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Abstract. In this paper we introduce model-based search as a unifying framework accommodating some
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distinctive features of each method and we propose some extensions.
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1. Introduction

The necessity to solve NP-hard optimization problems, for which the existence of effi-
cient exact algorithms is highly unlikely, has led to a wide range of heuristic algorithms
that implement some sort of search in the solution space. These heuristic algorithms can
be classified, similarly to what is done in the machine learning field (Quinlan, 1993), as
being either instance-based or model-based. Most of the classical search methods may
be considered instance-based, since they generate new candidate solutions using solely
the current solution or the current “population” of solutions. Typical representatives of
this class are genetic algorithms (Holland, 1975) or local search and its variants, such as,
for example, simulated annealing and iterated local search (Aarts and Lenstra, 1997). On
the other hand, in the last decade several new methods, which may be classified as model-
based search (MBS) algorithms, have been proposed. In model-based search algorithms,
candidate solutions are generated using a parameterized probabilistic model that is up-
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Libre de Bruxelles, Brussels, Belgium, and Mauro Birattari was with Intellektik, Technische Universität
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Figure 1. Schematic description of the MBS approach.

dated using the previously seen solutions in such a way that the search will concentrate
in the regions containing high quality solutions. In order to avoid any terminological
confusion, we would like to emphasize that the term “model” is used here to denote an
adaptive stochastic mechanism for generating candidate solutions, and not an approxi-
mate description of the environment,1 as done, for example, in reinforcement learning
(Sutton and Barto, 1998). The general approach is described schematically in figure 1.
Some of the early works exploiting the model-based approach, such as ant colony op-
timization (Dorigo, 1992; Dorigo, Maniezzo, and Colorni, 1996; Dorigo and Di Caro,
1999) and population-based incremental learning (Baluja and Caruana, 1995), do not
provide an explicit description of the model-based idea. The first explicit description of
a solution process consisting in a series of suitably updated probability distributions on
the solution space was given by De Bonet, Isbell, and Viola (1997). More recently, on
the basis of concepts borrowed from the stochastic simulation field and, in particular,
from rare events estimation, Rubinstein (1999a) re-proposed the ideas of De Bonet and
co-workers and provided an extensive analysis of many details (De Boer et al., 2001).

While the behavior of classical instance-based search methods has been thoroughly
investigated and is relatively well understood, the model-based search field is still little
more than a collection of independently developed heuristic techniques, without solid
theoretical foundations. The goal of this paper is to provide a unifying framework that
accommodates all these seemingly unrelated methods and to analyze their similarities
as well as their distinctive features. The analysis of these methods within a common
framework allows to discriminate between the essential elements of the algorithm and
those that appear only for historical reasons.

A well-established approach that belongs to the MBS framework is the ant colony
optimization (ACO) metaheuristic (Dorigo, 1992; Dorigo, Maniezzo, and Colorni, 1996;
Dorigo and Di Caro, 1999). The distinctive feature of ant colony optimization is a par-
ticular type of probabilistic model, in which a structure called construction graph is
coupled with a set of stochastic procedures called artificial ants. The artificial ants have
a two-fold function – they both generate solutions and update the model’s parameters.
Various model update rules have been proposed within the ACO framework, but they are
all of a somewhat heuristic nature and are lacking a theoretical justification.

On the other hand, the stochastic gradient ascent (SGA) (Robbins and Monro,
1951; Bertsekas, 1995) and the cross-entropy (CE) (Rubinstein, 1999a) methods pro-
vide a systematic way for the derivation of model update rules in the MBS framework,
without being restricted to a particular type of probabilistic model. As we show in the



MODEL-BASED SEARCH FOR COMBINATORIAL OPTIMIZATION 375

Figure 2. The MBS with auxiliary memory.

following, both the stochastic gradient ascent and the cross-entropy methods can be cast
into the ACO framework, and, in fact, in some cases the cross-entropy method leads to
the same update rule as does stochastic gradient ascent. Moreover, quite unexpectedly,
some existing ACO updates may be re-derived as a particular implementation of the
cross-entropy method.

It should be noticed that figure 1 describes the MBS approach in its “pure” form,
where the model update is based solely on the current solutions’ sample. However,
many model-based search algorithms update the model using not only the current sam-
ple, but also some additional information gathered during the search and stored in an
auxiliary memory, as described in figure 2. In particular, a recently developed class
of evolutionary algorithms called estimation of distribution algorithms (EDAs) (Pelikan,
Goldberg, and Lobo, 1999; Larrañaga and Lozano, 2001) may be considered a particular
realization of model-based search with an auxiliary memory that stores high-quality so-
lutions encountered during the search. Not only all these algorithms belong to the MBS
approach, but many of them are actually closely related to the ACO and CE frameworks,
as we show in the following.

The paper is structured as follows. In section 2 we describe model-based search
in general terms and present stochastic gradient ascent and cross-entropy as particular
realizations of the MBS approach. The relationship between the two methods is also
discussed in that section.

Section 3 presents the ACO metaheuristic and discusses the implementation of the
cross-entropy and the stochastic gradient ascent methods using the ACO-type construc-
tion mechanism as a model.

In section 4 the estimation of distribution algorithms are presented as a particular
realization of MBS with auxiliary memory. An overview of existing EDAs is given and
their relations to the ACO framework and the cross-entropy method are discussed.

Section 5 draws some conclusions and outlines several interesting future research
directions.

2. Model-based search

Let us consider a minimization problem2 (S, f ), where S is the set of feasible solutions,
f is the objective function, which assigns to each solution s ∈ S a cost f (s). The goal
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of the minimization problem is to find an optimal solution s∗, that is, a feasible solution
of minimum cost. The set of all optimal solutions is denoted by S∗.

At a very general level, the model-based search approach attempts to solve this
minimization problem by repeating the following two steps:

– Candidate solutions are constructed using some parameterized probabilistic model,
that is, a parameterized probability distribution over the solution space.

– The candidate solutions are used to modify the model3 in a way that is deemed to
bias future sampling toward low cost solutions.

As it was already mentioned in the introduction, one may also use an auxiliary memory,
in which some important information collected during the search is stored. The memory,
which may store, for example, information on the distribution of the cost values or a
collection of high-quality solutions, can be later used for the model update. Moreover, in
some cases we may wish to build a new model at every iteration, rather than to iteratively
update the same one.

For any algorithm belonging to this general scheme, two components, correspond-
ing to the two steps above, need to be instantiated:

– A probabilistic model that allows an efficient generation of the candidate solutions.

– An update rule for the model’s parameters and/or structure.

In the remainder of this section we discuss two systematic approaches within the MBS
framework, namely stochastic gradient ascent and cross-entropy methods, which define
the second component, that is the update rule for the model. We show that, although
having a completely different motivation, the two approaches are closely related. In
fact, we show that a particular version of CE produces the same updates as SGA does.

Throughout the remainder of this section we assume that a space M of possible
probabilistic models is given and that it is expressive enough. Specifically, we need to
assume that for every possible solution s, the distribution δs(·) (defined as δs(s

′) = 1,
if s′ = s, and δs(s

′) = 0 otherwise) belongs to M. This condition may actually be
relaxed by assuming instead that δs is in the closure of M, that is, that there exists a
sequence Pi ∈ M for which limi→∞ Pi = δs . This “expressiveness” assumption is
needed in order to ensure that the sampling can concentrate in the proximity of any
solution, the optimal solution in particular.

2.1. Stochastic gradient ascent

Let us assume that the model structure is fixed, and the model space, M, is smoothly
parameterized by T ∈ � ⊂ R

m, where � is an m-dimensional parameter space. In other
words, M = {PT (·) | T ∈ �} and for any s ∈ S the function PT (s) is smooth4 with
respect to T .

The original optimization problem may be replaced with the following equivalent
continuous maximization problem:

T ∗ = argmax
T

E(T ), (1)
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where E(T ) = ET Qf (s), ET denotes expectation with respect to PT , and Qf (s) is a
fixed quality function, which is strictly decreasing with respect to f , that is, Qf (s1) <

Qf (s2) ⇔ f (s1) > f (s2).
It may be easily verified that, under the “expressiveness” assumption we made

about the model space, the support of PT ∗ (i.e., the set {s | PT ∗(s) > 0} ) is necessar-
ily contained in S∗. This implies that solving problem (1) is equivalent to solving the
original combinatorial optimization problem.

One may then search for an optimum (possibly a local one) of the problem given
by equation (1) using a gradient ascent method (in other words, gradient ascent may be
used as a heuristic to change T with the goal of solving equation (1)):

– Start from some initial guess T 0.

– At stage t , calculate the gradient ∇E(T t ) and update T t+1 to be T t + αt∇E(T t ),
where αt is a step-size parameter.

The gradient can be calculated (bearing in mind that ∇ ln f = ∇f/f ) as follows:

∇E = ∇ET Qf (s) = ∇
∑

s

Qf (s)PT (s) =
∑

s

Qf (s)∇PT (s)

=
∑

s

PT (s)Qf (s)
∇PT (s)

PT (s)
=

∑
s

PT (s)Qf (s)∇ ln PT (s)

= ET Qf (s)∇ ln PT (s). (2)

However, the gradient ascent algorithm cannot be implemented in practice, as for its
evaluation a summation over the whole search space is needed. A more practical alter-
native would be to use stochastic gradient ascent (Robbins and Monro, 1951; Bertsekas,
1995), which replaces the expectation in equation (2) by an empirical mean of a sample
generated from PT .

The update rule for the stochastic gradient is:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ ln PT t (s), (3)

where St is the sample at iteration t .
In order to derive a practical algorithm from the SGA approach, we need a model

for which the derivatives of the ln PT (·) can be calculated efficiently. In section 3.3 we
show how this can be done in the context of the iterative construction scheme used in the
ACO metaheuristic.

2.2. Cross-entropy method

The basic ideas behind the cross-entropy (CE) method for combinatorial optimization
can be already found in De Bonet, Isbell, and Viola (1997). However, the full devel-
opment of the method was given in the works of Rubinstein and co-workers, who have
initially proposed this method as a tool for rare events estimation in stochastic simulation
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(Rubinstein, 1999b; Lieber, 1999) and have later adapted it to the field of combinatorial
optimization (Rubinstein, 1999a, 2001). In this overview we focus on the central idea
of cross-entropy and we propose a presentation of the main concepts without reference
to rare events estimation. This presentation should appear more straightforward to the
operations research community.5

Starting from some initial distribution P0 ∈ M, the CE method inductively builds
a series of distributions Pt ∈ M, in an attempt to increase the probability of generating
low-cost solutions after each iteration. A tentative way to achieve this goal is to set Pt+1

equal to

P̂ ∝ PtQf , (4)

where Qf is, again, some quality function, depending on the cost value.
If this were possible, then the multiplication by Qf would bias the probability

toward high-quality solutions and, for time independent quality functions,6 after n itera-
tion we would obtain Pn ∝ P0(Qf )n. Consequently, as n → ∞, Pn would converge to
a probability distribution restricted to S∗. Unfortunately, even if the distribution Pt be-
longs to the family M, the distribution P̂ as defined by equation (4) does not necessarily
remain in M,7 hence some sort of projection is needed.

Accordingly, a natural candidate for Pt+1 is the distribution P ∈ M that minimizes
the Kullback–Leibler divergence (Kullback, 1959), which is a commonly used measure
of misfit between two distributions:

D
(
P̂ ‖P ) =

∑
s

P̂ (s) ln
P̂ (s)

P (s)
, (5)

or equivalently the cross-entropy:

−
∑

s

P̂ (s) ln P(s). (6)

Since P̂ ∝ PtQf , the cross-entropy minimization is equivalent to the following maxi-
mization problem:

Pt+1 = argmax
P∈M

∑
s

Pt (s)Qf (s) ln P(s). (7)

It should be noted that in the cross-entropy method, differently from what done by SGA,
the quality function is only required to be non-increasing with respect to the cost and
may also be time-dependent, either deterministically or stochastically. For example, it
might depend on the points sampled so far. One common choice is Qt

f (s) = I (f (s) <

ft), where I (·) is an indicator function, and ft is, for example, some quantile (e.g.,
lower 10%) of the cost distribution during the last iteration8. Another quality function
considered in Rubinstein (1999a) is a Boltzmann function Qf (s) = exp(−f (s)/γ ),
where γ is changed adaptively based on the sample.

Similarly to the gradient ascent algorithm, the maximization problem given
by equation (7) cannot be solved in practice, as the evaluation of the function
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∑
s Pt (s)Qf (s) ln P(s) requires summation over the whole solution space, and once

again a finite sample approximation is used instead:

Pt+1 = argmax
P∈M

∑
s∈St

Qf (s) ln P(s), (8)

where St is a sample from Pt .
Note that if the quality function is of the form I (f (s) < c), then equation (8)

defines a maximum-likelihood model, with the sample used for estimation being re-
stricted to the top-quality solutions. With other quality functions, equation (8) may be
interpreted as defining a weighted maximum-likelihood estimate.

In some relatively simple cases, some of which are discussed in sections 3 and
4, the problem given by equation (8) can be solved exactly. In general, however, the
analytical solution is unavailable. Still, even if the exact solution is not known, some
iterative methods for solving this optimization problem may be used.

A natural candidate for the iterative solution of the maximization problem (8) is
gradient ascent:

– Start with T ′ = T t . (Other starting points are possible, but this is the most natural
one, since we may expect T t+1 to be close to T t .)

– Repeat:

T ′ ← T ′ + α
∑

s∈St
Qf (s)∇ ln PT ′(s),

where α is a step-size parameter

Until some stopping criterion is satisfied.

– Set T t+1 = T ′.

It should be noted that, since the new vector T t+1 is a random variable, depending on
a sample, there is no use in running the gradient ascent process till full convergence.
Instead, in order to obtain some robustness against sampling noise, we may use a fixed
number of gradient ascent updates. One particular choice, which is of special interest, is
the use of a single gradient ascent update, leading to the updating rule:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ ln PT t (s), (9)

which is identical to the SGA update (equation (3)). However, as it was already men-
tioned earlier, the CE method imposes less restrictions on the quality function (e.g.,
allowing it to change over time), hence the resulting algorithm may be seen as a gener-
alization of SGA.

As with SGA, in order to have an efficient algorithm, a model is needed for which
the calculation of the derivatives can be carried out in reasonable time. In the next
section, we show that this is indeed possible for the models typically used in ant colony
optimization.
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3. The ACO metaheuristic and the SGA/CE methods

So far, we have limited our discussion to the generic approaches for updating the model.
However, this is only one out of the two components needed in any MBS algorithm. In
order to complete the description of a MBS algorithm, a probabilistic model needs to be
specified.

In this section we describe the ant colony optimization metaheuristic (Dorigo,
1992; Dorigo, Maniezzo, and Colorni, 1996; Dorigo and Di Caro, 1999) that employs
a particular type of probabilistic model in which a structure called construction graph
is coupled with a set of stochastic procedures called artificial ants. The artificial ants
build solutions in an iterative manner using local information stored in the construction
graph.9 After describing the probabilistic model, we present several updates that were
suggested in the past within the ant colony optimization framework as well as the ones
derived from the stochastic gradient ascent algorithm and the cross-entropy method.

3.1. Ant colony optimization – the probabilistic model

We assume that the combinatorial optimization problem (S, f ) is mapped on a problem
that can be characterized by the following list of items:10

– A finite set C = {c1, c2, . . . , cNC
} of components, where NC is the number of com-

ponents.

– A finite set X of states of the problem, where a state is a sequence x =
〈ci, cj , . . . , ck, . . .〉 over the elements of C. The length of a sequence x, that is, the
number of components in the sequence, is expressed by |x|. The maximum length of
a sequence is bounded by a positive constant n < +∞.

– The set of (candidate) solutions S is a subset of X (i.e., S ⊆ X ).

– A set of feasible states X̃ , with X̃ ⊆ X , defined via a set of constraints �.

– A non-empty set S∗ of optimal solutions, with S∗ ⊆ X̃ and S∗ ⊆ S .

Given the above formulation, artificial ants build candidate solutions by performing ran-
domized walks on the completely connected, weighted graph G = (C,L, T ), where the
vertices are the components C, the set L fully connects the components C, and T is
a vector gathering so-called pheromone trails τ .11 The graph G is called construction
graph.

Each artificial ant is put on a randomly chosen vertex of the graph and then it per-
forms a randomized walk by moving at each step from vertex to vertex in the graph
in such a way that the next vertex is chosen stochastically according to the strength
of the pheromone currently on the arcs. While moving from one node to another
of the graph G, constraints � may be used to prevent ants from building infeasible solu-
tions. Formally, the solution construction behavior of a generic ant can be described as
follows:
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ANT_SOLUTION_CONSTRUCTION

– for each ant:

• select a start node c1 according to some problem dependent criterion,

• set k = 1 and xk = 〈c1〉.
– While xk = 〈c1, c2, . . . , ck〉 ∈ X̃ and xk /∈ S and Jxk

�= ∅ do:
at each step k, after building the sequence xk, select the next node (component)
ck+1 randomly following

PT (ck+1 = c|xk) =



F(ck,c)(τ (ck, c))∑
(ck,y)∈Jxk

F(ck,y)(τ (ck, y))
if (ck, c) ∈ Jxk

,

0 otherwise;

(10)

where a connection (ck, y) belongs to Jxk
iff the sequence xk+1 = 〈c1, c2, . . . , ck, y〉

satisfies the constraints � (that is, xk+1 ∈ X̃ ) and F(i,j)(z) is some monotonic func-
tion – most commonly, zαη(i, j)β , where α, β > 0 and η are heuristic “visibility” val-
ues (Dorigo, Maniezzo, and Colorni, 1996). If at some stage xk /∈ S and Jxk

= ∅,
that is, the construction process has reached a dead-end, the current state xk is
discarded.12

For certain problems, one may find useful to use a more general scheme, where
F depends on the pheromone values of several “related” connections, rather than just a
single one. Moreover, instead of the random-proportional rule above, different selec-
tion schemes, such as the pseudo-random-proportional rule (Dorigo and Gambardella,
1997), may be considered.

The probabilistic rule given by equation (10), together with the underlying con-
struction graph, implicitly defines a first component of the MBS algorithm – the prob-
abilistic model. Having chosen the probabilistic model, the next step is to choose the
parameter update mechanism. In the following, we describe several updates that were
suggested in the past within the ant colony optimization framework as well as the ones
derived from the stochastic gradient ascent algorithm and the cross-entropy method.

3.2. Ant colony optimization – the pheromone updates

Many different schemes for pheromone update have been proposed within the ACO
framework. For an extensive overview, see Dorigo and Stützle (2002, 2004). Most
pheromone updates can be described using the following generic scheme:

GENERIC_ACO_UPDATE

– ∀s ∈ Ŝt ,∀(i, j) ∈ s: τ(i, j) ← τ(i, j) + Qf (s|S1, . . . , St ),

– ∀(i, j): τ(i, j) ← (1 − ρ) · τ(i, j)
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where Si is the sample in the ith iteration, ρ, 0 < ρ � 1, is the evaporation rate,
and Qf (s|S1, . . . , St ) is some “quality function,” which is typically required to be
non-increasing with respect to f and is defined over the “reference set” Ŝt .

Different ACO algorithms may use different quality functions and reference sets. For
example, in the very first ACO algorithm – Ant System (Dorigo, Maniezzo, and Colorni,
1991, 1996) – the quality function was simply 1/f (s) and the reference set Ŝt = St . In a
more recently proposed scheme, called iteration best update (Dorigo and Gambardella,
1997), the reference set was a singleton containing the best solution within St (if there
were several iteration-best solutions, one of them was chosen randomly). For the global-
best update (Dorigo and Gambardella, 1997; Stützle and Hoos, 1997), the reference set
contained the best among all the iteration-best solutions (and if there were more than
one global-best solution, the earliest one was chosen). In Dorigo, Maniezzo, and Colorni
(1996) an elitist strategy was introduced, in which the update was a combination of the
previous two.

In case a good lower bound on the optimal solution cost is available, one may use
the following quality function (Maniezzo, 1999):

Qf (s|S1, . . . , St ) = τ0

(
1 − f (s) − LB

f̄ − LB

)
= τ0

f̄ − f (s)

f̄ − LB
, (11)

where f̄ is the average of the costs of the last k solutions and LB is the lower bound
on the optimal solution cost. With this quality function, the solutions are evaluated by
comparing their cost to the average cost of the other recent solutions, rather than by
using the absolute cost values. In addition, the quality function is automatically scaled
based on the proximity of the average cost to the lower bound.

A pheromone update, which slightly differs from the generic update described
above, was used in ant colony system (ACS) (Dorigo and Gambardella, 1997). There the
pheromones are evaporated by the ants online during the solution construction, hence
only the pheromones involved in the construction evaporate.

Two additional modifications of the generic update were described in the literature.
The first one, introduced by Stützle and Hoos in their MAX–MIN Ant System (1997,
2000), uses maximum and minimum pheromone trail limits. With this modification, the
probability to generate any particular solution is kept above some positive threshold,
which helps preventing search stagnation and premature convergence to suboptimal so-
lutions.

The second modification, proposed under the name of hyper-cube framework for
ACO (HCF-ACO) (Blum, Roli, and Dorigo, 2001; Blum and Dorigo, 2004) in the con-
text of combinatorial problems with binary coded solutions, is to normalize the quality
function, hence obtaining an automatic scaling of the pheromone values:

τi ← (1 − ρ)τi + ρ

∑
s∈St

Qf (s)si∑
s∈St

Qf (s)
. (12)
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While all the updates described above are of a somewhat heuristic nature, the stochastic
gradient ascent and the cross-entropy methods allow to derive parameters update rules
in a more systematic manner, as we show in the next two subsections.

3.3. The stochastic gradient ascent update

In section 2.1 an update rule for the stochastic gradient was derived:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ ln PT t (s), (13)

where St is the sample at stage t .
As shown in Meuleau and Dorigo (2002), in case the distribution is implic-

itly defined by an ACO-type construction process, parameterized by the vector of the
pheromone values, T , the gradient ∇ ln PT (s) can be efficiently calculated. The follow-
ing calculation is a generalization of the one in Meuleau and Dorigo (2002).

From the definition of ANT_SOLUTION_CONSTRUCTION, it follows that, for s =
〈c1, c2, . . .〉,

PT (s) =
|s|−1∏
k=1

PT
(
ck+1|prefk(s)

)
, (14)

where prefk(s) is the k-prefix of s, and consequently

∇ ln PT (s) =
|s|−1∑
k=1

∇ ln PT
(
ck+1|prefk(s)

)
. (15)

Finally, given a pair of components (i, j) ∈ C2, using equation (10) and assuming dif-
ferentiability of F , it is easy to verify that:

– if i = ck and j = ck+1 then

∂

∂τ(i, j)

{
ln PT

(
ck+1|prefk(s)

)} = ∂

∂τ(i, j)

{
ln

F(τ(i, j))∑
(i,y)∈Jxk

F (τ(i, y))

}

= ∂

∂τ(i, j)

{
ln F

(
τ(i, j)

) − ln
∑

(i,y)∈Jxk

F
(
τ(i, y)

)}

= F ′(τ (i, j))

F (τ(i, j))
− F ′(τ (i, j))∑

(i,y)∈Jxk
F (τ(i, y))

=
{

1 − F(τ(i, j))∑
(i,y)∈Jxk

F (τ(i, y))

}
F ′(τ (i, j))

F (τ(i, j))

= {
1 − PT

(
j |prefk(s)

)}
G

(
τ(i, j)

)
,

where G(·) = F ′(·)/F (·) and the subscript of F was omitted for the clarity of pre-
sentation.
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– if i = ck and j �= ck+1 then (by a similar argument)

∂ ln(PT (ck+1|prefk(s)))

∂τ(i, j)
= −PT

(
j |prefk(s)

)
G

(
τ(i, j)

)
,

– if i �= ck , then PT (ck+1|prefk(s)) is independent of τ(i, j) and

∂ ln(PT (ck+1|prefk(s)))

∂τ(i, j)
= 0.

By combining these results, the following pheromone update rule is derived:

SGA_UPDATE

– ∀s ∈ St,∀(i, j) ∈ s: τ(i, j) ← τ(i, j) + αtQf (s)G(τ(i, j)),

– ∀s = 〈c1, . . . , ck, . . .〉 ∈ St , ∀i = ck , with 1 � k < |s|, ∀j : τ(i, j)

← τ(i, j) − αtQf (s)PT (j |prefk(s))G(τ(i, j)).

Hence, any connection (i, j) used in the construction of a solution is reinforced by an
amount αtQf (s)G(τ(i, j)), and any connection considered during the construction has
its pheromone values evaporated by an amount αtQf (s)PT

(
j |prefk(s)

)
G

(
τ(i, j)

)
. Note

that, if the solutions are allowed to contain loops, a connection may be updated more than
once for the same solution.

In order to guarantee stability of the resulting algorithm, it is desirable to have a
bounded gradient ∇ ln PT (s). This means that a function F , for which G = F ′/F is
bounded, should be used. Meuleau and Dorigo (2002) suggest using F(·) = exp(·),
which leads to G ≡ 1. It should be further noted that if, in addition, Qf = 1/f and
αt = 1, the reinforcement part becomes 1/f as in the original Ant System (Dorigo,
Maniezzo, and Colorni, 1996).

3.4. The cross-entropy update

As we have shown in section 2.2, the CE approach requires solving the following inter-
mediate problem:

Pt+1 = argmax
P∈M

∑
s∈St

Qf (s) ln P(s). (16)

Let us now consider this problem in more details in case of an ACO-type probabilistic
model.

Since at the maximum the gradient must be zero, we have:∑
s∈St

Qf (s)∇ ln PT (s) = 0. (17)

In some relatively simple cases, for example when the solution s is represented by an
unconstrained string of bits of length n, (s1, . . . , sn), and there is a single parameter τi
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for the ith position in the string, such that PT (s) = ∏
i pτi

(si), the equation system (17)
reduces to a set of independent equations:

d ln pτi

dτi

∑
s∈St
si=1

Qf (s) = −d ln(1 − pτi
)

dτi

∑
s∈St
si=0

Qf (s), i = 1, . . . , n (18)

which may often be solved analytically. For example, for pτi
= τi it can be verified that

the solution of equation (18) is simply

pτi
= τi =

∑
s∈St

Qf (s)si∑
s∈St

Qf (s)
(19)

and, in fact, a similar solution also applies to a more general class of Markov chain
models (Rubinstein, 2001).

Now, since the pheromone trails τi in equation (19) are random variables, whose
values depend on the particular sample, we may wish to make our algorithm more robust
by introducing some conservatism into the update. For example, rather than discarding
the old pheromone values, the new values may be taken to be a convex combination of
the old values and the solution of equation (19):

τi ← (1 − ρ)τi + ρ

∑
s∈St

Qf (s)si∑
s∈St

Qf (s)
. (20)

The resulting update is identical to the one used in the hyper-cube framework for ACO
(Blum, Roli, and Dorigo, 2001; Blum and Dorigo, 2004).

However, for many cases of interest, equations (17) are coupled and an analytical
solution is unavailable. Nevertheless, in the actual implementations of the CE method
the update was of the form of equation (19) (with some brief remarks about using equa-
tion (20)) (Rubinstein, 2001), which may be considered as an approximation to the exact
solution of the cross-entropy minimization problem given by equation (8).

Since, in general, the exact solution is not available, an iterative scheme such as
gradient ascent could be employed, as described in section 2.2. As we have shown in the
previous section, the gradient of the log-probability may be calculated as follows:

– if i = ck and j = ck+1 then

∂ ln(PT (ck+1|prefk(s)))

∂τ(i, j)
= (

1 − PT
(
j |prefk(s)

))
G

(
τ(i, j)

)
,

– if i = ck and j �= ck+1 then

∂ ln(PT (ck+1|prefk(s)))

∂τ(i, j)
= −PT

(
j |prefk(s)

)
G

(
τ(i, j)

)
,

– if i �= ck then

∂ ln(PT (ck+1|prefk(s)))

∂τ(i, j)
= 0.
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and these values may be plugged into any general iterative solution scheme of the cross-
entropy minimization problem, for example, the one described by equation (9).

To conclude, we have shown that if we use (19) as a (possibly approximate) solu-
tion of equation (8), the same pheromone update rule as in the hyper-cube framework
for ACO is derived. If otherwise we use a single-step gradient ascent for solving the
problem given by equation (8), we obtain a generalization of the SGA update, in which
the quality function is allowed to change over time.

4. Model-based genetic algorithms

In the “pure” model-based search, as it was described in the introduction, the parame-
terized model is iteratively updated, using the information extracted from the sample.
However, if the whole search history is compressed into a single vector of the model’s
parameters, a lot of useful information may be lost. In order to make a better use of the
previous samples, many existing MBS algorithms use an auxiliary memory, in which
they store some additional information collected during the search. This information is
then used together with the latest sample for updating the model. For example, as we
have seen in section 3.2, some existing ACO algorithms store the cost of the best-so-far
solution or the average of the costs of the recent solutions. Another alternative would
be to store several high-quality solutions encountered during the search. This is exactly
what is being done in the majority of estimation of distribution algorithms (EDAs), re-
cently developed within the evolutionary computation community.

In the following we give a brief overview of some existing EDAs and discuss their
relations to the MBS algorithms described in the previous sections.

4.1. Estimation of distribution algorithms

As already mentioned in section 1, the classical genetic algorithm (GA) can be consid-
ered to be an example of the instance-based approach, in which the search is carried out
by evolving the population of candidate solutions (typically represented by a string of
bits) using selection, crossover and mutation operators (Holland, 1975).

The classical GA approach relies heavily on the assumption that there are some
building blocks from which a good solution can be constructed. Moreover, it is assumed
that with a proper choice of the crossover operator, these blocks will be (implicitly)
detected and maintained in the population, while the selection operator will bias the
search toward low-cost solutions. However, in practice, finding an appropriate crossover
operator turns out to be a difficult task, while using some “general purpose” crossover
operators often leads to poor performance. Another problem is the existence of genetic
drift (Goldberg and Segrest, 1987), that is, a loss of population diversity due to the finite
population size, and, as a result, a premature convergence to sub-optimal solutions.

In order to cope with the finite-population effects and also as an attempt to find
an efficient alternative to the crossover/mutation operators, the estimation of distribution
algorithms (Mühlenbein, Bendisch, and Voigt, 1996) were proposed. These algorithms
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Figure 3. Graphic description of the estimation of distribution algorithms.

generate new solutions using probabilistic models, instead of crossover and mutation,
and may be described using the following generic scheme:

EDA_ITERATION

– Generate new solutions using the current probabilistic model.

– Replace (some of) the old solutions by the new ones.

– Modify the model using the new population.

This scheme, which may be seen as a particular type of MBS with auxiliary memory, is
represented graphically in figure 3.

Different EDAs use different methods for construction/modification of the prob-
abilistic model. However, most of them use the same method for estimating model
parameters – a (possibly weighted) maximum-likelihood estimation. In this respect they
are all closely related to the cross-entropy method described earlier and, as we show in
the following, some of them employ particular forms of CE-type update.

In the remainder of this section we give an overview of existing estimation of dis-
tribution algorithms and discuss their relations with the algorithms presented in the pre-
vious sections of the paper. We consider two major classes of EDAs. The first class
contains the algorithms that use a fixed simple model, which assumes that there are no
interactions between the different string positions, that is, that the assignments to the dif-
ferent positions are independent. We observe that this is a particular kind of ACO-type
model and show that all these algorithms lead to particular forms of ACO-type updates.
The algorithms in the second class allow for dependencies between the positions, and,
consequently, try to infer both the model structure and the model’s parameters. Unlike
the first group, both the models and the update mechanisms used by the algorithms in
the second group are different from the ones used in the ACO framework.

It should be noted that all of the following algorithms were originally formulated
for maximization problems, hence the obvious changes were done in order to translate
them into the minimization setting that we consider in this paper.

4.1.1. Assuming independence between string positions
All the algorithms presented in this section create the new solutions, coded as binary
vectors, by independently generating assignments for every position, with the ith posi-
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tion having probability pi to take value 1. This may be considered a particularly simple
ACO-type model, in which the components correspond to bit assignments, pheromone
trails are associated with components, and there are no constraints.

The idea was initially proposed in Syswerda (1993), where the necessary probabili-
ties were calculated as weighted frequencies over the population and randomly perturbed
in order to simulate mutation. Apart from the mutation component, which seems to be
an historical artifact borrowed from the classical GA and absent in later algorithms, this
method is clearly an instance of the MBS with auxiliary memory in the form of the solu-
tion population, which uses the HCF-ACO-type (or, equivalently, CE-type) update with
learning rate ρ = 1 for constructing the probabilistic model.

A similar approach was used in the univariate marginal distribution algorithm
(UMDA) (Mühlenbein, Bendisch, and Voigt, 1996), the only difference being that in
UMDA explicit classical selection procedures were used instead of giving weights to the
solutions.

This idea is pushed even further in the population-based incremental learning
(PBIL) algorithm (Baluja, 1994; Baluja and Caruana, 1995), where the population is
completely replaced by a probability vector,13 p̄, with all pi’s initially set to 0.5. At
every iteration a sample S is generated using the probability vector and then the proba-
bility vector is updated as follows:

PBIL_UPDATE

– Sbest ← a fixed number of lowest cost solutions from S,

– for every s ∈ Sbest

pi ← (1 − ρ)pi + ρsi ,

where ρ is the learning rate.
As it can be easily seen, this update is virtually identical to the HCF-ACO update

with the quality function being the indicator for the lowest cost solutions. In particular,
if only the best solution is used for the update, HCF-ACO with iteration-best update is
obtained.

Finally, the compact genetic algorithm (cGA) (Harik, Lobo, and Goldberg, 1999)
was proposed as a modification of PBIL, intended to represent more faithfully the dy-
namics of the real genetic algorithm. Specifically, cGA simulates a genetic algorithm,
with population size n and steady-state binary tournament selection, in the following
way. At every iteration two solutions, a and b, are generated using the probability vec-
tor, and then the probability vector is updated as follows (assuming, without loss of
generality, that a has lower cost):

CGA_UPDATE

– if ai �= bi then

if ai = 1 then pi ← pi + 1/n,
else pi ← pi − 1/n.
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This basic scheme can be extended to larger samples. Two variants were proposed
in (Harik, Lobo, and Goldberg, 1999). In the first variant, intended to simulate tourna-
ments of size m, a sample S of size m is generated and the basic update above is used for
every pair in the set {(sbest , b) | b ∈ S, b �= sbest }. In the second variant, a “round-robin
tournament” is simulated, that is, the basic update is used for every pair of solutions
from the sample.

Note that the basic cGA update can also be written in ACO-like form as:

pi ← pi + 1

n
(ai − bi). (21)

Consequently, it can be shown that the update for “tournament of size m” cGA can be
written as:

pi ← pi + ρ
∑
s∈S

Q(s)si − ρ

m

∑
s∈S

si , (22)

where ρ = m/n and

Q(s) =
{

1 if s = sbest ,
0 otherwise.

(23)

For the “round-robin tournament” cGA, it can be shown that the update can also be
described by equation (22), with ρ = m(m + 1)/n and

Q(s) = 2 · rank(s)

m(m + 1)
, (24)

where the highest rank, m, is assigned to sbest .
It can be easily verified that these two updates are virtually identical to the HCF-

ACO iteration-best and rank-based updates, respectively. The only difference between
cGA and HCF-ACO is in the form of the evaporation factor. In cGA it is equal to
ρ

m

∑
s∈S si , whereas in HCF-ACO it is equal to ρpi , which is simply the expected value

of the former.

4.1.2. Modeling dependencies between string positions
All the algorithms described in section 4.1.1 assumed a fixed model for the solutions’
distribution, namely independence between assignments at different positions, and pro-
posed different rules for calculating the parameters of the model. However, it may well
happen that certain components produce good solutions only in conjunction with others,
hence there may be strong dependencies within the population distribution.

Once the algorithm tries to model these a priori unknown dependencies between
the solution constituents, the simple fixed structure has to be abandoned and the correct
structure needs to be inferred together with the model’s parameters.14

In the first EDAs that abandoned the independence assumption, only pairwise in-
teractions were covered. The mutual-information-maximizing input clustering (MIMIC)
algorithm (De Bonet, Isbell, and Viola, 1997), which was already mentioned earlier in
the context of the cross-entropy method, maintains a population of the best solutions
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seen so far and constructs a chain distribution as a model of population by minimiz-
ing the Kullback–Leibler divergence between the model and the population distribu-
tion. Since finding the optimal chain distribution is an NP-hard problem, MIMIC uses
a greedy search procedure for constructing the chain. For a given structure, the con-
ditional probabilities (which are the parameters of the model) are estimated using the
sample frequencies.

Baluja and Davies (1997) extend MIMIC in two important respects. First, they use
a broader class of dependency trees instead of chain distributions, and, consequently,
they are able to present an exact polynomial algorithm, rather than a greedy approxi-
mation. Second, instead of explicitly storing the population, the algorithm’s history is
summarized in a matrix of pairwise joint frequencies (with more weight given to recent
instances), which are later used for optimal tree construction.

A somewhat more heuristic approach is taken in the bivariate marginal distribution
algorithm (Pelikan and Mühlenbein, 1999), where the population is modeled using a
forest, that is, a set of mutually independent dependency trees.15 The model structure
is determined using a Pearson’s χ-square test (Marascuilo and McSweeney, 1977) for
detecting dependencies.

The attempt to obtain yet more general models led to two different approaches. The
first, the extended compact genetic algorithm (Harik, 1999), is a brute-force generaliza-
tion of the UMDA, with the population modeled using a marginal product model. In the
marginal product model the variables are divided into a number of independent clusters,
while within a cluster any distribution is permitted. The cluster structure is determined
by greedily optimizing the minimum description length metric (Mitchell, 1997) and the
inter-cluster distributions are estimated using the population frequencies. The second
approach, which is a generalization of ideas behind the tree-based algorithms described
earlier, is to use a Bayesian network for modeling the population (Pelikan, Goldberg,
and Cantú-Paz, 1998; Etxeberria and Larrañaga, 1999), with the network structure de-
termined using some standard techniques for Bayesian network learning (Heckerman,
1995).

To summarize, all the algorithms described in this section use probabilistic models
that are different from the one employed in ACO. Various criteria are used for choosing
the model structure, but in all these algorithms a (weighted) maximum-likelihood (or,
equivalently, minimal cross-entropy) method is used for estimating the model’s parame-
ters.

5. Conclusions

During the last decade a new approach for solving combinatorial optimization problems
has been emerging. This approach, which we refer to as model-based search (MBS),
tackles the combinatorial problem by sampling the solution space using a probabilistic
model, which is adaptively modified as the search proceeds.

We observe that any successful algorithm belonging to the MBS framework is char-
acterized by two components: a probabilistic model, which should allow an efficient
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generation of the candidate solutions, and a model update rule, which allows to con-
centrate the sampling in the high-quality regions. Accordingly, we describe two general
approaches, the stochastic gradient ascent and the cross-entropy methods, for updating
the model’s parameters and we observe some previously unknown relationships between
the two methods. Further, we demonstrate how the stochastic gradient ascent and the
cross-entropy methods can be applied in the context of ant colony optimization which
is a typical representative of the MBS approach. Moreover, we also show that in some
cases the resulting updates coincide with existing ACO updates. Finally, we show that
estimation of distribution algorithms, proposed in the field of genetic algorithms, also
fall into the MBS framework, and that they are closely related to the other algorithms
considered in this paper.

While sharing a lot of similar traits, each of the methods considered in this paper
has some distinctive characteristics. Consequently, many interesting questions arise as
to whether these peculiarities are contributing to the algorithm’s performance.

For example, some of the estimation of distribution algorithms, which are the sub-
ject of section 4, contain at least one of the two following important components, ab-
sent in other approaches considered in this paper. The first is a population of solutions,
which evolves throughout the search process and is used for constructing the probabilis-
tic model. The other is the use of a flexible model structure, which is determined using
an appropriate learning algorithm. However, it is still unclear whether either of these
components gives any advantage in solving real-life problems. In addition, to the best of
our knowledge, all the dependency-learning EDAs described in section 4.1.2 have been
applied only to unconstrained optimization problems, which is a rather atypical situation
in combinatorial optimization.16 It remains to be seen whether similar algorithms can be
designed for a more general setting. It should be further noted that, if a flexible model
structure is shown to be beneficial in model-based search, some new model-selection
rules should probably be used. The use of general purpose model-selection rules, bor-
rowed from the machine learning field, seems to be inappropriate in the optimization
context, since complex models are usually computationally more expensive, hence a
stronger (than in generic learning) bias toward simpler models should probably be im-
posed.

Another interesting research direction, suggested by the approach presented in
Baluja and Davies (1997), is to use a collection of sufficient statistics rather than a pop-
ulation, for the construction of the probabilistic model. This can be seen as a kind of
two-stage learning procedure, where the statistics are learned incrementally, in a manner
similar to ACO, but the actual (second-stage) model is re-constructed in every iteration
using the first-stage statistics instead of raw samples.

Finally, the choice of the quality function, which provides a link between the origi-
nal cost function and the model update rule, clearly has a crucial effect on the algorithms’
dynamics. Some of the algorithms described in this paper use iteration-independent
quality functions, while others adapt the quality function based on the search history.
However, the issue of appropriate quality function choice is still poorly understood and
is clearly an interesting future research direction.
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Evaluating the utility of the different characteristics of the MBS algorithms clearly
requires a serious experimental work. A first step in this direction was made in Zlochin
and Dorigo (2002), where several MBS algorithms were rigorously compared over a
class of MAX-SAT problems.

To conclude, considering all these algorithms within a common general framework
provides a better understanding of what are the important parts of the algorithm and what
is just an historical artifact due to a particular background of its proponents. Hopefully,
the results presented in this paper will facilitate cross-fertilization between the consid-
ered model-based search methods and, perhaps, provide useful guidelines for designing
new efficient optimization algorithms.
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Notes

1. There is, however, a rather close connection between these two usages of the term “model,” as the
model adaptation in combinatorial optimization may be considered as an attempt to model (in the
reinforcement learning sense) the structure of the “promising” solutions.

2. The obvious changes must be done if a maximization problem is considered.
3. The model’s structure may be fixed in advance, with solely the model’s parameters being updated, or

alternatively, the structure of the model may be allowed to change as well.
4. Technically, the smoothness assumption means that the function is continuously differentiable.
5. For the treatment of further details, we refer the interested reader to the original works of Rubinstein

(1999a).
6. Similar results can be shown for many time-dependent quality functions.
7. As a simple example, consider the case where M contains all distributions over the binary variables

x, y such that x and y are independent, and the quality function is Q(x, y) = 2, if x = y = 0,
and 1 otherwise. If, for example, P0 is the uniform distribution (hence in M), then P̂ (x, y) = 2

5 , if

x = y = 0, and 1
5 otherwise, and it can be easily verified that P̂1 is not in M.

8. This kind of quality function was also used in (De Bonet, Isbell, and Viola, 1997).
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9. It should be noted that the same type of model was later (although independently) used in the CE
framework under the name “associated stochastic network” (Rubinstein, 1999a, 2001).

10. How this mapping can be done in practice has been described in a number of earlier papers on the ACO
metaheuristic; see, for example, Dorigo and Di Caro (1999), Dorigo, Di Caro, and Gambardella (1999).

11. Pheromone trails can be associated to components, connections, or both. In the following, unless stated
otherwise, we assume that the pheromone trails are associated to connections, so that τ(i, j) is the
pheromone associated to the connection between components i and j . It is straightforward to extend
the algorithms to the other cases.

12. This situation may be prevented by allowing artificial ants to build infeasible solutions as well. In such
a case an infeasibility penalty term is usually added to the cost function. However, it should be noted
that in most settings ACO was applied to, the dead-end situation does not occur.

13. In this sense PBIL belongs to the MBS approach in its “pure” form and is, in fact, one of the first
published algorithms belonging to the MBS approach.

14. Note, however, that in ACO models, pairwise dependencies may be learned implicitly, when the
pheromone trails are associated with the connections between the components. Hence ACO provides
an alternative way of learning pairwise dependencies, while still maintaining a fixed-structure model.

15. While seemingly more general, this class is in fact equivalent to the class of dependency trees, as any
forest can be represented using a tree with degenerate links.

16. Although for some problems sophisticated schemes for coding the solutions as unconstrained binary
strings have been devised (e.g., see (Baluja, 1994)), all the useful dependencies between the solution
components may be hidden by these coding schemes.
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