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Öz

Yapay evrim yöntemleriyle bir oğul robot sistemi için davranış evrimleştirilmeye çalışıldığında
evrimin parametreleri ile ilgili bazı kararlar verilmesi gerekmektedir. Bu makalede örnek prob-
lem olarak toplanma davranışı seçilmiş ve robotların kotrol programı olarak benzetim ortamındaki
bir oğul robot sisteminde evrimleştirilen yapay sinir ağları kullanılmıştır. Farklı evrim parame-
treleriyle oluşturulan yapay sinir ağlarının performansı ve ölçeklenebilirliği araştırılmıştır. Bazı
parametrelere verilen değerler değiştirilerek dört ayrı deney yapılmış ve oğul robot sistemlerinde
başka davranışların da evrimsel yöntemlerle oluşturulmasına yardımcı olabilecek pratik kurallar
çıkarılmıştır.



Abstract

When one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he
is faced with decisions to be made regarding the parameters of the evolution. In this paper, ag-
gregation behavior is chosen as a case, where performance and scalability of aggregation behaviors
of perceptron controllers that are evolved for a simulated swarm robotic system are systematically
studied with different parameter settings. Four experiments are conducted varying some of the
parameters, and rules of thumb are derived, which can be of guidance to the use of evolutionary
methods to generate other swarm robotic behaviors.

1 Introduction

Swarm robotics [1, 2] is a new approach to the coordination of large numbers of relatively simple
robots. The approach takes its inspiration from the system-level functioning of social insects
which demonstrate three desired characteristics for multi-robot systems: robustness, flexibility
and scalability. Most of the studies [3, 4] on swarm robotics focus on developing behaviors with
these desired characteristics.

Evolutionary methods are becoming promising candidates to develop behaviors for swarm
robotic systems. However, when one attempts to use evolution to develop behaviors for a swarm
robotic system, he is faced with decisions to be made regarding the parameters of the evolution.
In this paper, we chose the aggregation behavior, which can be considered a pre-cursor for most
swarm behaviors, as a case, and conducted systematic experiments varying some of the parameters
and derived rules of thumb which can be of guidance to the use of evolutionary methods to generate
other swarm robotic behaviors.

In the next section, we review earlier studies that set the stage for our paper.

2 Related Work

Early studies on evolving behaviors for swarm robotic systems reported limited success and ex-
pressed pessimistic conclusions. In one of the earliest studies, Zaera et al. [5] used evolution to
develop behaviors for dispersal, aggregation, and schooling in fish. Although they had evolved
successful controllers for dispersal and aggregation; the performance of the evolved behaviors for
schooling was considered disappointing, and they concluded that for complex actions like schooling,
manual design of a controller would require less time and effort than evolving one, mainly due to
the difficulty of determining a useful evaluation function for the specific task.

Mataric et al. [6] have made a comprehensive review of the studies until 1996 on evolving
controllers to be used in physical robots and they have discussed the key challenges. They addressed
approaches and problems such as evolving morphology and/or controller, evolving in simulation
or with real robots, fitness function design, co-evolution, and genetic encodings. They emphasized
that for an evolved controller to be beneficial, the effort to produce it in evolution should be less
than the effort needed to manually design a controller for the same robotic task. They stated that
it has not been the case, yet; but when the challenges and problems are handled, they may become
a practical alternative to controllers designed by hand.

In [7], Lund et al. used evolution to develop minimal controllers for exploration and homing
task. They evolved controllers for the Khepera robot (K-Team, Switzerland) for the task consid-
ered where the robot was desired to leave a light source, i.e., home, explore the surrounding for
some time, and then return back home where it is virtually recharged. To obtain this periodic
behavior, they used sampled sensory input and a minimal network architecture without recurrent
connections, which can be used to obtain the notion of return period. Instead their evolution
exploited the geometrical shape as perceived by robot and produced a suitable controller.

In contrast to some of these pessimistic conclusions, during the recent years optimistic results
are being reported on the evolution of swarm behaviors. In the Swarm-bots Project [8], Baldassarre
et al. [9] successfully evolved controllers for a swarm of robots to aggregate and move towards a
light source in a clustered formation. Moreover, for this specific task, several distinct movement
types emerged: constant formation, amoeba (extending and sliding), and rose (circling around each
other). In [8], Trianni et al. also evolved successful controllers for a swarm of robots that can grip
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Figure 1: A screenshot of the simulator.

each other, called a swarm-bot, to fulfill tasks such as aggregation, coordinated motion in a common
direction, cooperative transport of heavy loads (as in ants), and all-terrain navigation to avoid holes
(connected in swarm-bot formation). Their evolved controllers made use of sound sensors, traction
sensors, and flexible links. Trianni et al. [10] has also identified two types aggregation behaviors
emerged from evolution: a dynamic and a static clustering behavior. In static clustering, robots
move in circles until they are attracted to a sound source. Then they bounce against each other
until an aggregate is formed. The clusters are tight and static with the robots involved turning on
the spot, whereas in dynamic aggregation, the clusters are loose and they flock around. This study
is a good example of evolution of different strategies, or behaviors, for a specific task. Furthermore,
in [11] Dorigo et al. evolved aggregation behaviors for a swarm robotic system. They analyzed two
of the evolved behaviors and showed that evolution was able to discover rather scalable behaviors.

Ward et al. [12] have evolved neural network controllers for such a survival scenario where
there are two populations of animals, predators and preys, that co-evolve to produce a schooling
behavior. They have also studied on the connection of physiology with behavior and they claim
that prey need a wide-range low-resolution visual sensors whereas predators are better off with
visual input concentrated in the front.

Despite these studies, the use of evolution to generate swarm robotic behaviors for a desired
task is a rather unexplored field of study. The effort in using evolutionary methods can be reduced
by suggestions on choosing parameters of evolution. To the best of our knowledge, no systematic
study has been made to investigate effects of parameters to help such choices.

For this paper, we chose aggregation behavior as the case for our study on evolution. Aggrega-
tion behavior is observed in almost all social animals. Animals either use aggregation to increase
their chances of survival, or they use aggregation as a pre-cursor of other behaviors. For example,
self-assembly and pulling heavy objects require prior aggregation at the site of interest.

In this paper, we systematically studied the performance and the scalability of aggregation
behaviors evolved for a simulated swarm robotic system. The control architecture evolved for this
task was a perceptron connecting sound and IR inputs to wheel and speaker actuators. The effect
of different parameter choices on the performance and the scalability of the aggregation behaviors
are analyzed.

3 Experimental Framework

We used a port1 of the Swarmbot3D simulator [13], a physics-based simulator developed within
the Swarm-bots project that modeled the s-bots (mobile robots with the ability to connect to each
other). The Swarmbot3D simulator included simulation models of the s-bot at different levels, all
obtained from and verified against the actual s-bot. We used the minimal s-bot model, with which
evolution of aggregation behavior was first studied by Dorigo et al. in [11]. A snapshot of the
simulator is shown in Fig. 1.

1We ported the Swarmbot3D simulator to the Open Dynamics Engine, a free physics-based simulation
library.
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Figure 2: A schematic view of the robot model. The robot has a diameter of 5.8 units. The 8 bars

emanating from the body of the robot indicate the IR sensor direction and range. The 4 triangles

are placed at the center represent microphones, 2 rectangles at the sides represent wheels, and the

circle at the center represents an omni-directional speaker.
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Figure 3: Neural network controller used as the controller for robots. Neurons match as follows

to Fig. 2: 1-4: microphones, 5-12: IR sensors, 13-14: wheel actuators, and 15: speaker.
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Figure 4: Sound heard at certain distances with one and five robots emitting sound at the

center. The audibility values shown are the maximum of sensory input values recorded by the

four microphones of a virtual robot which is placed at different distances from one wall to the

opposite on a line intersecting the center of a 400×400 unit arena. Higher values indicate higher

audibility. The region with 0 values near the center is occupied by the sound emitting robots.

Arenas that are used in the experiments have sizes 110×110, 140×140, 200×200, 282×282 and

400×400 units.
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Figure 5: Results of experiment 1: Different integrations of fitness values of the same controller

(evolved with 10 robots, 6000 steps, and 5 runs/controller). The y-axis shows the median and

standard deviation of fitness values of 50 evaluation runs for each set-up and the x-axis designates

5 different set-ups used to evaluate scalability performance of produced controllers by the evolutions

depicted on the legend. The evaluation set-ups increase in number of robots, size of arena, and

number of simulation steps from left to right.

A schematic view of the robot indicating the sensor and signal source configuration used in our
experiments is shown in Fig. 2. The robot is modeled as a differential drive robot with two wheels.
The model has 8 infrared range sensors around the robot, and one omni-directional speaker and
4 directional microphones placed at the center of the robot. The details of these models were
described in detail in [13]. The infrared sensors are modeled using sampling data obtained from
the real robot with the addition of white noise as described in [13] and [9]. Figure 4 shows the
characteristics of the sound sensor model which drives the long-range interactions among the robots.
As it is, the sound sensor model can be regarded as unrealistic due to its simplicity. However, using
a proper placement of microphones robust sound source localization can be done as in [14], where
Valin et al. has localized sound sources with a precision of 3 degrees in 3 meters range using an
array of 8 sound sensors placed at the corners of a rectangular prism.

It should be noted, however, that our simulator was neither verified against the original Swarm-
bot3D simulator, nor against the physical robots. Therefore, we make no claims about the porta-
bility of the evolved controllers onto the physical robots. Yet, for the purpose of this study, we
believe that the sensor and signaling models which were taken from the Swarmbot3D simulator are
sufficient since our study aims to deduce general rules of thumb for evolving behaviors in swarm
robotic systems.

Our goal is to evolve controllers that would aggregate a swarm of robots that are initially
dispersed in an environment. To this end, the robots are initially placed in an empty square arena,
shown in Fig. 1, at random position. Then the swarm robotic system is simulated, with each robot
being controlled by the same controller.

The controller is chosen to be a single-layer perceptron which has 12 input neurons (4 connected
to microphones and 8 connected to infrareds), 3 output neurons (1 to control the omni-directional
speaker and 2 to control the wheels) as seen in Fig. 3. The connection weights of the perceptron
are encoded as 39 floating point numbers on a chromosome, or population member. Here, for a
chromosome, mutation is defined as choosing one weight out of all 39 weights on the chromosome,
and adding a random value uniformly in ±1.0 range. Each chromosome is subjected to this type
of mutation with a probability of 0.5 and to a crossover with a probability of 0.8. This means that
each network weight in the population has a mutation probability of 0.5

39
. The genetic algorithm

is run with a population of 50 chromosomes. At each generation, depending on their fitness, the
best 10% of the population is copied unchanged to the next generation, i.e., elitism, together with
the rest which is mutated and subjected to crossover.

In order to evaluate the fitness of a chromosome, the perceptron defined by that particular
chromosome is replicated as the controller for all the robots in the swarm, and the swarm robotic
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system is simulated for a certain number of steps.
In our study, robots i and j are referred to as neighbors if Neighbor(i, j), defined in Equation

1, is true; and they are in the same cluster, or aggregate or group, if Connected(i, j), defined in
Equation 2, is true.

Neighbor(i, j) =







true if distance between
i and j ≤ 10

false otherwise
(1)

Connected(i, j) =















true if there is a path from
i to j over the
relationship Neighbor

false otherwise

(2)

At the end of a simulation run, sizes of clusters are computed. The aggregation performance,
or fitness, of a single evaluation run is defined as the ratio of the number of robots forming the
largest cluster to the total number of robots. The fitness of a chromosome is defined as in Equation
3.

Fitness = F (fitness1, ..., f itnessnruns
) (3)

where F , fitness combining function, is one of average, median, minimum, and maximum to join
the fitness values of nruns simulation runs done for a single chromosome. These runs differ in
their randomization seed. This seed determines the initial placement of robots. fitnessi in this
equation refers to the fitness value of a simulation run with the ith random seed.

Evolution of controllers is done using PES (Parallelized Evolution System) on a Beowulf cluster
with 128 nodes. PES [15], a software platform implemented using the PVM library, parallelizes
the fitness evaluations of evolutionary methods over multiple computers connected via a network.

4 Experiments

We conducted four different experiments to investigate the effect of different parameters on per-
formance and scalability of evolved behaviors. Parameters altered in the evolution experiments
are (a) the fitness combining method F (·), (b) the number of runs per controller (nruns), (c) the
number of simulation steps, and (d) the set-ups. In experiments 1, 2, and 3, the total number of
simulation steps in a run remained the same for different parameter choices.

For each given set of parameters, one evolution is run and the resulting aggregation behaviors
are analyzed. During the analysis, each behavior is tested with 50 seeds on 5 different set-ups,
that are shown in Table 1. In all these set-ups the robot density over the arena is kept the same.
The number of simulation steps is increased in larger arenas to allow more time for aggregation.
In these tests, both the performance and the scalability of the evolved behaviors are evaluated.

set-up # Robots Arena Size # Simulation Steps

1 3 110 × 110 3000

2 5 140 × 140 6000

3 10 200 × 200 9000

4 20 282 × 282 12000

5 40 400 × 400 15000

Table 1: Set-ups used for evaluation.

The first experiment is motivated by the question of how the different performance evaluations
(each obtained from different initial conditions) of a controller should be combined to obtain the

5



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3r 

110x110a 

3000st

5r 

140x140a 

6000st

10r 

200x200a 

9000st

20r 

282x282a 

12000st

40r 

400x400a 

15000st

Num. of robots, arena size, run time

F
in

a
l 

la
rg

e
s
t 

c
lu

s
te

r 
ra

ti
o 1 run/controller  

18000 steps

3 runs/controller  
6000 steps

5 runs/controller  
3600 steps

10 runs/controller
1800 steps

Figure 6: Results of experiment 2: Different number of runs for the same controller are varied

while keeping total number of steps for a controller constant. Evolution is done with 10 robots.
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Figure 7: Results of experiment 3: The number of generations and the number of runs for the same

controller are varied while keeping total number of steps constant. In this experiment, evolution

is done with 10 robots in 6000-step simulations.

best result. This is an important issue, since initial placement of robots in the arena creates a large
bias for the resulting performance and therefore a fair evaluation of different controllers requires
multiple performance evaluations each starting from a different initial placement.

We examined the effect of fitness combining method, i.e., to combine the fitness values of
nruns simulations done for a controller. The results, shown in Fig. 5(a), indicate that among the
four functions used (average, median, minimum, and maximum), minimum and median should
be preferred for better results. Use of the maximum function, which corresponds to optimistic
evaluation, is clearly the worst of the four. One possible reason may be the high variance inherent
in all of the fitness evaluations, which can be seen in the standard deviation plot in Fig. 5(b).

The behavior of one of the best controllers evolved in this experiment can be seen in Figures
8(a) and 8(b). The evolved strategy can be described as “go straight until a sound is heard while
avoiding walls, approach the loudest sound source, and then rotate, i.e. do not change position”.
The emergent behavior of formed groups is to move slowly toward the loudest sound source. This
can be seen in paths of groups in Fig. 8(b), which are slowly going towards each other.

The second experiment investigates the trade-off between nruns and simulation duration while
keeping the number of total simulation steps executed for a specific controller constant. Figure 6
shows a significant monotonous increase in performance as nruns increases although duration of
simulation decreases. This implies that number of runs for a controller is clearly more important
than simulation duration.

The third experiment (Fig. 7) investigates the trade-off between nruns and number of gen-
erations while keeping the number of total simulation steps in the whole evolution constant. In
this trade-off, the change in performance is not monotonous as in the previous experiment. The
results show that a controller is not yet mature at 15 generations, hence the low performance of
that case. They also show that the ngens=30 - nruns=5 pair seems to be the best point of this
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Figure 8: The behavior of an evolved controller. Final positions of robots are shown as circles

together with the paths they followed during the whole simulation run.
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Figure 9: Results of experiment 4: Varying evolution set-up size, i.e. number of robots, arena

size, and number of simulation steps. In this experiment, evolution is done with 3 runs/controller

for the first four evolutions and 4 × 3 = 12 runs/controller for the multiplied set-up evolution.

trade-off. While ngens=150 case seems to perform as good as that on the average, doing one run
per controller may impose problems due to possible bias for a lucky initial random placement.

Experiment 4 (Fig. 9) investigates the effect of set-up size on performance and scalability.
Unlike the first three experiments, which were conducted to find out how to use total processing
time most effectively, this experiment does not keep total number of simulation steps in the whole
evolution constant. Instead it analyzes how good controllers evolved with different set-ups perform
on smaller/larger set-ups. It tries to find out which evolution set-up size leads to the best scalability
and also whether using all set-ups in one evolution (where calculating fitness for example by
multiplying their results) improves overall scalability.

In the experiment, four evolutions are executed with single set-ups and one with all set-ups,
multiplying the fitness values obtained from each set-up. The results show that 5-robot evolution
generally produced the worst controller, even when evaluated on its own set-up. Again we do not
see a monotonous change in performance with set-up size used in evolutions, the controller evolved
with 3-robots seems better than the one with 5-robots. In fact, except the 20-robot evolution, none
of the evolutions produced the best controller on their own set-ups. 10-robot evolution seems to
have produced a controller suitable to larger set-ups, which can be observed from its line that has
significantly different slopes than the other four controllers, tending to score higher than others
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as set-up size increases. The slopes of the curves tell us that 10-robot evolution may score higher
than others for set-ups with more than 40 robots. For the evaluation set-ups considered, overall
the best controller seems to be produced by the 20-robot evolution.

It is interesting to note that the multiplied set-up evolution, which was especially designed for
better scalability results, performs close but not as good as the 20-robot evolution. We believe
that this unexpected result is most probably relevant to the high variance in performance which
can be seen in the result graphs.

5 Conclusions

We studied how different parameters of evolutionary methods affect the performance and the
scalability of behaviors in swarm robotic systems. We chose the aggregation behavior as our case
and made four systematic experiments. These experiments investigated trade-offs among number of
runs per controller, number of generations in the genetic algorithm, and number of simulation steps
to find out the most beneficial resource to dedicate processing time to. Furthermore, this study
examined how to best merge fitness results obtained from simulation runs of the same controller
with different seeds. Finally, one more experiment was done to better understand how evolution
set-up size affects the scalability and performance on set-ups of different size.

Based on the results obtained from the experiments conducted, we conclude the following rules
of thumb:

• The use of optimistic functions (like maximum to combine performance values obtained
from different runs of a controller should be avoided. Instead median or minimum should be
preferred.

• When faced with the trade-off between the number of simulation steps for each run and the
number of different runs per controller, one should choose the minimum sufficient number of
simulation steps while maximizing the number of runs per controller. This will considerably
eliminate negative effects of the high variance observed in robotics applications when initial
positions are random.

• The optimum value of the number of runs per controller and the number of generations
(which is as important as number of runs) is not easy to obtain. Number of generations
in evolution needed for emergence of a controller with acceptable performance, depends on
architectural complexity of the controller and difficulty of the task. It is best to let the
evolution run once initially for many generations to see about when the performance reaches
a reasonable level.

• In fitness evaluation, running simulation in multiple set-ups of different scale and multiplying
the results does not necessarily improve scalability. Multiple-setup strategy should be more
successful if more simulation runs per controller can be done, which would reduce drawbacks
caused by outliers.

We believe that these results obtained through the systematic experiments have a high chance
of being relevant both for evolving other swarm robotic behaviors in simulation, and for evolving
behaviors for physical robotic systems.

This study can be extended by considering tasks other than aggregation and verifying the re-
sults on them. Also, more experiments can be carried out to investigate effects of other parameters
which do not influence total run-time such as mutation-crossover rates, and different fitness mea-
sures. Moreover, experiments can be conducted to further explore optimal regions in trade-offs
among parameters that affect total run-time, such as population size in the genetic algorithm,
simulation run-time, and number of simulations for each chromosome. Finally, the results can
be strengthened more by applying the evolved controllers to physical robots and evaluating the
performance and scalability with different number of robots and with arenas of different size or
shape.
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