
Model-Based Search for Combinatorial
Optimization: A Comparative Study

Mark Zlochin1,� and Marco Dorigo2

1 Dept. of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel
zmark@cs.technion.ac.il

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
mdorigo@ulb.ac.be

Abstract In this paper we introduce model-based search as a unifying
framework accommodating some recently proposed heuristics for com-
binatorial optimization such as ant colony optimization, stochastic gra-
dient ascent, cross-entropy and estimation of distribution methods. We
discuss similarities as well as distinctive features of each method, propose
some extensions and present a comparative experimental study of these
algorithms.

1 Introduction

The necessity to solve NP-hard problems, for which the existence of efficient
exact algorithms is highly unlikely, has led to a wide range of heuristic algo-
rithms that implement some sort of search in the solution space. These heuristic
algorithms can be classified, similarly to what is done in the machine learning
field [15] , as being either instance-based or model-based. Most of the classical
search methods may be considered instance-based, since they generate new can-
didate solutions using solely the current solution or the current “population”
of solutions. Typical representatives of this class are genetic algorithms or local
search and its variants, such as, for example, simulated annealing and iterated
local search.On the other hand, in the last decade several new methods, which
may be classified as model-based search (MBS) algorithms, have been proposed.
In MBS algorithms, candidate solutions are generated using a parameterized
probabilistic model that is updated using the previously seen solutions in such
a way that the search will concentrate in the regions containing high quality
solutions.

In [20], several MBS approaches, such as ant colony optimization (ACO)
metaheuristic [6], stochastic gradient ascent (SGA) [16, 12], cross-entropy (CE)
method [18] and estimation of distribution algorithms (EDAs) [11], were consid-
ered within a common framework, and analysis of their similarities as well as
their distinctive features was provided.

� This work was carried out while the author was at IRIDIA, Université Libre de
Bruxelles, Belgium.

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 651–661, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

652 Mark Zlochin and Marco Dorigo

In this paper we provide a detailed comparative analysis of these algorithms,
in the context of unconstrained binary coded problems. In addition to the an-
alytical comparison, we also present an experimental comparison of the MBS
methods discussed in this paper using the MAXSAT problem as a test bed.

2 Model-Based Search

Let us consider a minimization problem(S, f), where S is the set of feasible
solutions, f is the objective function, which assigns to each solution s ∈ S a cost
value f(s). The goal of the minimization problem is to find a feasible solution of
minimal cost.

At a very general level, the model-based search approach attempts to solve
this minimization problem by repeating the following two steps:

– Candidate solutions are constructed using some parameterized probabilistic
model, that is, a parameterized probability distribution over the solution
space.

– The candidate solutions are used to modify the model in a way that is deemed
to bias future sampling toward high quality solutions.

For any algorithm belonging to this general scheme, two components, corre-
sponding to the two steps above, need to be instantiated:

– A probabilistic model that allows an efficient generation of the candidate
solutions.

– A rule for updating the model’s parameters.

In this paper we restrict our attention to those problems whose solutions can
be coded as unconstrained binary strings, although ACO, SGA and CE can be
applied in a more general context as well. A more general discussion about these
methods and the relations between them is given in [20]. All of the methods
described in this paper employ the following probabilistic model for generating
candidate solutions:

– Every bit position, 1 ≤ i ≤ n, has an associated parameter τi.
– The bits, si, are generated independently, with P (si = 1) = F (τi)1.

The parameter vector and the resulting probability distribution over the solution
space are denoted by T and PT (·) correspondingly. The parameters are typically
initialized in such a way that the initial distribution is a uniform one.

It should be noted that several algorithms that fall within the MBS frame-
work and that allow for dependencies between the bit positions have been de-
scribed in the literature (e.g., MIMIC [3], BOA [14] or variants of ACO [17]).
Some of these algorithms were reported to yield certain improvement over the
simpler algorithms, which generate bits for different positions independently.
1 In fact, all the algorithms considered in this paper, except for SGA, use simply

F (τi) = τi.

Model-Based Search for Combinatorial Optimization 653

However, these comparisons were performed on a basis of equal number of iter-
ations, rather than equal computational time. On the other hand, our personal
experience, as well as some results in the literature (e.g., [17]), suggest that the
considerable computational overhead imposed by using a more complex model
renders the “dependencies learning” algorithms uncompetitive. Consequently,
these algorithms are not considered in this paper.

3 The Algorithms

In this section we give a brief description of several existing MBS algorithms
and discuss the relationships among them. The reader is referred to [20] and
references therein for a more detailed discussion. It should be emphasized that
the probabilistic model employed by all these algorithms is the same, hence the
only difference among them is in the way the parameters are interpreted and
modified.

3.1 Ant Colony Optimization

One well-established approach that belongs to the MBS framework is the ant
colony optimization (ACO) metaheuristic. In ACO algorithms, solutions are gen-
erated using stochastic procedures, called artificial ants, which construct them
by iteratively adding solution components. The components are chosen with a
probability which is a function of so called pheromone values associated to com-
ponents. After constructing the solutions, the pheromone values associated with
the components belonging to good solutions are increased. This metaheuristic
has been successfully applied to the solution of numerous NP-hard problems
[6] as well as to time-varying stochastic optimization problems [4]. A particu-
lar variant of this metaheuristic, called Hyper-Cube (HC) ACO [2], has been
recently proposed in the context of combinatorial problems with binary coded
solutions. In HC-ACO the pheromones are bounded between zero and one and
the pheromone update rule can be described by the following general scheme:

HC ACO Update

τi ← (1− ρ)τi + ρ

∑
s∈St

Qf (s)si∑
s∈St

Qf (s)
. (1)

where St is the sample in the t-th iteration, ρ, 0 ≤ ρ < 1, is the learning rate
and Qf (s|S1, . . . , St) is some “quality function”, which is typically required to be
non-increasing with respect to f and is defined over the “reference set” Ŝt.

In the considered case of unconstrained problems, the pheromones are equal
to the marginal probabilities of the corresponding positions, with the bits at
different positions being assigned independently2.
2 In a preliminary study, we have also considered using heuristic information, similarly

to [17]. However, the improvement in performance was negligible, when compared to
the improvement obtained with local search. Therefore, it was decided to limit our
discussion in this paper to the simpler version of HC-ACO.

654 Mark Zlochin and Marco Dorigo

Different ACO algorithms may use different quality functions and reference
sets. For example, in the very first ACO algorithm — Ant System [5]— the
quality function was 1/f(s) and the reference set Ŝt = St. In a more recently
proposed scheme, called iteration best update [7], the reference set was a single-
ton containing the best solution within St (if there were several iteration-best
solutions, one of them was chosen randomly). In the global-best update [7, 19],
the reference set contained the best among all the iteration-best solutions (and
if there was more than one global-best solution, the earliest one was chosen).

InMAX–MIN Ant System [19], maximum and minimum pheromone trail
limits were introduced. With this modification the probability to generate any
particular solution is kept above some positive threshold, which helps prevent-
ing search stagnation and premature convergence to suboptimal solutions. For
HC-ACO, this approach translates into the requirement that the marginal prob-
abilities are kept within the range [ε, 1 − ε], where ε ≥ 0 is the parameter that
controls the amount of exploration.

It is worth noting that, as shown in [8], for learning rate ρ = 1 and for
a particular choice of the quality function, the HC-ACO is equivalent to the
cross-entropy method [18].

3.2 The Stochastic Gradient Ascent Method

While all the updates described above are of a somewhat heuristic nature, the
SGA method allows to derive the parameters update rule in a more principled
manner [12].

The SGA method replaces the original optimization problem with the fol-
lowing equivalent continuous maximization problem:

T ∗ = argmax
T

E(T), (2)

where E(T) = ET Qf (s) and ET denotes expectation with respect to PT . This
maximization problem is, in turn, tackled using stochastic gradient ascent [16]:

T t+1 = T t + αt

∑
s∈St

Qf (s)∇ lnPT t(s), (3)

where St is the sample at iteration t.
In [8] it was demonstrated how the required gradient ∇ lnPT t(s) can be

calculated for a general class of probabilistic models. For the model we consider
in this paper, namely binary variables without dependencies between different
positions, it can be verified that the resulting parameter update rule is:

SGA Update

τi ← τi + αt

∑
s∈St

Qf (s)
F ′(τi)

si · F (τi)− (1− si) · (1− F (τi))
(4)

In order to guarantee the stability of the resulting algorithm, it is desirable to
have a bounded gradient ∇ lnPT (s). For this reason, the use of the “natural”

Model-Based Search for Combinatorial Optimization 655

representation F (τi) = τi is inappropriate. Instead, we suggest using the logistic

function F (τi) =
1

1 + exp(−τi)
. It can be shown that in this case the update

rule becomes:

τi ← τi − αt

∑
s∈St

Qf (s)F (τi) + αt

∑
s∈St

Qf (s)si, (5)

hence the gradient is indeed bounded.
While the SGA method was originally formulated for iteration-independent

quality functions, in [8] it was demonstrated that an alternative derivation of
the SGA update through the CE method justifies the use of iteration-dependent
quality functions as well. For example, one may use the indicator function
Qf (s) = I(f(s) < θt), where θt is a threshold value set to some percentile (say,
lower 10%, for minimization problems) of the cost distribution at the last itera-
tion. For this quality function, the expectation ET Qf (s) equals the probability
of generating solutions, whose cost is below the threshold θt, and the threshold
is modified adaptively. The update based on this function is henceforth referred
to as “top-quality” update.

Similarly to HC-ACO, we may choose to bound the marginal probabilities in
order to increase the amount of exploration. In order to keep the marginal prob-
abilities between ε and 1− ε, with the logistic function representation described
above, the pheromones should be kept in the range [ln(ε

1−ε), ln(1−ε
ε)].

3.3 Estimation of Distribution Algorithms

As already mentioned in Section 1, the classical genetic algorithms can be con-
sidered an example of the instance-based approach, in which the search is carried
out by evolving the population of candidate solutions using selection, crossover
and mutation operators. Recently, several new algorithms, which generate new
solutions using probabilistic models instead of crossover and mutation, have been
proposed within the evolutionary computation community.

In the population-based incremental learning (PBIL) algorithm [1], the pop-
ulation is replaced by a probability vector p̄, with all pi’s initially set to 0.5. At
every iteration a sample S is generated using the probability vector and then
the probability vector is updated as follows:

PBIL Update
– Stop ← a fixed number of lowest cost solutions from S,
– for every s ∈ Stop

– pi ← (1− ρ)pi + ρsi,
where ρ is the learning rate.

As it can be easily seen, this update is virtually identical (up to rescaling of the
learning rate) to the HC-ACO with top-quality update. In particular, in case only
the best solution is used for the update, HC-ACO with iteration-best update is
obtained. In [1] two additional updates were suggested. The first was intended
to make use of “negative” examples, shifting the probability vector towards the
best solution in the positions where it differs from the worst solution:

656 Mark Zlochin and Marco Dorigo

– if sbest
i �= sworst

i then
pi ← (1− ρnl)pi + ρnls

best
i ,

where sbest, sworst are respectively the best and the worst solutions in S and ρnl

is the so-called “negative learning rate”. In the second update, the probability
vector was randomly perturbed, with an effect similar to that of mutation in
standard GA:

– For every i, modify pi ← (1− ρmut)pi + ρmutdi, with probability pmut.

where ρmut is the “mutation shift”, and, for every i, the mutation direction di

is 0 or 1, with probability 1/2 each. Both updates were performed in addition
to the basic PBIL update described above.

The compact genetic algorithm (cGA) [9] was proposed as a modification of
PBIL, intended to represent more faithfully the dynamics of the real GA algo-
rithm. At every iteration, two solutions, a and b, are generated using a probability
vector, and then the probability vector is updated as follows (assuming, without
loss of generality, that a has lower cost):

cGA Update

– if ai �= bi then
if ai = 1 then pi ← pi + 1/n,

else pi ← pi − 1/n,
where n is a parameter, equivalent to the population size in the classical GA.

This basic scheme can be extended to larger samples. Two variants were proposed
in [9]. In the first variant, intended to simulate a tournament of size m, a sample S
of size m is generated and the basic update above is used for every pair in the set
{(sbest, b)|b ∈ S, b �= sbest}. In the second variant, a “round-robin tournament”
is simulated, that is, the basic update is used for every pair of solutions from the
sample.

It can be shown that the update for “tournament of size m” cGA can be
written as:

pi ← pi + ρ
∑
s∈S

Q(s)si −
ρ

m

∑
s∈S

si, (6)

where ρ = m
n and

Q(s) =
{

1 , s = sbest

0 , otherwise. (7)

For the “round-robin tournament” cGA, it can be shown that the update can
also be described by (6), with ρ = m(m+1)

n and Q(s) = 2·rank(s)
m(m+1) (the highest

rank, m, is assigned to sbest). It can be easily verified that these two updates
are virtually identical to the HC-ACO iteration-best and rank-based updates
respectively. The only difference between cGA and HC-ACO is in the form of
the evaporation factor. In cGA it is equal to ρ

m

∑
s∈S si, whereas in HC-ACO it

is equal to ρpi, which is simply the expected value of the former.

Model-Based Search for Combinatorial Optimization 657

4 Empirical Comparison

In this section we describe the results of the empirical comparison between the
MBS algorithms described above, using MAXSAT as a test bed. MAXSAT is
the optimization variant of SAT, the first problem which was shown to be NP-
complete. The weighted MAXSAT problem can be formulated as follows. Given k
clauses C1, . . . , Ck over n binary variables x1, . . . , xn, and the weights w1, . . . , wk,
find an assignment which maximizes the sum of the weights of the satisfied
clauses.

4.1 Comparison Setting

The comparison was carried out using randomly generated weighted MAXSAT
instances from the SATLIB MAXSAT Benchmark Collection [10]. The bench-
mark set contains three groups of problems, with 100, 500 and 1000 variables
and 500, 5000 and 10000 clauses respectively. Each group contains 10 instances.

The algorithms were evaluated using three different running times. For every
problem size, three stopping times, T1, T2 and T3, were chosen as the time that it
takes for HC-ACO with population size 10 to perform 50, 200 and 1000 iterations
respectively3.

All of the algorithms described above have one or more parameters, whose
choice can clearly affect the performance of the algorithm. Moreover, the optimal
parameter setting may depend on the available computational time (e.g., with
shorter times a higher learning rate and smaller samples should be more appro-
priate) and the problem size. Since to-date there are no established methods for
the automatic tuning of metaheuristics’ parameters, it was decided to use one
problem out of every group for tuning the algorithms, and the other 9 for the
testing. Specifically, each algorithm was run with a variety of parameter settings
(described below), 10 times for each setting, and for every algorithm/problem-
size/running-time combination, the configuration with the best average perfor-
mance was chosen. This automatic tuning procedure insures that the compari-
son is not biased in favor of one of the algorithms. The separation between the
training problem and the test problems guarantees the statistical validity of the
performance estimates4.

For all the algorithms, we considered learning rate ρ ∈ {0.03, 0.1, 0.3, 1}, and
sample sizes |S| ∈ {10, 50, 200}. In HC-ACO and SGA we considered pheromone
bounds with ε ∈ {0, 0.01, 0.1}. For PBIL, the additional parameters were: “neg-
ative learning rate” ρnl ∈ {0, ρ/10, ρ}, mutation probability pmut ∈ {0, 0.01, 0.1}
and mutation shift ρmut ∈ {0.01, 0.1}.
3 It should be noted that, due to extensive code reuse in the algorithms’ implementa-

tion, the running times for all the algorithms (without the local search) were virtually
the same.

4 If, for example, we chose the best performing configuration for every problem indi-
vidually, the resulting average performance would no longer be an unbiased estimate
of the actual expected performance.

658 Mark Zlochin and Marco Dorigo

For HC-ACO, SGA and PBIL we have tested both the iteration-best and
the top-quality updates. We have also tested separately the basic CE method,
which corresponds to the top-quality HC-ACO algorithm with learning rate 1
and no bounds on probabilities. Finally, both “ single tournament” (cGAst) and
“round-robin tournament” (cGArr) versions of the cGA method were tested.

Furthermore, for every algorithm described above, we have also considered
a hybrid version, in which the update was based on the population of the elite
solutions, that is the highest quality solutions found so far, rather than on the last
sample. Finally, all the algorithms (including the hybrid versions) were tested
both with and without the use of the local search5.

4.2 Comparison Results

Every algorithm was run 30 times on every problem with the parameter setting
determined using the tuning procedure described in the previous section. Since
the optimal solution costs for the benchmark problems used in this study are
not known, the cost of the best solution found by any of the algorithms in all
the test runs were used as estimates. The performance of a single run of the
algorithm was evaluated as:

f̃ =
fbest − fopt

E{f} − fopt
, (8)

where fbest is the cost of the best solution found during the run, fopt is the
estimate of the optimal solution cost and E{f} is the expected cost of the solu-
tion generated from a uniform distribution6. Note that, for a random solution,
E{f̃} = 1, hence the results coming from different problems are put on a same
scale, which allows meaningful averaging over several problems. The results of
the comparison are summarized in Tables 1 and 2. Every column corresponds
to a comparison with a particular problem size and stopping time. The aver-
age score of the empirically best algorithm is printed in bold typeface and the
results, which are worse than the best one with 95% confidence7, are shown in
italic. Since the use of the local search leads to a drastic improvement of perfor-
mance, the results in Table 2 are multiplied by 100 for clarity of presentation.
The superscript “h” denotes the hybrid versions of the algorithms, augmented
with population, and “n” denotes the problem size, measured by the number of
variables.

When local search is not used, in most cases the “round-robin” tournament
cGA produces significantly better results. Still, even the performance of cGA
5 Although using local search is not a common practice in the EDA research field, the

results reported next indicate that it certainly should be considered in the future.
6 Since, for any clause C with d variables, the proportion of non-satisfying assignments

is 1/2d, it can be verified that, for the 3-MAXSAT problems used in the benchmarks,
E{f} = 7

8

∑k
j=1 wj .

7 The statistical analysis was performed using Tukey-Kramer test, which is a modifi-
cation of the t-test, adapted for the multiple comparisons.

Model-Based Search for Combinatorial Optimization 659

Table 1. Average performance of the algorithm without the local search.

n=100 n=500 n=1000
T1 T2 T3 T1 T2 T3 T1 T2 T3

CE 0.2561 0.1294 0.1033 0.5567 0.4870 0.2026 0.6642 0.5795 0.2585
CEh 0.2541 0.1497 0.1021 0.5646 0.4854 0.1993 0.6676 0.5784 0.2586
HC-ACOtop 0.2039 0.1230 0.0778 0.5567 0.2979 0.1547 0.6439 0.4251 0.2234
HC-ACOh

top 0.1843 0.1050 0.0714 0.5138 0.3094 0.1554 0.6301 0.4288 0.2387
HC-ACObest 0.2098 0.1336 0.0762 0.5676 0.3358 0.1670 0.6695 0.4636 0.2503
HC-ACOh

best 0.1980 0.1292 0.1063 0.5558 0.3433 0.1840 0.6719 0.5020 0.3625
SGAtop 0.2613 0.1370 0.0879 0.5398 0.3160 0.1588 0.6417 0.4184 0.2153
SGAh

top 0.2349 0.1330 0.0773 0.5397 0.3139 0.1476 0.6475 0.4268 0.2101
SGAbest 0.2692 0.1437 0.0808 0.5804 0.3473 0.1625 0.6854 0.4556 0.2242
SGAh

best 0.2709 0.1409 0.1065 0.6005 0.3694 0.1640 0.7049 0.4973 0.2350
PBILtop 0.2311 0.1545 0.0464 0.5058 0.4015 0.1549 0.6063 0.4816 0.2266
PBILh

top 0.2868 0.1790 0.1038 0.6613 0.3991 0.2133 0.7300 0.4731 0.2491
PBILbest 0.2837 0.1206 0.0504 0.5658 0.3072 0.1415 0.6948 0.4380 0.2554
PBILh

best 0.3214 0.1925 0.1094 0.7399 0.4458 0.1576 0.7900 0.5169 0.2635
cGArr 0.19490.0979 0.0746 0.41680.26060.1086 0.53950.39470.1528
cGAh

rr 0.4625 0.2244 0.1339 0.7500 0.6292 0.4225 0.8163 0.7252 0.5229
cGAst 0.3007 0.1455 0.0814 0.5891 0.3391 0.1535 0.6816 0.4561 0.2498
cGAh

st 0.4627 0.3715 0.3307 0.7687 0.7070 0.6485 0.8351 0.7862 0.7311

is relatively poor (recall that the expected performance score of a randomly
generated solution is 1). The use of local search leads to an improvement of
almost two orders of magnitude and there seems to be almost no significant
differences between the algorithms in this case (note, however, that cGA is often
significantly worse than the others). We hypothesize that the differences among
the algorithms with the local search could be just an artifact of the particular
tuning procedure which we use, rather than an evidence of the advantage of one
of the methods. This is the topic of ongoing research.

5 Conclusions

During the last decade a new approach for solving combinatorial optimization
problems has been emerging, as already observed in [13]. This approach, which
we refer to as model-based search (MBS), tackles the combinatorial optimiza-
tion problem by sampling the solution space using a probabilistic model, which
is adaptively modified as the search proceeds. In this paper we presented a
comparative analysis of several existing MBS methods, which construct binary
coded solutions by generating every bit independently. Our theoretical analysis
revealed considerable structural similarity among these algorithms, and the em-
pirical comparison showed that also the actual performance of the algorithms is
quite similar (especially, when the algorithms are hybridized with local search).
In the future we hope to extend our analysis to a more general class of MBS
algorithms and to compare these algorithms on different types of combinatorial
optimization problems.

660 Mark Zlochin and Marco Dorigo

Table 2. Average performance (multiplied by 100) of the algorithm with the local
search.

n=100 n=500 n=1000
T1 T2 T3 T1 T2 T3 T1 T2 T3

CE 0.1816 0.0300 0.0000 0.4199 0.2416 0.1173 0.8352 0.4494 0.2125
CEh 0.2296 0.0216 0.0000 0.4264 0.2029 0.1460 0.7944 0.4586 0.1536
HC-ACOtop 0.1809 0.0057 0.0016 0.4810 0.2055 0.0817 0.8352 0.3266 0.1203
HC-ACOh

top 0.2331 0.0079 0.0023 0.5066 0.2124 0.0895 0.8440 0.4586 0.0857
HC-ACObest 0.1303 0.0078 0.0023 0.4846 0.2207 0.0728 0.9838 0.3876 0.1811
HC-ACOh

best 0.1536 0.0096 0.0070 0.4951 0.2160 0.0713 0.9884 0.4991 0.1324
SGAtop 0.1233 0.00670.0000 0.4324 0.2094 0.0823 0.8354 0.3491 0.1247
SGAh

top 0.1934 0.00480.0000 0.42980.15480.0485 0.8230 0.3433 0.1194
SGAbest 0.1573 0.0039 0.0054 0.6292 0.2404 0.0634 0.8929 0.5087 0.1416
SGAh

best 0.2104 0.0189 0.0031 0.6242 0.2194 0.1015 0.9078 0.3883 0.1425
PBILtop 0.15860.0017 0.0024 0.4844 0.1899 0.1107 0.83530.2925 0.1113
PBILh

top 0.1729 0.0054 0.0008 0.4472 0.1973 0.1203 0.7821 0.3026 0.1124
PBILbest 0.1606 0.0110 0.0066 0.4292 0.1771 0.0673 0.9078 0.4275 0.1288
PBILh

best 0.1392 0.0192 0.0023 0.4734 0.2313 0.1249 0.9074 0.4095 0.1537
cGArr 0.1737 0.01370.0000 0.6502 0.2937 0.0792 1.3845 0.5153 0.1508
cGAh

rr 0.1580 0.00860.0000 0.6792 0.2269 0.0503 1.4152 0.6443 0.1931
cGAst 0.1600 0.0257 0.0047 0.6212 0.2673 0.1198 0.9264 0.4903 0.2114
cGAh

st 0.1568 0.0248 0.0031 0.6713 0.2953 0.1368 0.9054 0.6220 0.2843

Acknowledgments

Mark Zlochin is supported through a Training Site fellowship funded by the Im-
proving Human Potential (IHP) programme of the Commission of the European
Community (CEC), grant HPRN-CT-2000-00032. Marco Dorigo acknowledges
support from the Belgian FNRS, of which he is a Senior Research Associate.
More generally, this work was partially supported by the “Metaheuristics Net-
work”, a Research Training Network funded by the Improving Human Potential
programme of the CEC, grant HPRN-CT-1999-00106. The information provided
in this paper is the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for any use that might
be made of data appearing in this publication.

References

1. S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In Proceedings of ICML’95, pages 38–46. Morgan Kaufmann Publishers,
Palo Alto, CA, 1995.

2. C. Blum, A. Roli, and M. Dorigo. HC–ACO: The hyper-cube framework for Ant
Colony Optimization. In Proceedings of MIC’2001, volume 2, pages 399–403, Porto,
Portugal, 2001.

3. J. S. de Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimat-
ing probability densities. In Proceedings of NIPS’97, pages 424–431. MIT Press,
Cambridge, MA, 1997.

Model-Based Search for Combinatorial Optimization 661

4. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for commu-
nications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

5. M. Dorigo. Ottimizzazione, Apprendimento Automatico ed Algoritmi Basati su
Metafora Naturale. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano,
Milan, Italy, 1992.

6. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11–32. McGraw Hill, London, UK, 1999.

7. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Trans. on Evol. Comp., 1(1):53–
66, 1997.

8. M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari. Updating ACO pheromones
using Stochastic Gradient Ascent and Cross-Entropy methods. In Proceedings of
EvoWorkshops 2002, pages 21–30. Springer Verlag, Berlin, Germany, 2002.

9. G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm.
IEEE Trans. on Evol. Comp., 3(4):287–297, 1999.

10. H. H. Hoos and T. Stützle. Randomly generated benchmark problems for
MAXSAT. Technical Note, Department of Computer Science, University of British
Columbia, March 2001.

11. P. Larrañaga and J.A. Lozano. Estimation of Distribution Algorithms. A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, 2001.

12. N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient de-
scent. Artificial Life, 8(2):103–121, 2002.

13. N. Monmarché, E. Ramat, G. Dromel, M. Slimane, and G. Venturini. On the
similarities between AS, BSC and PBIL: toward the birth of a new meta-heuristic.
Technical Report 215, Laboratoire d’Informatique, Université de Tours, 1999.

14. M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimiza-
tion algorithm. In Proceedings of GECCO’99, volume I, pages 525–532. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

15. J. Quinlan. Combining instance-based and model-based learning. In Proceedings
of the Twelfth International Conference on Machine Learning (ML-93), pages 236–
243. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

16. H. Robbins and S. Monro. A stochastic approximation method. Annals of Math-
ematical Statistics, 22:400–407, 1951.

17. A. Roli, C. Blum, and M. Dorigo. ACO for maximal constraint satisfaction prob-
lems. In Proceedings of MIC’2001, volume 1, pages 187–191, Porto – Portugal,
2001.

18. R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 1(2):127–190,
1999.

19. T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

20. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization. Technical Report TR/IRIDIA/2001-15, IRIDIA, Uni-
versité Libre de Bruxelles, 2001.

	1 Introduction
	2 Model-Based Search
	3 The Algorithms
	3.1 Ant Colony Optimization
	3.2 The Stochastic Gradient Ascent Method
	3.3 Estimation of Distribution Algorithms

	4 Empirical Comparison
	4.1 Comparison Setting
	4.2 Comparison Results

	5 Conclusions
	References

