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Abstract. Formation control in a robot swarm targets the overall
swarm shape and relative positions of individual robots during navi-
gation. Existing approaches often use a global reference or have lim-
ited topology flexibility. We propose a novel approach without these
constraints, by extending the concept of ‘mergeable nervous systems’
to establish distributed asymmetric control via a self-organized wire-
less communication network. In simulated experiments with UAVs and
mobile robots, we present a proof-of-concept for three sub-tasks of forma-
tion control: formation establishment, maintenance during motion, and
deformation. We also assess the fault tolerance and scalability of our
approach.

1 Introduction

We target the control of mobile multi-robot formations—in other words, the
maintenance of a possibly adaptive shape during navigation, including both
shape outline and relative positions of individuals. Formation control is more fre-
quently studied in control theory than swarm robotics (cf. distinction pointed out
by [20]). In swarm robotics, physical coordination with non-physical connections
has been studied in flocking (e.g., [7]), where an amorphous group forms dur-
ing motion, and in self-assembly without physical connections, which has been
demonstrated for immobile shapes that are definite and static [18] or amorphous
and adaptive [19]. In these approaches, flexibility of individual robot positions
has been used as a feature, similar to formation-containment control (e.g., [6])
in control theory, which maintains an overall convex hull.

Formation control—maintaining both overall shape and individual rela-
tive positions—merits further study in swarm robotics. We propose an app-
roach based on the existing ‘mergeable nervous systems’ (MNS) [12] concept.
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The MNS concept combines aspects of centralized and decentralized control, via
distributed asymmetric control over a communication graph formed exclusively
by self-organization. Our method targets control of definite swarm shape and rel-
ative positions of individuals, in non-physically connected robots. Widely studied
formation control approaches [1,4,11] primarily make use of formation-level cen-
tral coordination, and include leader–follower [21] (including virtual leader [17]),
virtual structure [9,17], and behavior-based [2,3]. Our proposed hybrid approach
uses a virtual structure that is not only a reference coordinate frame and a tar-
get formation, but also a target topology of the communication network. Robots
cede motion control to distributed leaders (i.e., parents) that are their imme-
diate neighbors in the communication topology, rather than following a single
shared leader. Similarly to behavior-based control, the target formation is not
necessarily rigid, as the parents can adapt the motion control of their immediate
followers (i.e., children) on the fly, during tasks such as obstacle avoidance.

We select the review by [11] to define the aims of our proof-of-concept exper-
iments. Then, a comprehensive approach to formation control should include the
following sub-tasks: 1) formation establishment from random positions, 2) for-
mation maintenance during motion, and 3) formation ‘deformability’ [11] (i.e.,
updating the target formation on the fly) during obstacle avoidance. We test
formation establishment (Sect. 3.1) with various shapes and sizes of target for-
mations. For formation maintenance, we test time-and-position cooperative and
reactive motion, in response to an external stimulus (Sect. 3.2). For formation
deformability, we test a scenario requiring multiple updates to the target for-
mation during obstacle-exposed navigation (Sect. 3.2). We also target benefi-
cial features typically seen in self-organization. First, we test fault tolerance, in
terms of formation recovery after robot failure (Sect. 3.3). Second, we test scal-
ability (Sect. 3.4), in terms of convergence time during formation establishment
(Sect. 3.1) and reaction time in response to an external stimulus (Sect. 3.2).

2 Methods

Our formation control approach is based on the ‘mergeable nervous systems’
(MNS) concept [12], previously demonstrated with physical connections among
ground robots. Here, we extend the concept to non-physical connections, with
self-organized wireless communication topologies in a heterogeneous swarm.

Target Topology, Target Formation, and Motion Control. In our app-
roach, an MNS is a set of robots connected in a self-organized wireless com-
munication network, specifically a directed rooted tree, where the root acts as
the brain robot of the MNS. A self-organization process results in a network
with a given target topology. This network is used to execute distributed motion
control, to move robots to positions and orientations that match a given target
formation. The target topology is represented in graph G, and target formation
is represented by a set of attributes A associated to the links of G. For each
link between a parent robot and child robot, A includes the child target position
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and orientation, relative to the parent, and includes the robot type of the child
(either UAV or ground robot). A robot uses the full G and A as reference only
if it is currently a brain. G and A are defined externally and can be updated
during runtime. A non-brain robot receives a portion of the target from its par-
ent, to use as its new reference. Specifically, robot rn receives G′

n, the subgraph
downstream from it, and the associated subset An.

To establish the target formation and maintain it during motion, each child
cedes motion control to its parent, which directs it to the relative position and
orientation indicated in A. The motion instructions communicate linear and
angular velocities, with the parent as reference frame, via the following: 1) new
linear velocity vector v, magnitude in m/s; 2) new angular velocity vector ω,
magnitude in rad/s; and 3) current orientation in unit quaternion qt, represent-
ing rotation axis and angle. To execute the instructions, the child first rotates
v and ω by −qt, resulting in new vectors vq and ωq, then begins moving in
direction vq at speed ||vq|| m/s while rotating around ωq at speed ||ωq|| rad/s.
In order to calculate instructions that will move the child towards the target, the
parent senses its child’s current displacement vector dt and orientation qt, with
itself as reference frame. At each step, the parent sends new motion instructions
after calculating a new desired displacement dt+1 and orientation qt+1 for the
child, and then calculating v and ω according to Eq. 1, as follows:

v = k1

(
dt+1 − dt

||dt+1 − dt||
)
, ω = k2 · ||f(q−1

t+1 × qt)||, (1)

where k1 and k2 are speed constants, and where function f(x) converts a quater-
nion to an Euler angle.

Formation Establishment and Maintenance. A target topology is estab-
lished by robots forming directed communication links, becoming members of
the same MNS. MNS topologies are self-organized via distributed recruitment
operations and handover operations. Recruitment operations form new links. A
robot tries to form new links with another robots if these two robots are not in
the same network. Handover operations redistribute robots if their current topol-
ogy nodes do not match the target G and A. A robot may handover its children
to its parent or other children based on its G and A to change the topology of
the network. Regardless of how robots are initially recruited, those at incorrect
nodes will be shifted along the topology until all robots match the target G and
A. In case of faulty robots, recruitment and handover operations also restore
the target topology. When a robot is moving, it sends motion instruction to its
children to maintain their relative positions and orientations according to A. A
robot reacting to an external signal may send emergency motion instructions
to its neighbors, and the instructions propagate through the MNS. The MNS is
‘deformable’ [11] (i.e., can switch the target formation on the fly) by updating
the target G and A in the brain.
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2.1 Experiment Setup

We run experiments with the multi-robot simulator ARGoS [16], using kinematic
robot control. The arena is 10 × 10 × 2.5 m3, fully enclosed, and optionally
includes 0.04× 0.04× 0.02 m3 static obstacles. The UAV model is based on the
DJI F540 multi-rotor frame, which we extend with four ground-facing cameras.
We limit UAV speed to 0.1 m/s, to match the 0.1 m/s maximum speed of the
ground robots. UAVs maintain a 1.5 m altitude, after taking off at the start
of an experiment. The ground robot model is an extended e-puck [8,13,14],
with a fiducial marker (0.03 × 0.03 m2 AprilTag [15]) encoding the robot ID.
Obstacles also have AprilTags, encoding an obstacle identifier. At 1.5 m altitude,
a UAV reliably views a ground area of 1.5 × 1.5 m2, detecting positions and
orientations of ground robots and obstacles. If two UAVs are connected, they
detect each other via ‘virtual sensing’ [10]—they each infer the other’s position
and orientation relative to a mutually detected ground robot. Our setup assumes
restriction to short-range communication. Messages can only be passed between
robots if they are connected in the graph G, or if one is in the other’s field of
view.

We run experiments (video available1) for formation establishment, obstacle
avoidance, fault tolerance, and scalability. We define and use nine target forma-
tions (F1–F9, see Fig. 1(a)). We conduct 100 runs per experiment and record
robot positions throughout. We assess performance via ‘position error’ [11]—i.e.,
the difference between actual relative positions and those indicated in the target
formation.

3 Results

3.1 Formation Establishment

We first test formation establishment from random starting positions. Establish-
ment is considered successful if all robots merge into a single MNS and the robots
achieve the given target formation. We test all nine target formations (100 runs
each). Using the robots’ final node allocations after experiment termination, we
use Euclidean distance to calculate position error E at each timestep, as follows:

E =
1
n

n∑
i=1

Ei, Ei = | d(pi − p1) − d(ri − r1) |, (2)

where n is the total number of robots, pi is a robot’s current position, ri is a
robot’s target position, and i = 1 is the brain. Ei for the brain is always zero,
because the brain’s relative position to itself is constant. Position error E over
time is given in Fig. 1(d), for all nine target formations. In all runs, the swarm
successfully establishes the target formation within 400 s. The larger the swarm
size, the more time it takes to converge. On average, convergence time is 12.79 s
per robot (standard deviation of 5.32 s).
1 http://iridia.ulb.ac.be/supp/IridiaSupp2020-006/index.html.

http://iridia.ulb.ac.be/supp/IridiaSupp2020-006/index.html
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Fig. 1. (a) Target formations (F1–F9). Red circles are UAVs, blue are ground robots.
(b) Formation-level obstacle avoidance scenario (screenshot from simulator); deforma-
tion. (c) Ground robot and UAV. (d) Formation establishment results. Average position
error E over time for all target formations (900 runs total). Dark grey shows stan-
dard deviation; light grey shows maximum and minimum. (e) Formation-level obstacle
avoidance results from example run. Position error E over time.

3.2 Formation-Level Obstacle Avoidance

We test ‘deformability’ [11]—i.e., whether the target formation can be updated
on the fly, for instance by switching from a cross-shaped formation to a cir-
cular formation. For deformation, the brain updates the target topology and
formation. Deformation is successful if the MNS establishes the new target for-
mation after an update, such that the position error E returns to its prior level
(approximately 0.1 m position error). In this experiment type, we define a wall
with a narrow opening (a complex obstacle for formation control [11]) and a
small box to be encircled. We use a shepherd robot as stimulus. In step 1, see
Fig. 1(b), the MNS is in formation F9 and moves towards the wall because of
the shepherd robot. In step 2, it switches from the cross-shaped formation F9
to a more elongated formation similar to formation F3, passing the opening. In
step 3, it switches back to formation F9. In step 4, it encounters the small box,
and switches to a circular formation similar to formation F6, surrounding the
box. Position error E (see Eq. 2) over time is given in Fig. 1(e). Peaks occur
when the target formation switches; the largest peak corresponds to the largest
difference between the old and new formations. In all 100 runs, E returns to its
prior stable level, after each formation switch.
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3.3 Fault Tolerance

We test recovery of the topology and formation when a robot fails—i.e., its
communication links break and it is arbitrarily displaced. Recovery is successful
if position error returns to its prior level, from before the failure. Searching for
robots is not within the scope of this paper, so the failed robot is displaced to a
random position within the MNS’s field of view. Our approach is tolerant even to
brain failure, as any robot can be replaced by its topologically closest neighbor.
With 100 runs each, we test failure of a leaf node (Fig. 2(a,d)); a non-brain inner
node (Fig. 2(b,e)); and a brain (Fig. 2(c,f)). We begin the assessment of each
experiment at timestep 280 s, once all robots have established formation F9. In
this target formation, all leaf nodes are ground robots and all inner nodes are
UAVs. From the set of robots that are candidates for failure in the respective
experiment (e.g., those at leaf nodes), one robot is randomly selected as the failed
robot, and is removed and displaced at timestep 300 s. Shaded plots of position
error E (see Eq. 2) over time are given in Fig. 2(a–c), and scatter plots of recovery
time in relation to displacement distance of the failed robot are given in Fig. 2(d–
f). Results show that the closer the failed robot is to the brain topologically, the
longer the time to recover (note the different scale on the y-axes of Fig. 2(a–c)),
and the less direct the relationship between displacement distance and recovery
time. This weaker relationship reflects the increased difficulty of recovery, when
the failure is closer to the brain. The MNS succeeds in fully recovering in 99% of
300 runs. In the remaining 1%, one ground robot erroneously moves slightly out
of view; as searching for robots is not part of the experiment setup, it remains
out of view.
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Fig. 2. (a–f) Formation recovery after three failure types: (a,d) leaf node, (b,e) non-
brain inner node, and (c,f) brain. (a–c) Position error E over time, for each failure type
(100 runs each). (d–f) Relationship between recovery time and displacement distance,
for each failure type (100 runs each). (g–i) Scalability analysis. (g) Convergence time
by number of robots. Each color line indicates average time for a shape type (shape
types F1–3, F4–6, and F7–9 in Fig. 1(a)). Dark grey is standard deviation for all shape
types; light grey, maximum and minimum. (h) Convergence time per robot, by number
of robots. (Color indications match (g).)
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3.4 Scalability

We assess scalability in terms of the initial time to converge on the target for-
mation (in Sect. 3.1), and the reaction time during motion while the formation
is being maintained (in Sect. 3.2). The total time to converge (see Fig. 2(g))
tends to increase sublinearly with increasing number of robots—in other words,
the system scales slightly better than linearly. Convergence time per robot (see
Fig. 2(h)) tends to decrease as the number of robots increases. These tendencies
occur because merges often happen in parallel early in the establishment process.
The formation shape also impacts convergence time; as this is a multidimensional
variable, a comprehensive understanding would require further study.

In a physical MNS, reaction time depends on the number of robots a message
passes through [12]. For our wireless MNS, we find that reaction time increases
linearly according to the number of links from the stimulated robot to the fur-
thest robot. Currently, there is no spread; one message takes one simulation step
(200 ms). In real robots, message time will likely vary. In the experiments of [12],
the real message rate was 100 ms (half the rate we set in simulation), using mes-
sages of comparable size. For wireless communication, a candidate for our setup
would be Zigbee, with effective bit rate of 250 kbps [5].

4 Discussion and Conclusions

We have proposed a self-organized approach to formation control based on the
existing concept of ‘mergeable nervous systems,’ which combines aspects of cen-
tralized and decentralized control. Robots in a swarm execute distributed asym-
metric control via self-organized communication topologies. In simulated exper-
iments we have demonstrated a successful proof-of-concept, showing that our
approach can enable a swarm to establish and maintain a given formation while
avoiding obstacles. We have demonstrated that, using the self-organized commu-
nication topology, the formation can recover after robot failure and displacement,
and also can switch to a new formation on the fly. Although these are promis-
ing results, more comprehensive study is required to define the limits of these
features, give formal guarantees, and systematically compare the performance
of our method to other formation control approaches. In order to move our
approach to real-robot experiments, future developments will need to address
conditions such as sensor noise and communication latency, and add a layer of
dynamic control in addition to kinematic control for the UAVs. Overall, we draw
the conclusion that in the tested experimental setup our MNS-based approach
is capable of fault-tolerant and scalable formation control during navigation, in
a heterogeneous robot swarm comprising UAVs and ground robots.
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