
General Dynamic Neural Networks for the Adaptive Tuning of an
Omni-Directional Drive System for Reactive Swarm Robotics

Hanqing Zhao
IRIDIA

Université libre de Bruxelles
Brussels, Belgium

hanqing.zhao@ulb.ac.be

Marco Dorigo
IRIDIA

Université libre de Bruxelles
Brussels, Belgium
mdorigo@ulb.ac.be

Michael Allwright
IRIDIA

Université libre de Bruxelles
Brussels, Belgium

michael.allwright@ulb.ac.be

Abstract— We demonstrate the use of general dynamic neural
networks (GDNNs) for the online tuning of an omni-directional
drive system for reactive swarm robots. The drive system used
in this work consists of four motor-encoder-microcontroller
modules each constituting a single-input single-output (SISO)
proportional, integral, and differential (PID) control system.
For a given target velocity, a neural network generates the
parameters for each PID control system. In this paper, we
evaluate and compare two different network structures for
generating the PID parameters for the control systems using
a hardware platform that we also presented in this paper. We
analyze the performance of the system with respect to ISO
performance indicators, our results show that both network
structures are able to learn and tune the parameters for each
PID control system to increase the accuracy of the drive system
in comparison to fixed untuned PID parameters that are close
to the output of a randomly initialized network.

I. INTRODUCTION

The use of differential drive in mobile robot platforms
is often selected due to low cost and simplicity of control.
However, the use of differential drive can limit a robot’s
agility, often requiring multiple maneuvers to reach a given
pose. To further complicate matters, these maneuvers must
often be performed while respecting other constraints such
as avoiding obstacles in the environment.

Performing these maneuvers is especially problematic
in swarm robotics systems, where many robots may be
cooperating to perform a given task in a confined space.
For example, in the work of Allwright et al., swarms of
robots search an environment for unused blocks that can be
attached to one or more structures [1]. In the event that a
robot has approached a structure with an unsuitable pose for
deposition, the robot must reverse and adjust its pose while
not colliding with other parts of the structure or other robots.
Furthermore, since the described system aims to be reactive,
performing such a maneuver is not ideal since it requires a
form of planning.

One solution to these problems is to use omni-directional
drive instead of differential drive. Although more expensive
and more complex to control, the advantage of using omni-
directional drive is that the robot can move in any direction
and in many cases may eliminate the requirement of perform-
ing multiple maneuvers to reach a target pose. The tuning
of omni-directional drive systems is however, more complex

than that for a differential drive system due to issues such
as slippage and interference between the wheels.

In this paper, we study how general dynamic neural net-
works [2] can be used to automatically learn the relationship
between the target velocity of an omni-directional drive sys-
tem and a set of parameters for its control systems. We con-
duct this study using an omni-directional drive system which
we have designed for this research. Our system consists of a
platform and four equally-spaced omni wheels, each driven
by an independent motor-encoder-microcontroller module, in
which the microcontroller generates the pulse-width mod-
ulation (PWM) control signals for the motor driver and
tracks the output signals from the shaft encoder. Each
microcontroller implements a proportional, integral, and dif-
ferential (PID) control system [3], whose parameters are
continuously updated by a GDNN with respect to the target
velocity and the network’s current training. Using separated
motor-encoder-microcontroller modules for each omni wheel
enables a non-lossy capture of high-frequency shaft encoder
output thus gives the system a better scalability in the number
of wheels.

We compare in this paper two network structures for
generating the parameters of the PID control systems. We
refer to these network structures as the ensemble structure
and separated structure. The key difference between these
network structures is that the ensemble structure uses a
single network for all of the control systems, while the
separated structure has an independent network for each
control system. The primary hypothesis is that the ensemble
structure with an appropriate architecture will outperform the
separated structure, since the former will be able to learn
and to encode the influence of each control system on the
other control systems. To test this hypothesis, we evaluate
the performance of our system with respect to the indicators
specified in ISO 9283:1998. To encourage further research
in this area, we have made the hardware and software of our
platform open source and available as a project on the Open
Science Foundation [4].

II. STATE OF THE ART

The rotation speed of each wheel in an omni-directional
drive system is not independent and a change in the velocity
of one wheel may influence the other wheels. In other words,

978-1-7281-7380-1/21/$31.00 ©2021 IEEE 79

20
21

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
et

ho
ds

 a
nd

 M
od

el
s i

n
Au

to
m

at
io

n
an

d
Ro

bo
tic

s (
M

M
AR

) |
 9

78
-1

-7
28

1-
73

80
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
M

AR
49

54
9.

20
21

.9
52

84
68

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

the relationship between the velocities of the wheels in an
omni-directional drive system is non-linear. As previously
described, the speed of each wheel in our platform is
regulated by a PID control system. If the parameters to these
PID controllers are fixed, the controllers are linear and have
limited ability to handle the non-linearity of the system.

A widely used method for applying PID control to a
non-linear system is to tune the parameters of the PID
controller online [5]. Online tuning of PID controllers has
been thoroughly studied and major approaches include fuzzy
inference [6], stochastic approximation from data [7], heuris-
tic optimization [8], and their combinations [9]. More re-
cently, machine learning techniques such as reinforcement
learning [10] and supervised learning [11] have been applied
to tune PID controllers.

In related work on the tuning of multiple-input multiple-
output (MIMO) systems, Sun et al. proposed a fuzzy in-
ference approach that tunes each SISO PID controller sep-
arately [12]. This approach, however, is not suitable to
an omni-directional drive system since the method cannot
compensate for the interference between the individual PID
controllers. Boyd et al. constructed a single MIMO PID
controller, where the PID parameters were determined by
convex-concave optimization [13]. This approach, however,
has the drawback of being difficult to tune without a transfer
function of the system being controlled. The PID parameters
for a MIMO controller can also be evolved using a genetic
algorithm [14]. This method, however, requires evaluating
a large number of candidate solutions, resulting in a long
convergence time and a possible overfitting to a particular
instance of the system.

In recent work, Reichensdörfer et al. demonstrated a neural
network architecture which was proved to be suitable for
the online tuning of PID controllers [2]. This architecture is
known as a general dynamic neural network (GDNN) and
is characterized by the possibility of having arbitrary time-
delayed recurrent connections between any two neurons. In
this paper, we aim to advance the state of the art by demon-
strating how GDNNs can be used to learn the relationship
between an input velocity to an omni-directional drive system
and the corresponding real time tuning for its PID controllers.
We also compare two different network structures to test
our hypothesis that using a single network to provide the
parameters for all the PID controllers will enable a GDNN
to learn the non-linearity of the system more effectively.

III. HARDWARE DESCRIPTION

The omni-directional platform in this work consists of four
38 millimeter omni wheels each connected to an EMG-30
motor and shaft encoder module via a gear pair with a 6:5
reduction ratio. The EMG-30 motor is driven by a DRV8871
motor driver which takes a pulse-width modulation signal
from a dedicated ATMega328P as its input. The output of
the shaft encoder is connected to the port change interrupt
pins of the same microcontroller, allowing it to measure the
rotation of the output shaft and to implement a closed loop
PID controller. Each microcontroller communicates with a

ATMEGA328P

PD5 (OC0B)
PD6 (OC0A)
PC0 (PCINT8)
PC1 (PCINT9)

PD0 (RXD)
PD1 (TXD)

PC6 (RESET)

FT232RL

TXD
RXD
DTR#

USBDP
USBDM

DRV8871

IN1
IN2

OUT1
OUT2

EMG30

+ Motor
- Motor

Hall sensor A
Hall sensor B UP Board

USB1 D+
USB1 D-
USB2 D+
USB2 D-
USB3 D+
USB3 D-
USB4 D+
USB4 D-

Motor 1 & Microcontroller 1

Motor 2 & Microcontroller 2

Motor 3 & Microcontroller 3

Motor 4 & Microcontroller 4

Fig. 1. High-level schematic of the electronic hardware.

Fig. 2. Structural design (left) and photo (right) of the drive platform

main microprocessor board using a FT232RL UART to USB
bridge. A high-level schematic of these components is shown
in Fig. 1.

The electronic components and wheels are mounted to a
circular platform. The design of this platform was based on
two principles: (i) minimize the overall size of the platform
and (ii) keep the center of gravity of the platform as close
as possible to the geometric center. Fig. 2 shows the fully-
assembled platform.

IV. SOFTWARE DESCRIPTION

A. Microcontroller Firmware

The microcontroller for each motor runs the same
firmware. This firmware implements two main components.
The first component is a command-based interface, which
executes commands from the microprocessor and returns
their results to the microprocessor over a UART interface.
These commands enable setting the velocity of the motor,
reading back the velocity error, and setting the parameters
of the PID controllers.

The second component is the motor controller. The motor
controller measures the speed of the motor’s shaft, executes
the PID controllers, and controls the duty cycle of the PWM
signal to the motor. Measuring the speed of the motor is
implemented using a port change interrupt, which increments
or decrements a counter depending on whether the motor’s
shaft is rotating forwards or backwards. The execution of
the PID controller is triggered by a timer interrupt, at each
interruption the counter for measuring the position of the
motor’s shaft is reset to zero and the duty cycle of the PWM
signal is updated.

80

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

GDNN Network

PID controller 1 PID controller 2 PID controller 3 PID controller 4

Motor 1 Motor 2 Motor 3 Motor 4

Speed setpoint
motor 1

Speed setpoint
motor 2

Speed setpoint
motor 3

Speed setpoint
motor 4

- - - -
e(t) e(t) e(t) e(t)

u(t) u(t) u(t) u(t)

Kp Ki Kd Kp Ki Kd Kp Ki Kd Kp Ki Kd

y(t) y(t) y(t) y(t)

w(t) w(t) w(t) w(t)

Velocity geometric decomposition

Driving direction,
Straight driving velocity,

Pure rotation speed

Fig. 3. The control system with the ensemble network structure.

On timer interrupt t, the output of the PID controller p(t)
is updated according to the previous output p(t− 1) and the
rotation speed error e(t) during the last three time steps:

p(t) = p(t− 1) +Kp
(
e(t)− e(t− 1)

)
+Kie(t)

+Kd
(
e(t)− 2e(t− 1) + e(t− 2)

) (1)

Where Kp,Ki,Kd are the parameters of the PID controller.

B. Microprocessor Software

The microprocessor in our design is provided by an Intel
atom-based UP Board running Ubuntu Linux. The board
communicates with the four microcontrollers using UART to
USB bridges. The software running on the microprocessor is
written in C++ and is responsible for communicating with the
microcontrollers and update its neural network parameters at
a rate of 3.33 Hz.

C. Neural Network Structure and Architecture

For our system, we have investigated two different network
structures: the ensemble structure and separated structure.
For the ensemble structure (Fig. 3), the network contains
four neurons in its input layer (for the target velocity of each
motor) and twelve neurons in its output layer (three parame-
ters for each of the four PID controllers). This configuration
is trained on-the-fly with the goal of minimizing the error
at all four motors. In contrast to the ensemble structure, the
separated structure consists of four separate networks each of
which with a single neuron in its input layer (for the target
velocity of the corresponding motor) and three neurons in
its output layer (for the parameters of the PID controller
of the corresponding motor controller). These four networks
are trained simultaneously but independently with the goal
of minimizing the error at their corresponding motor.

To study the performance of the GDNN architecture in
the ensemble and separated network setups, we define three
configurations for each structure. The first configuration is
the baseline configuration. The baseline configuration is a
four-layer GDNN where the first hidden layer consists of 15
neurons and the second hidden layer has the same number of

neurons as the output layer (12 for ensemble and 3 for sep-
arated structure). This number of neurons has achieved rela-
tively good performance in our experiments, the relationship
between the number of neurons and system performance,
however, will need to be examined more thoroughly in future
work. Fig. 4 shows the baseline configuration applied to the
separated network structure.

We study the influence of the number of hidden layers
by removing the second hidden layer from the baseline
configuration to form a three-layer GDNN, which we refer to
as the reduced-layer configuration. This configuration is the
most similar to the work of Reichensdörfer [2]. To study
the role of the recurrent connections in the architecture,
we removed all the recurrent connections from the baseline
configuration to create the feed-forward configuration.

With the exception of the feed-forward configuration,
the position of the recurrent connections in our GDNN
architectures is identical to that described in the work of
Reichensdörfer where each neuron in the input layer has a
recurrent delayed connection of one time step from all of the
neurons in the first hidden layer.

Referring to Fig. 4, the t − 1 neurons output the sum of
all input values with a delay of one time step. In contrast
to normal neurons, the t − 1 neurons have no weight, bias,
nor activation functions. The other neurons in the input and
hidden layers use the hyperbolic tangent activation function.
The neurons in the output layer use the sigmoid activation
function with a scale factor.

D. Neural Network Training

GDNNs are trained using the Truncated Back Propagation
Through Time (TBPTT) algorithm which is defined by two
parameters (k1, k2) [15]. At each step of the training, given
an error function E(t), the GDNN parameters are updated
on every k1

th step using TBPTT so that the accumulated
error from the k2 steps is minimized. For each connection
weight wij and bias bi, the change of weight ∆wij and bias
∆bi can be calculated as follows, where η is the learning
weight:

∆wij = −η
k2∑
h=0

∂E(t− h)

∂wij
(2a)

∆bi = −η
k2∑
h=0

∂E(t− h)

∂bi
(2b)

The error function E(t) is related to the PID controller
error and different for the two control system structures.
For the separated structure, e(t) refers to the error of the
corresponding PID controller and the corresponding E(t) is
defined in (3a). For the ensemble structure, en(t) refers to the
error of the nth PID controller and E(t) is defined in (3b).

E(t) =
1

2
e(t)2 =

1

2
(w(t)− y(t))2 (3a)

E(t) =
1

2
e1(t)2 +

1

2
e2(t)2 +

1

2
e3(t)2 +

1

2
e4(t)2 (3b)

81

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

w(t) PID
Controller

Controlled
system

u(t) y(t)e(t)

-

1

2

16

t-1

t-1

9

t-1

17

19

18

20

22

21

Input layer
 1 neuron

Hidden layer
 15 neurons

Hidden layer
 3 neurons

Output layer
 3 neurons Kp Ki Kd

Fig. 4. Diagram of a GDNN used in the baseline separated structure.

In the remainder of this section, we show how we back
propagate the error in (3a) for the separated structure in its
baseline configuration (Fig. 4).

The output neurons of the network are the Kp,Ki and Kd

parameters of the PID controller. In order to obtain the partial
derivation of E(t) with respect to each connection weight
and neuron bias, we must first obtain the partial derivative
E(t) with respect to the three PID parameters. For parameter
Kp we have:

∂E(t)

∂Kp
= −e(t)

∂y(t)

∂u(t)

∂u(t)

∂Kp
(4)

Where ∂y(t)
∂u(t) is the Jacobian information of the controlled

system, which is assumed to be constant and equal to 1 and
∂u(t)
∂Kp

is the partial derivation of the output u(t) with respect
to the parameter Kp.

According to (1), we have ∂u(t)
∂Kp

= e(t)− e(t− 1). Using
the same technique, we can write the partial derivative of the
error function with respect to each parameter as:

∂E(t)

∂Kp
= −e(t)(e(t)−e(t−1))

∂y(t)

∂u(t)
(5a)

∂E(t)

∂Ki
= −e(t)2

∂y(t)

∂u(t)
(5b)

∂E(t)

∂Kd
= −e(t)(e(t)−2e(t−1) + e(t−2))

∂y(t)

∂u(t)
(5c)

Using these partial derivatives, the connection weight and
neuron bias of each neuron can be updated as follows, where
Ot(Ni) is the output value of neuron i at time step t:

∆wij = −η
k2∑
h=0

∂E(t− h)

∂wij
= −η

k2∑
h=0

[
∂E(t− h)

∂Kp

∂Ot−h(N22)

∂wij

+
∂E(t− h)

∂Ki

∂Ot−h(N21)

∂wij
+
∂E(t− h)

∂Kd

∂Ot−h(N20)

∂wij

]
(6a)

∆bi = −η
k2∑
h=0

∂E(t− h)

∂bi
= −η

k2∑
h=0

[
∂E(t− h)

∂Kp

∂Ot−h(N22)

∂bi

+
∂E(t− h)

∂Ki

∂Ot−h(N21)

∂bi
+
∂E(t− h)

∂Kd

∂Ot−h(N20)

∂bi

]
(6b)

Due to the existence of delayed connections, it is difficult
to find an analytical solution to the partial derivative of a
neuron’s output with respect to its internal weight or bias
∂Ot-h(Ni)
∂wij

. However, these partial derivatives can be estimated
using the following numerical approach:

∂Ot−h(Ni)

∂wij
=
Ot−h(Ni, I,W, b)−Ot−h(Ni, I,Wwij−ε, b)

ε
(7)

Where Ot−h(Ni, I,W, b) represents the network’s output
from neuron Ni at h steps prior to current time step t, given
an input vector I which contains all the previous inputs from
t−h to t, a connectivity weight matrix W and a bias matrix
b. Wwij−ε is a modified weight matrix where the small value
ε has been subtracted from each element in the connectivity
weight matrix. Note that in our experiments we use TBPTT
configuration k1 = k2 thus weight matrix W does not change
in the error bootstrapping window between the current step
t and the step t− k2. Moreover, we have set the value of ε
to be the square of our data type’s precision level following
the recommendation of Reichensdörfer [2]. In our case, ε is
set to 10−7.

V. DISCUSSION AND RESULTS

A. Test Trajectory and Performance Criteria

The performance of the drive platform’s control system is
evaluated using a test trajectory, which is a set of velocity
vectors −→v and times t at which each velocity vector should
be applied.

ISO 9283:1998 defines several performance indicators for
evaluating a robot’s ability to traverse a given trajectory.
These performance indicators include the Positioning Path
Accuracy (PPA) and Path Velocity Characteristics (PVC).
PPA is defined as the ability for a robot to move along a given
path n times. For a given test trajectory, the corresponding
PPA can be calculated as follows:

PPA =

∑n
j=1 PPAj

n
, j ∈ [1, n]

PPAj =
1

m

m∑
i=1

√
(xij − xcij)2 + (yij − ycij)2

(8)

Where m denotes the number of position measurements on
the test trajectory, n is the number of repetitions, (xij , yij)
is the ith position of the platform measured during the jth

repetition, and (xcij , ycij) is the corresponding command
position on the test trajectory of measured position (xij , yij).

In addition to PPA, we also consider two PVC indicators:
the Path Velocity Accuracy (PVA) and the Path Velocity
Repeatability (PVR).

The PVA is defined as the error between the command
velocities and the mean value of the measured velocities
during n traverses of a test trajectory and is expressed as
a percentage of the command velocity. The PVA used in our
experiments is calculated as follows:

PVA =
1

m

m∑
i=1

vi − vci
vci

× 100%

vi =
1

n

n∑
j=1

vij

(9)

Where m is the number of velocity measurements along
the test trajectory, n is the number of repetitions, vij is
the velocity for ith measurement during the jth run, and
vci is the command velocity at the time of the ith velocity
measurement. The PVR is a measure of the error between

82

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

each velocity command and the actual velocity obtained,
which is defined as follows:

PVR = ±(
3Sv

vc
× 100%)

Sv =

√∑n
j=1(vj − v)2

n− 1

v =
1

n

n∑
j=1

vj , vj =
1

m

m∑
i=1

vij

(10)

Where m, n, vij share their meaning with the PVA indi-
cator and vc denotes the command velocity. While the PPA
from ISO 9283:1998 reports the error between the command
trajectory and the average trajectory from all traversals, the
PPA used in our evaluation is the average of the errors
between the command trajectory and each traversal of the
trajectory. This departure from the standard was required due
to the clock in our tracking system is not synchronized with
the clock in the driving platform.

B. Evaluation

The system is evaluated using two different test trajecto-
ries, a cross trajectory with uniform velocity (CTUV) and
a rectangle trajectory with variable velocity (RTVV). The
CTUV trajectory drives the robot in four directions each
separated by 90 degrees. The robot moves in each direction
and returns to the origin before moving in the next direction
so that the trajectory forms a cross shape. The command
velocity for each direction is 14.92 cm/s and is executed for
4 seconds. In the RTVV trajectory, the robot drives in four
directions each separated by 90 degrees (without returning to
the origin) to form a rectangle. On each side of the rectangle,
the robot is instructed to accelerate at 1.658 cm/s2 from 0
cm/s to 14.92 cm/s over 9 seconds and then to decelerate at
the same rate back to 0 cm/s.

The CTUV trajectory is used for evaluating the PPA
and PVC of the robot at constant speed, while the RTVV
trajectory is used for PVC evaluation with variable speed. In
the PPA calculation, the corresponding command position on
the CTUV trajectory xcij of measured position (xij , yij) in
the sequence is assumed to be the closest point on the x-axis
or y-axis of the normalized position coordination system.

Before each experiment, the weights in the network are
randomly initialized following a uniform distribution be-
tween 0 and 1. Following initialization, for each target tra-
jectory the network is pre-trained by traversing the trajectory
three times. After pre-training, the experiment starts and the
robot attempts to move along the specified trajectory (12
times for CTUV, 5 times for RTVV). The initial position
and orientation of the robot is normalized at the beginning
of each experiment, following the pre-training traversals.
During the experiments, the speed error is recorded by the
robot itself and the position sequence is recorded by an
overhead tracking system [16].

C. Results

For discussing our results, we will denote a system struc-
ture and architecture using the scheme [Structure]-[Network

E-R-4 E-F-4 S-R-4 E-R-3 Fixed parameter

[Control system structure]-[Network type]-[Number of layer]

15

20

25

30

35

40

45

50

55

P
o

s
it
io

n
in

g
 P

a
th

 A
c
c
u

ra
c
y

Fig. 5. Position Path Accuracy (PPA) of the system structures/architectures
for the CTUV trajectory.

Type]-[Layers]. For example, E-F-4 represents the ensem-
ble structure with a 4-layer feed-forward network (without
recurrent connections), while S-R-4 represents the separated
structure with a 4-layer network (with recurrent connections).

To demonstrate the ability of different structures and archi-
tectures to learn appropriate PID parameters from randomly
initialized state, the GDNN network-based systems are also
compared with a system using fixed untuned parameters,
where Kp,Ki,Kd have been fixed to 0.5 which reflects the
initial state of the controller, as the PID parameters generated
from a randomly initialized network are around 0.5.

This comparison serves as a baseline that demonstrates the
ability of the GDNN-based systems to learn their parameters.
The PPA results for the different systems and architectures
are shown in Fig. V-C. The presented data is from five
runs of each of these systems/architectures using the CTUV
trajectory. These results show that the ensemble structure
in its baseline configuration (E-R-4) is the most accurate
(lowest average PPA) and has the smallest variance.

To further study the velocity accuracy, we consider the
Path Velocity Accuracy (PVA) indicator with 12 traversals
of the CTUV trajectory. We analyze the data from these runs
over (i) the whole trajectory (WT) and (ii) the part of the
trajectory (PT) where the robot has accelerated to 90% of
its target velocity and before it begins to decelerate. The
WT-PVA and the PT-PVA and their standard deviations (in
brackets) for each system/architecture are reported in Table I.

TABLE I
PATH VELOCITY ACCURACY FOR THE CTUV TRAJECTORY

Command = 21 counts/itr Command = - 21 counts/itr
WT-PVA PT-PVA% WT-PVA% PT-PVA%

E-R-4 −4.17 (0.23) 0.09 (0.22) 4.39 (0.29) 0.08 (0.28)
E-F-4 −4.31 (0.22) −0.05 (0.21) 4.42 (0.27) 0.04 (0.25)
S-R-4 −5.25 (0.32) −0.01 (0.31) 6.08 (0.33) −0.14 (0.28)
E-R-3 −14.10 (0.52) −0.14 (0.25) 14.3 (0.53) −0.11 (0.28)
Fixed −14.54 (0.25) −0.03 (0.22) 14.61 (0.24) −0.04 (0.19)

The results in Table I show that the E-R-4 and E-F-4 have
significant better velocity accuracy during the whole traversal

83

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25

sec

-20

0

20

c
o
u
n
ts

/i
n
te

rr
u
p
t Motor 3

Command rotation speed

E-4R response

0 5 10 15 20 25

sec

0.51

0.515

0.52

v
a
lu

e

Parameter P

0 5 10 15 20 25

sec

0.85

0.9

v
a
lu

e

Parameter I

0 5 10 15 20 25

sec

0.36

0.38

0.4

v
a
lu

e

Parameter D

Fig. 6. Output of the PID parameters from the E-4-R configuration for a
single motor during the CTUV trajectory.

of CTUV trajectory compared to the other configurations.
While E-R-4 had slightly better accuracy than E-F-4, the
difference is not significant if we consider the PVA during the
part of the trajectory where the robot had already accelerated
to 90% of its target velocity.

To further study the performance differences between E-
R-4 and E-F-4 system, we consider the PVA and PVR
indicators during traversals of the RTVV trajectory. The
results are summarized in Table II, where E-R-4 had the best
stability in low and high speed ranges. In the medium speed
range, however, although E-R-4’s speed accuracy (PVA) was
the best, its speed stability (PVR) was the worst.

TABLE II
PATH VELOCITY CHARACTERISTICS FOR THE RTVV TRAJECTORY

Averaged PVA
1-11 counts/itr 12-16 counts/itr 17-21 counts/itr

E-R-4 18.9(±2.95)% 0.843(±0.646)% 1.61(±0.485)%
E-F-4 17.4(±3.39)% 1.03(±0.563)% 1.35(±0.52)%
Fixed 27.8(±3.76)% 5.45(±0.598)% 1.11(±0.51)%

Averaged PVR
1-11 counts/itr 12-16 counts/itr 17-21 counts/itr

E-R-4 43.3% 7.81% 6.0%
E-F-4 47.0% 7.23% 6.59%
Fixed 48.0% 7.34% 6.37%

We have included Fig. 6 to provide an insight into how
the PID parameters evolve during a traversal of a trajectory.

VI. CONCLUSION

In this paper, we have implemented and compared four
different GDNN-based systems/architectures for controlling
an omni-directional driving platform for swarm robotics
applications and have compared their performance using ISO
9283:1998. Our results showed that overall the GDNN-based
ensemble structure with four layers (E-R-4) traverses the test
trajectories most accurately and with the lowest variation. In
the future, we intend to investigate different training schemes
and to validate our approach on a more diverse range of
trajectories.

To encourage other researchers to build upon the results
presented in this paper, we have released the design files, a
bill of materials, and the firmware for the presented work
under open source licences. This content can be accessed
by visiting the project repository on the Open Science
Foundation [4].

ACKNOWLEDGMENT

This research was partially supported by the Program of
Concerted Research Actions (ARC) of the Université libre
de Bruxelles and by the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sklodowska-
Curie grant agreement No. 846009. Marco Dorigo acknowl-
edges support from the Belgian F.R.S.-FNRS.

REFERENCES

[1] M. Allwright, N. Bhalla, and M. Dorigo, “Structure and markings as
stimuli for autonomous construction,” in Proceedings of the Eighteenth
International Conference on Advanced Robotics. IEEE, 2017, pp.
296–302.

[2] E. Reichensdörfer, J. Günther, and K. Diepold, “Recurrent neural
networks for PID auto-tuning,” Technische Universität München,
Tech. Rep., 2017. [Online]. Available: http://mediatum.ub.tum.de/doc/
1381851/534530033346.pdf

[3] D. Rivera, M. Morari, and S. Skogestad, “Internal model control:
PID controller design,” Industrial & Engineering Chemistry Process
Design and Development, vol. 25, no. 1, pp. 252–265, 1986.

[4] H. Zhao, M. Allwright, and M. Dorigo, “An omni-directional drive
platform for experiments in GDNN-based controller architecture,”
2019. [Online]. Available: http://osf.io/enw26/

[5] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic
tuning and adaptation for PID controllers – a survey,” Control Engi-
neering Practice, vol. 1, no. 4, pp. 699–714, 1993.

[6] A. Visioli, “Tuning of PID controllers with fuzzy logic,” IEE Proc. –
Control Theory and Applications, vol. 148, no. 1, pp. 1–8, 2001.

[7] N. S. A. Shukor, M. A. Ahmad, and M. Z. M. Tumari, “Data-driven
pid tuning based on safe experimentation dynamics for control of
liquid slosh,” in 2017 IEEE 8th Control and System Graduate Research
Colloquium (ICSGRC). IEEE, 2017, pp. 62–66.

[8] B. Nagaraj and N. Murugananth, “A comparative study of PID
controller tuning using GA, EP, PSO and ACO,” in 2010 International
Conference On Communication Control And Computing Technologies.
IEEE, 2010, pp. 305–313.

[9] A. Kumar and V. Kumar, “A novel interval type-2 fractional order
fuzzy pid controller: Design, performance evaluation, and its optimal
time domain tuning,” ISA transactions, vol. 68, pp. 251–275, 2017.

[10] A. el Hakim, H. Hindersah, and E. Rijanto, “Application of rein-
forcement learning on self-tuning PID controller for soccer robot
multi-agent system,” in 2013 Joint International Conference on Rural
Information & Communication Technology and Electric-Vehicle Tech-
nology. IEEE, 2013, pp. 1–6.

[11] R. Hernández-Alvarado, L. Garcı́a-Valdovinos, T. Salgado-Jiménez,
A. Gómez-Espinosa, and F. Fonseca-Navarro, “Neural network-based
self-tuning PID control for underwater vehicles,” Sensors, vol. 16,
no. 9, pp. 1429–1447, 2016.

[12] Z. Sun, R. Xing, C. Zhao, and W. Huang, “Fuzzy auto-tuning PID con-
trol of multiple joint robot driven by ultrasonic motors,” Ultrasonics,
vol. 46, no. 4, pp. 303–312, 2007.

[13] S. Boyd, M. Hast, and K. J. Åström, “MIMO PID tuning via iterated
LMI restriction,” International Journal of Robust and Nonlinear
Control, vol. 26, no. 8, pp. 1718–1731, 2016.

[14] W.-D. Chang, “A multi-crossover genetic approach to multivariable
PID controllers tuning,” Expert Systems with Applications, vol. 33,
no. 3, pp. 620–626, 2007.

[15] I. Sutskever, “Training recurrent neural networks,” Ph.D. Thesis,
University of Toronto Toronto, Canada, 2013.

[16] A. Stranieri, A. Turgut, M. Salvaro, L. Garattoni, G. Francesca,
A. Reina, M. Dorigo, and M. Birattari, “IRIDIA’s arena tracking
system,” IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,
Tech. Rep. TR/IRIDIA/2013-013, January 2013.

84

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 07,2022 at 10:58:44 UTC from IEEE Xplore. Restrictions apply.

		2021-09-10T14:30:48-0400
	Certified PDF 2 Signature

