. Individual agents
in the swarm could be programmed to change their control-
ler over time according to fC1,⋯, Ckg. Depending on the
scenario, the change of agent controllers can be coupled to
external signals broadcasted by the designer, a predefined
time schedule, or changing environmental cues. We per-
formed a simple experiment where the agents in the swarm
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change their agent controller after a certain predefined time.
Initially, the swarm is required to allocate its agents around
the swarm allocation ð25, 75Þ as specified by the distribution
π1 = π given in Figure 3(a) and uses the swarm composition
C1
1 = fðh6 ; 7i, 39Þ, ðh6 ; 11i, 5Þ, ðh6 ; 15i, 56Þg. In a second

time period, the swarm is required to change the distribu-
tion. The second distribution π2 over swarm allocations
(not shown here) defines the swarm allocation ð75, 25Þ and
is obtained by the swarm composition C2

1 = fðh6 ; 19i, 59Þ,
ðh6 ; 20i, 41Þg. A video recording of this simulation is pro-
vided in Movie 1 (see supplementary material). Agents are
initialized using the swarm composition C1

1 and readily con-
verge to π1. At time t = 500 seconds, the agents in the swarm
change their agent controllers from the initial swarm com-
position C1

1 to the second swarm composition C2
1. Soon after

the change of agent controllers, the swarm updates its alloca-
tion and converges to π2.

3.2. Multimodal User Input. A multimodal stationary distri-
bution π defines a task allocation scenario characterized by
multiple swarm allocations ðX1,N − X1Þ,⋯, ðXk,N − XkÞ
with one for each mode of π. The result of such a user input
is a swarm that periodically switches between different
swarm allocations. Contrary to the above discussed case of
sequential tasks, switches between pairs of swarm allocations
are stochastic and characterized by a certain mean period of
time (see [42] for a bimodal example). Thus, multimodal
user inputs define a periodic task allocation scenario.

Figures 4(a) and 4(b) show an example application of
our method to a bimodal user input. The red solid line in
Figure 4(a) defines a scenario with two swarm allocations:
ð30, 70Þ and ð70, 30Þ. The response vector y (red line in
Figure 4(b)) has been derived using initial parameters G =
6 and σ = 0:575. We consider all agent controllers hG ; bi
resulting from group sizes G ∈ f3,⋯, 9g and solve the lasso
problem for λ = 3. The solution of Equation (12) yields the
swarm composition C2 = fðh9 ; 78i, 92Þ, ðh9 ; 141i, 4Þ, ðh9 ;

207i, 4Þg characterized by 3 agent controllers with group
size G = 9. With respect to the unimodal scenario, we
increased the value of the regularization parameter λ to

obtain a sparse solution bβ . Both the stationary distributionbπ fitted predicted using the Markov chain and the distributionbπagent computed from multiagent simulations (shown in
Figure 4(a)) qualitatively match the user input π with only
a small deviation of the distribution around X ∈ ½45 ; 55�. A
video recording of a multiagent simulation of the bimodal
scenario can be found in Movie 2 (see supplementary
material).

Additionally, the user might also express requirements
over the mean switching time TX1⟶X2

, that is, the time nec-
essary for the swarm to reallocate its agents from ðX1,N −
X1Þ to ðX2,N − X2Þ. Using the Markov chain model result-
ing from C2, we can compute the mean and the variance
of the number of control rule executions necessary for this
purpose. By multiplying these statistics by the mean dura-
tion ρ−1N + σ−1N between the execution of two control
rules, we can obtain T30⟶70 as a function of the rates ρ
and σ. We recover the time in its continuous form from
the discrete number of executions of control rules.
Figure 4(c) shows the prediction of the Markov chain
(T30⟶70model, shaded area) compared to multiagent simula-
tions (T̂30⟶70agent box-plots) when σ = 0:575ρ and ρ−1 ∈
½25 ; 420�. We obtain a good agreement of both means
(dashed line versus diamonds symbols) and variances of
the two models.

Finally, we apply our global-to-local design method to a
trimodal user input π. The stationary distribution π (red line
in Figure 4(d)) defines a task allocation scenario where the
swarm alternates its workforce among three possible alloca-
tions: ð10, 90Þ, with the majority of agents working on task
1; ð50, 50Þ with agents equally allocated to both tasks; and
ð90, 10Þ with the majority of agents working on task 0. We
compute the response vector y using initial parameters G = 5
and σ = 0:2 (data not shown). We define the minimization
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Figure 3: Results for the unimodal scenario. Illustration of the design method and comparison with multiagent simulations for the
unimodal scenario: (a) depicts the stationary distribution and (b) the expected change.
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problem (12) by considering only asymmetric agent control-
lers with G = 7 (i.e., the first 32 basis vectors). The solution
of the lasso problem for λ = 1 gives the swarm composition
C3 = fðh7 ; 22i, 56Þ, ðh7 ; 26i, 44Þg. The distribution bπ fitted
predicted using the Markov chain and the distribution bπagent
resulting from simulations qualitatively suit the user require-
ments (blue circles and histograms).

4. Discussion

We have shown that our method can be used to design
swarms that allocate their agents as defined by a user input.
The user input is a stationary probability distribution over
swarm allocations and defines the probability of any possible
swarm allocation. Our method allows the user to specify sce-
narios with a single swarm allocation using a unimodal dis-
tribution and scenarios where the swarm alternates between
different swarm allocations using a multimodal distribution.

A unimodal stationary distribution π defines a task allo-
cation scenario with a single swarm allocation ðX,N − XÞ. In

principle, this scenario could be tackled by a static assign-
ment of agents to each of the two tasks. However, such an
approach is not robust to individual agent failures. Consider,
for example, a collective construction scenario where task 0
and task 1 require, respectively, to dig and to remove the
excavation material from a construction site. Due to work-
load disparity between tasks, agents are likely to experience
uneven failure rates. Over time, the swarm might signifi-
cantly depart from the desired allocation ðX,N − XÞ. With-
out complete knowledge of individual agent failures, a
designer would be prevented from restoring the initial static
allocation (e.g., by deploying new agents). Our design
method is robust to such situations. Since agents repeatedly
switch tasks, the workload is shared equally among agents.
Agents are thus equally subject to wear as well as failures
and the desired proportions of agents with each controller
is preserved. Over the system’s lifetime, an operator can
add new agents to the system with the same proportion of
agent controllers as originally designed to counter degrading
swarm performance. Note that the addition of new agents in
the swarm can even be used as a means to reprogram the
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swarm behavior by considering the original swarm composi-
tion as an additional constraint in our design method.

As discussed in Section 3.1, we can use a chronological
sequence of unimodal distributions to design sequential task
allocation scenarios. This is achieved by letting agents
change their agent controllers over time and results in a
swarm that switches from a swarm allocation to the next
in the sequence. Our method can be used to design a swarm
composition for each distribution in the sequence. However,
this approach to sequential task allocation requires agents
with a mechanism (e.g., based on an external signal or fixed
time scheduling) that triggers changes of agent controllers.

Alternatively, the usermight provide amultimodal distribu-
tion as input. In this case, with a single swarm composition that
does not change over time, we obtain a swarm behavior that
naturally oscillates between the swarm allocations defined by
the modes of the user input. This type of self-organizing swarm
behavior is similar to the one investigated by Silk et al. [43] for
the design of self-organizing networks. Periodic task allocation
offers an alternative approach to implement sequential task
allocation. It might be useful in extreme applications where
hardware limitations prevent agents from perceiving external
signals or from being programmable (e.g., hard-wired control-
lers in nanorobotics applications [44]). This alternative
approach to sequential task allocation could be useful, for exam-
ple, to increase the penetration of nanobots into tumors [45,
46]. Nanobots with multifunctional capabilities (e.g., sensing,
imaging, and therapy) [47] could be designed to initially per-
form tissue penetration and diagnosis and later to deliver the
drugs in their payloads.

Through the example application of task allocation, we
introduced the idea that swarms that achieve user-specified
objectives can be designed by leveraging on behavioral het-
erogeneity. This idea was inspired by the concept of popula-
tion coding from neurosciences [24], where a population of
neurons performs a function approximation by combining
different heterogeneous contributions. Leveraging behav-
ioral heterogeneity substantially differs from most existing
global-to-local design approaches. Largely focused on self-
assembly [14] and formation control problems [13], existing
methods tend to be tailored for their respective applications.
The method proposed by Klavins, for example, makes use of
graph grammars and optimizes their execution rates to
design a system that self-assembles into simple controlled
shapes [15]. Rubenstein et al. [16] proposed a distributed
algorithm for self-assembly and experimented with a swarm
of more than a thousand robots. In their study, robots are
given a blueprint of the desired shape and follow only local
cues to incrementally position themselves according to the
blueprint. In collective construction, Werfel et al. [17] pro-
pose a compilation method that decomposes a user-
specified structure into a set of construction paths that
robots follow to build a desired artifact. Similarly to our
approach, all these studies use optimization methods to
explore a (possibly constrained) design space.

The potential of behavioral heterogeneity has been previ-
ously investigated in an aggregation scenario [48]. In this
study, the authors show, by means of evolutionary computa-
tion techniques, that heterogeneous swarms can outperform

their homogeneous counterparts. Our method has some
similarities with the approach used by Hamann et al. [49]
to analyze collective motion in locust swarms; they use a lin-
ear combination of polynomials to fit a network model to
macroscopic measurements of simulations. In their
approach, the regression coefficients provide information
about the spatial distribution of agents in the swarm. We
have previously published an approach that is conceptually
similar to the one we present here [50, 51]. One of the main
differences is that we used evolutionary computation to
select controller types instead of the more sophisticated
and efficient optimization technique used in this paper. In
addition, we also made use of simulations to estimate global
effects in contrast to the formal approach we propose in this
study.

In future work, we plan to extend the method and to
apply it to task allocation scenarios with more than two
tasks. This extension will require the definition of other lin-
ear constraints in addition to those defined in Section 2.5
that are necessary to uniquely derive a response vector from
the user input. This could be achieved, for example, by con-
sidering different priorities among the tasks to be executed.
We note that the total number of agent controllers is an
exponential function of the number of tasks. However,
penalized regression techniques allow us to consider high-
dimensional search spaces and to investigate a reasonable
range of application scenarios. We also plan to perform a
thorough algebraic characterization of our basis vectors
and response vectors with the aim to improve the perfor-
mance of the design method. We believe that our design idea
of behaviorally heterogeneous agents has potential for a
wider range of applications beyond task allocation. Our pri-
mary goal is therefore to deepen our understanding of the
fundamental principles of behavioral heterogeneity. We
want to extend our approach to many different swarm sce-
narios, such as collective decision-making and spatially
organizing tasks.

We believe that our proposed approach is a fundamen-
tally novel paradigm for the design of robot swarms and that
the idea of programming the swarm at a global level by fol-
lowing a recipe that describes how to put together the right
amounts of different robot controller types, almost as if they
were ingredients of a cake, is particularly intriguing. With
our approach, the swarm can be reprogrammed on a global
level at runtime by adding robots of different robot control-
ler types, without the need for the individual robots to be
programmable.
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