Self-Organisation and Communication in Groups of Simulated and Physical Robots
Trianni Vito, Dorigo Marco


In social insects, both self-organisation and communication play a crucial role for the accomplishment of many tasks at a collective level. Communication is performed with different modalities, which can be roughly classified in three classes: indirect (stigmergic) communication, direct interactions and direct communication. The use of stigmergic communication is predominant in social insects (e.g., the pheromone trails in ants), where however also direct interactions (e.g., antennation in ants) and direct communication (e.g., the waggle dance in honey bees) can be observed. Taking inspiration from insect societies, we present an experimental study of self-organising behaviours for a group of robots, which exploit communication to coordinate their activities. In particular, the robots are placed in an arena presenting holes and open borders, which they should avoid while coordinately moving. Artificial evolution is responsible for the synthesis in a simulated environment of the robot's neural controllers, which are subsequently tested on physical robots. We study different communication strategies among the robots: no direct communication, handcrafted signalling and a completely evolved approach. We show that the latter is the most efficient, suggesting that artificial evolution can produce behaviours that are more adaptive than those obtained with conventional design methodologies. Moreover, we show that the evolved controllers produce a self-organising system that is robust enough to be tested on physical robots, notwithstanding the huge gap between simulation and reality.

Swarm-bots project started
on October 1,2001
The project terminated
on March 31, 2005.
Last modified:
Fri, 27 Jun 2014 11:26:47 +0200
web administrator: